
SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 578–587

A SPLITTER THEOREM FOR INTERNALLY 4-CONNECTED
BINARY MATROIDS∗
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Abstract. We prove that if N is an internally 4-connected minor of an internally 4-connected
binary matroid M with E(N) ≥ 4, then there exist matroids M0,M1, . . . ,Mn such that M0

∼= N ,
Mn = M , and, for each i ∈ {1, . . . , i}, Mi−1 is a minor of Mi, |E(Mi−1)| ≥ |E(Mi)| − 2, and Mi is
4-connected up to separators of size 5.

Key words. binary matroids, Splitter Theorem, 4-connectivity

AMS subject classification. 05B35

DOI. 10.1137/050629124

1. Introduction. We prove the following theorem.
Theorem 1.1 (main theorem). Let M be a binary matroid that is 4-connected

up to separators of size 5 and let N be an internally 4-connected proper minor of M .
If |E(N)| ≥ 10, then either

• there exists e ∈ E(M) such that M \e or M/e is 4-connected up to separators
of size 5 and contains an N -minor, or

• M has a fan (e1, e2, e3, e4, e5) such that M/e3 \e4 or M \e3/e4 is 4-connected
up to separators of size 5 and contains an N -minor.

A matroid M is 4-connected up to separators of size k if M is 3-connected and
for each 3-separation (A,B) of M either |A| ≤ k or |B| ≤ k. A matroid is internally
4-connected if it is 4-connected up to separators of size 3. A sequence (e1, . . . , ei) of
distinct elements of a matroid M is called a fan if the sets {e1, e2, e3}, {e2, e3, e4}, . . . ,
{ei−2, ei−1, ei} are alternately triangles and triads. For other notation and terminol-
ogy we follow Oxley [6], except we use si(M) and co(M) to denote the simplification
and cosimplification, respectively, of a matroid M . Recall that M having an N -minor
means that M has a minor isomorphic to N .

We remark that the bound |E(N)| ≥ 10 in Theorem 1.1 is included only to
simplify the proof; the result holds under the weaker hypothesis that |E(M)| ≥ 7.
(Thus we do not require a lower bound on |E(N)|.)

Seymour’s Splitter Theorem [7] is a well-known inductive tool for studying 3-
connected matroids.

Theorem 1.2 (the Splitter Theorem). Let M be a 3-connected matroid with
|E(M)| ≥ 4 and let N be a 3-connected proper minor of M . If M is not a wheel or a
whirl, then there exists e ∈ E(M) such that M \ e or M/e is 3-connected and has an
N -minor.

The Splitter Theorem allows a 3-connected matroid to be built one element at
a time from a given 3-connected minor so that the intermediate matroids are all 3-
connected. Theorem 1.1 provides a similar result for internally 4-connected binary
matroids.
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INTERNALLY 4-CONNECTED BINARY MATROIDS 579

Corollary 1.3. Let N be an internally 4-connected minor of an internally
4-connected binary matroid M , where |E(N)| ≥ 4. Then there exists a sequence
M0,M1, . . . ,Mk of matroids such that M0

∼= N , Mk = M , and, for each i ∈ {1, . . . , k},
Mi−1 is a minor of Mi, |E(Mi−1)| ≥ |E(Mi)| − 2, and Mi is 4-connected up to sepa-
rators of size 5.

We rely heavily on results of Hall [4], who proved the following analogue of Tutte’s
Wheels and Whirls Theorem.

Theorem 1.4 (Hall [4]). If M is 4-connected up to separators of size 5 and
|E(M)| ≥ 5, then either

• there exists e ∈ E(M) such that M \e or M/e is 4-connected up to separators
of size 5, or

• M has a fan (e1, e2, e3, e4, e5) such that M/e3 \e4 or M \e3/e4 is 4-connected
up to separators of size 5.

Note that Hall’s theorem holds for all matroids, while Theorem 1.1 is only for
binary matroids. The main reason is simply that this is what we could prove. There
is a very useful lemma (Lemma 4.3) that is particular to binary matroids. We expect
that there is a reasonable analogue of the Splitter Theorem for matroids that are 4-
connected up to separators of size 5—not just for binary matroids. The applicability of
Theorem 1.1 (discussed below) stems from the fact that the class of binary matroids
is closed under 3-sums. As there is no reasonable analogue of a 3-sum for general
matroids, the proposed generalization may be of only academic interest.

It is a shortcoming of Corollary 1.3 that the intermediate matroids are only 4-
connected up to separators of size 5; it would be preferable if this could be strength-
ened to internally 4-connected. There are, however, numerous obstacles to obtaining
such a theorem, even for graphs; see Johnson and Thomas [5]. They proved that if H
is an internally 4-connected minor of an internally 4-connected graph G, then either
H and G belong to a family of exceptional graphs, or G can be built from H by means
of four possible constructions. Their intermediate graphs are “almost” internally 4-
connected. Below we give some justification that, other than causing additional case
analysis, Corollary 1.3 provides a satisfactory inductive tool for internally 4-connected
binary matroids.

First we will outline how one might use Corollary 1.3 to prove Seymour’s decom-
position of regular matroids [7]. Seymour showed that every regular matroid can be
obtained from graphic matroids, cographic matroids, and copies of R10 via 1-, 2-, and
3-sums. Equivalently, every internally 4-connected regular matroid is either graphic
or cographic or is isomorphic to R10. It would suffice to prove the following claim:
If M is a regular matroid that is 4-connected up to separators of size 5 and M has
an M∗(K3,3)-minor, then either M is graphic or M is isomorphic to R10. This claim
reduces easily to the case that M is internally 4-connected. Therefore, one could at-
tempt to prove the result inductively by using Corollary 1.3. Here we see that relaxing
the connectivity condition slightly (from internally 4-connected to 4-connected up to
separators of size 5) facilitates the use of induction.

Let M be a minor-closed class of binary matroids. Recall that a matroid N ∈ M
is a splitter for M if there is no 3-connected matroid in M that contains N as a proper
minor. Determining whether a 3-connected matroid N is a splitter for M reduces to
a finite case analysis via Seymour’s Splitter Theorem. Analogously we could call N
a 4-splitter if there is no internally 4-connected matroid in M that contains N as
a proper minor. It is a straightforward exercise to prove that, if N is internally 4-
connected with |E(N)| ≥ 9 and N is a 4-splitter for M, then there are only finitely
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580 JIM GEELEN AND XIANGQIAN ZHOU

many matroids in M that are 4-connected up to separators of size 5 and that contain
N as a minor. It follows that, using Corollary 1.3, we can test whether or not N is a
4-splitter via a finite case check.

2. Small matroids. When |E(N)| ≥ 10 it is clear that Theorem 1.1 implies
Corollary 1.3. In this section we address the problems that arise for smaller matroids.
There are only a few internally 4-connected binary matroids with |E(N)| ≤ 9. The
following result can be easily verified by the reader.

Lemma 2.1. If N is an internally 4-connected binary matroid with |E(N)| ≤ 9,
then either N is a uniform matroid with at most three elements or N is isomorphic
to one of the following matroids: M(K4), F7, F

∗
7 , M(K3,3), or M∗(K3,3).

It follows from Tutte’s Wheels and Whirls Theorem that if M is a 3-connected
binary matroid with |E(M)| ≥ 4, then M has an M(K4)-minor. Thus, when N =
M(K4), Corollary 1.3 is an immediate corollary of Theorem 1.4.

Using the Splitter Theorem and “blocking sequences,” Zhou [9] studied internally
4-connected binary matroids with an F7-minor.

Lemma 2.2 (see Zhou [9]). If M is an internally 4-connected binary matroid with
a proper F7-minor, then M has an internally 4-connected minor N with an F7-minor
and with 10 ≤ |E(N)| ≤ 11.

Let M be an internally 4-connected matroid with F7 as a proper minor. By
Lemma 2.2, M has an internally 4-connected minor N with 10 ≤ |E(N)| ≤ 12 and
with an F7-minor. By the Splitter Theorem, there exists a sequence of 3-connected
matroids M0,M1, . . . ,Mj such that M0

∼= F7, Mj = N , and, for each i ∈ {1, . . . , j},
there exists e ∈ E(Mi) such that Mi−1 = Mi \ e or Mi−1 = Mi/e. Since M0, . . . ,Mj

have at most 11 elements, they are 4-connected up to separators of size 5. Now,
applying Theorem 1.1 to N , we can prove Corollary 1.3 in the case that N = F7. By
duality, Corollary 1.3 holds when N = F ∗

7 .
There are exactly three 10-element binary matroids that are internally 4-connected

and that contain an M(K3,3)-minor; these matroids, named R10, N10, and K̃5
∗
, are

defined in [7, 9]. The same techniques used by Zhou [9] in proving Lemma 2.2 can be
used to prove the following result; we omit the straightforward but lengthy details.

Lemma 2.3. Let M be an internally 4-connected binary matroid with a proper
M(K3,3)-minor. Then M has a minor isomorphic to R10, N10, K̃5

∗
, or to the cycle

matroid of one of the graphs in Figure 1.
Now, considering each of the graphs in Figure 1, we can prove Corollary 1.3 when

N = M(K3,3) and N = M(K3,3)
∗.

3. Basic lemmas on separations. In this section, we present some basic lem-
mas on separations that will be used in later sections.

Let M = (E, r) be a matroid, where r is the rank function. For A ⊆ E, we
let λM (A) denote r(A) + r(E\A) − r(M). Then A is k-separating if and only if
λM (A) ≤ k − 1. We refer to λM as the connectivity function of M . Tutte [8] proved
that the connectivity function is submodular; that is, if X,Y ⊆ E(M), then

λM (X) + λM (Y ) ≥ λM (X ∩ Y ) + λM (X ∪ Y ).

The next lemma follows easily.
Lemma 3.1. Let X and Y be k-separating sets of M . If X ∩ Y is not (k − 1)-

separating in M , then X ∪ Y is k-separating in M .
The coclosure of a set X ⊆ E(M) is the closure of X in M∗. Clearly, an element

x ∈ E(M)\X belongs to the coclosure of X if and only if x does not belong to the
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INTERNALLY 4-CONNECTED BINARY MATROIDS 581

Fig. 1. Internally 4-connected graphs.

closure of E(M)\(X ∪ {x}). A set X ⊆ E(M) is coclosed if the coclosure of X is the
set X itself. We say X is fully closed if X is both closed and coclosed.

Let (A,B) be a k-separation of the matroid M . Following the terminology of [3],
an element x ∈ E(M) is in the guts of (A,B) if x belongs to the closure of both A
and B. Dually, x is in the coguts of (A,B) if x belongs to the coclosure of both A
and B. We say that (A,B) is an exact k-separation or A is exactly k-separating if
λM (A) = k − 1. The next lemma follows easily from definitions.

Lemma 3.2. Let (A,B) be an exact k-separation of matroid M and let x ∈ B.
Then

• A∪ {x} is exactly k-separating if x belongs to either the guts or the coguts of
(A,B) but not both;

• A ∪ {x} is exactly (k − 1)-separating if x belongs to both the guts and the
coguts of (A,B);

• A ∪ {x} is exactly (k + 1)-separating if x belongs to neither the guts nor the
coguts of (A,B).

Suppose x is an element of the matroid M and let (A,B) be a k-separation of
M\x. Then x blocks (A,B) if neither (A∪ {x}, B) nor (A,B ∪ {x}) is a k-separation
of M . Now let (A,B) be a k-separation of M/x. Then x coblocks (A,B) if neither
(A∪{x}, B) nor (A,B∪{x}) is a k-separation of M . The following lemma also follows
easily from definitions.

Lemma 3.3. Let M be a matroid and let {A,B, {x}} be a partition of E(M).
Then the following hold:

• If (A,B) is an exact k-separation of M\x, then x blocks (A,B) if and only if
x is not a coloop of M , x /∈ clM (A), and x /∈ clM (B).

• If (A,B) is an exact k-separation of M/x, then x coblocks (A,B) if and only
if x is not a loop, x ∈ clM (A), and x ∈ clM (B).

Suppose that X1, X2, Y1, and Y2 are sets. The pairs (X1, Y1) and (X2, Y2) are
said to cross if all four sets X1 ∩ X2, X1 ∩ Y2, Y1 ∩ X2, and Y1 ∩ Y2 are nonempty.
We omit the proof of the next lemma, which is a standard rank argument.
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582 JIM GEELEN AND XIANGQIAN ZHOU

Lemma 3.4. Let e be an element of a 3-connected matroid M . Now, let (Xd, Yd)
be a 3-separation of M\e that is blocked by e, and let (Xc, Yc) be a 3-separation of
M/e that is coblocked by e. Then (Xd, Yd) and (Xc, Yc) cross. Moreover,

• one of Xd ∩Xc and Yd ∩ Yc is 3-separating in M , and
• one of Xd ∩ Yc and Yd ∩Xc is 3-separating in M .

A matroid M is internally 3-connected if it is connected and, for each 2-separation
(A,B) of M , either |A| = 2 or |B| = 2. The following result is due to Bixby [1].

Lemma 3.5 (Bixby’s lemma). If e is an element of a 3-connected matroid M ,
then M \ e or M/e is internally 3-connected.

Lemma 3.6. Let (A,B) be a 3-separation of a 3-connected matroid M , where A
is coclosed and |A| ≥ 4. If e ∈ A is in the guts of the separation (A,B), then M \ e
is 3-connected.

Proof. Note that M/e is not internally 3-connected. Therefore, by Bixby’s lemma,
M \ e is internally 3-connected. If M \ e is not 3-connected, then there is a triad T
of M with e ∈ T . Since e ∈ clM (B) and e ∈ clM (A − {e}), we have T ∩ B 	= ∅ and
T ∩ (A− {e}) 	= ∅. However, this contradicts the fact that A is coclosed.

For disjoint sets X,Y ⊆ E(M), we let κM (X,Y ) = min{λM (S) : X ⊆ S ⊆
E(M) \ Y }. It is clear that the function κM is minor monotone; that is, if N is a
minor of M with X ∪ Y ⊆ E(N), then κN (X,Y ) ≤ κM (X,Y ). The following is due
to Tutte [8].

Theorem 3.7 (Tutte’s Linking Theorem). Let M be a matroid and let X and Y
be disjoint subsets of E(M). Then there exists a minor N of M with E(N) = X ∪ Y
and λN (X) = κM (X,Y ).

The next lemma is due to Geelen, Gerards, and Whittle [2, Lemma 4.11].
Lemma 3.8. Let M be a matroid and let X,Y ⊆ E(M) be disjoint sets with

κM (X,Y ) ≥ k. If E(M)\(X ∪ Y ) 	= ∅, then either
• there exists an element g ∈ E(M)\(X∪Y ) such that κM/g(X,Y ) = κM\g(X,Y ) =
κM (X,Y ), or

• λM (X) = k and there exists an ordering b1, b2, . . . , bm of elements in E(M)\(X∪
Y ) such that for 1 ≤ i ≤ m, λM (X ∪ {b1, . . . , bi}) = k.

4. Binary matroids and minors. We require the following lemma.
Lemma 4.1. Let (A,B) be a 3-separation of a matroid M , and let C ⊆ B be

a circuit of M with κM (A,C) = 2. Then there exists a minor N of M such that
A ⊆ E(N) ⊆ A ∪ C, C ∩ E(N) is a triangle of N , and λN (A) = 2.

Proof. We start with the following claim.
4.2. There exists a minor M ′ of M such that E(M ′) = A∪C, λM ′(A) = 2, and

C is a circuit of M ′.
Subproof. Suppose that M ′ is a minor of M such that A∪C ⊆ E(M), κM ′(A,C) =

2, and C is a circuit of M ′. The proof is by induction on |E(M ′)−(A∪C)|. The result
is trivial if |E(M ′) − (A ∪ C)| = 0; suppose otherwise, and let e ∈ E(M ′) − (A ∪ C).
If κM ′\e(A,C) = 2, then the result follows inductively; we may assume otherwise.
Therefore, e is in the coguts of a 3-separation (Z1, Z2), where A ⊆ Z1 and C ⊆ Z2.
It follows that e 	∈ clM ′(C) and, hence, that C is a circuit in M ′/C. Moreover, by
Tutte’s Linking Theorem, κM ′/e(A,C) = 2. Now, considering M ′/e, the result follows
inductively.

Let M ′ be as given in the claim. The proof now proceeds by induction on |C|.
If |C| = 3, then the result is immediate. Thus we may assume that |C| ≥ 4. Since
λM ′(A) = 2 < rM ′(C), there exists e ∈ C − clM ′(A). Thus e is not in the guts of the
3-separation (A,C) of M ′. Therefore, λM ′/e(A) = 2. Moreover, C − {e} is a circuit
of M ′/e; thus the result follows inductively.
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INTERNALLY 4-CONNECTED BINARY MATROIDS 583

Lemma 4.3. Let N be an internally 4-connected minor of a binary matroid M
and let (A,B) be a 3-separation of M with |B ∩ E(N)| ≤ 3. If M ′ is a minor of M
with A ⊆ E(N), |E(M ′)∩B| ≥ 4, and λM ′(X) ≥ min(2, |X|) for all X ⊆ E(M ′)∩B,
then M ′ has an N -minor.

Proof. Let B′ = B∩E(M ′). By duality, we may assume that either |E(N)∩B| ≤ 2
or that E(N)∩B is a triangle of N . Since M ′ is binary and |B′| ≥ 4, B′ cannot be a
line in M ′∗; thus, r∗M ′(B′) ≥ 3. Then B′ 	⊆ cl∗M ′(A) and, hence, B′ contains a circuit
C of M ′. By Lemma 4.1, M ′ has a minor M ′′ such that A ⊆ E(M ′′), λM ′(A) = 2,
and B ∩E(M) is a triangle of M ′′. Evidently N is isomorphic to a minor of M ′′ and,
hence, also of M ′.

Lemma 4.4. Let N be an internally 4-connected minor of a 3-connected binary
matroid M and let (A,B) be a 3-separation of M with |A|, |B| ≥ 5. If e is in the guts
of (A,B), then M \ e has an N -minor.

Proof. By symmetry we may assume that |E(N) ∩ B| ≤ 3. Since e is in the
guts of the 3-separation (A,B), M/e is not internally 3-connected. Therefore, by
Bixby’s lemma, M \e is internally 3-connected. Thus, co(M \e) is 3-connected. Since
e ∈ clM (A), there is no series-pair of M \ e contained in B. Therefore, λM ′(X) ≥
min(2, |X|) for all X ⊆ B − {e}. Then, by Lemma 4.3, M \ e has an N -minor.

Lemma 4.5. Let N be an internally 4-connected minor of a 3-connected binary
matroid M and let (A,B) be a 3-separation of M with |B| ≥ 5 and |E(N) ∩ B| ≤ 3.
If A is fully closed, then there exists e ∈ B such that M \ e and M/e both contain an
N -minor.

Proof. Assume by way of contradiction that the result is false. Let b ∈ B. By
duality we may assume that M/b does not have an N -minor. Then, by Lemma 4.3,
there exists a 2-separating set Y ⊆ B − {b} of M/b with |Y | ≥ 2. Let X = Y ∪ {b}.
Then X ⊆ B is a 3-separating set of M .

By Lemma 3.8 and the fact that A is fully closed, there exists e ∈ B − X such
that κM\e(A,X) = κM/e(A,X) = 2. If |X| ≥ 4, then the result follows easily from
Lemma 4.3. Thus we may assume that |X| = 3. Since Y is 2-separating in M/b, X is
a triangle of M . Let M ′ ∈ {M \e,M/e}. Thus, it suffices to prove that M ′ has an N -
minor. Since A is fully closed in M , X 	⊆ clM ′(A). By Tutte’s Linking Theorem there
exists a partition (D,C) of E(M) − (A ∪X) such that λM ′\D/C(A) = 2; we choose
such D and C so that |C| is minimal. Note that X ⊆ clM ′\D/C(A) but X 	⊆ clM ′(A).
Thus C 	= ∅; choose f ∈ C. Now, let M ′′ = M ′ \D/(C − {f}). By the minimality of
C, we have λM ′′\f (A) = 1 and λM ′′/f (A) = 2. Thus (A,X ∪ {f}) is a 3-separation
of M ′′ consisting of a triangle X with a point f in the coguts. Then, by Lemma 4.3,
M ′′ has an N -minor. Therefore, M ′ has an N -minor, as required.

5. The internally 4-connected case. The goal of this section is to prove the
following theorem.

Theorem 5.1. Let N be an internally 4-connected proper minor of an internally
4-connected binary matroid M with |E(M)| ≥ 7. Then there exists e ∈ E(M) such
that either M\e or M/e is 4-connected up to separators of size 5 and has an N -minor.

We will make use of the following lemma of Hall [4, Theorem 3.1].
Lemma 5.2. Let M be an internally 4-connected binary matroid and {a, b, c} be

a triangle of M . Then at least one of M\a, M\b, and M\c is 4-connected up to
separators of size 5.

Note that, by Lemma 5.2, if we find a triangle of M such that each of the three
elements can be deleted to keep the N -minor, then Theorem 5.1 holds. Such a triangle
will be called an N -deletable triangle. Similarly, an N -contractible triad is a triad with
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584 JIM GEELEN AND XIANGQIAN ZHOU

the property that any one of its elements can be contracted to keep an N -minor.

Suppose M is an internally 4-connected binary matroid and M ′ is a minor of M .
We call M ′ a TT-connected minor of M if the following hold:

• M ′ is internally 3-connected.
• If (X,Y ) is a 3-separation of M ′, then either |X| ≤ 6 or |Y | ≤ 6.
• If (X,Y ) is a 3-separation of M ′ with min(|X|, |Y |) = 6, then one of X and

Y can be partitioned into two disjoint subsets of size 3, each of which is a
triangle or triad of M .

Lemma 5.3. Let M be an internally 4-connected binary matroid and let e ∈
E(M). Then at least one of M\e and M/e is a TT-connected minor of M .

Proof. Since M is internally 4-connected, M\e and M/e are both internally 3-
connected. Either the lemma holds or there exist 3-separations (Xd, Yd) and (Xc, Yc)
of M\e and M/e, respectively, such that the four sets Xd, Yd, Xc, and Yc all have size
at least 6 and none of them is the union of two 3-separating sets in M . By Lemma
3.4, one of Xd ∩Xc and Yd ∩Yc is 3-separating in M , and one of Xd ∩Yc and Yd ∩Xc

is 3-separating in M . By duality, we may assume that Xd ∩ Xc and Xd ∩ Yc are
3-separating in M . Therefore Xd is the union of two 3-element 3-separating sets of
M , which is a contradiction.

Lemma 5.4. Let M be an internally 4-connected binary matroid and let N be an
internally 4-connected minor of M with E(N) ≥ 10. If M\e is a 3-connected TT-
connected minor of M and has an N -minor, then there exists f ∈ E(M) such that
either M\f or M/f is 4-connected up to separators of size 5 and has an N -minor.

Proof. Assume that M\e is not 4-connected up to separators of size 5. Then there
exists a 3-separation (X,Y ) of M\e with |X| = 6, |Y | ≥ 6, and X is a disjoint union
of two 3-element 3-separating sets, T1 and T2 of M . Since N is internally 4-connected
and E(N) ≥ 10, we must have |E(N) ∩X| ≤ 3. Up to symmetry, we have two cases.

Case 1. T1 is a triangle, and T2 is a triad of M .

Since M is internally 4-connected, T2 is closed in M and, hence, also in M \ e.
Then, since M is binary, we must have rM (T1 ∪ T2) = 5. So r∗M\e(T1 ∪ T2) =

6 − (r(M) − rM (Y )) = 6 + λM\e(X) − rM (X) = 3. Now T1 ∪ T2 is a rank-3 3-
separating set in (M \ e)∗, and T1 is a triad in (M \ e)∗. Therefore, T2 ⊆ cl(M\e)∗(Y ).
Thus, by Lemma 4.4, T2 is an N∗-deletable triangle in (M \ e)∗. Hence, T2 is an
N -contractible triad in M , proving the result.

Case 2. T1 and T2 are both triangles or both triads of M .

Choose (M ′, N ′) ∈ {(M\e,N), ((M\e)∗, N∗)} such that T1 and T2 are both triads
of M ′. Since M ′∗ has no parallel pairs and since M ′∗ is binary, we have rM ′∗(T1∪T2) =
4. It follows that rM ′(T1 ∪ T2) = 4. Thus, considering a geometric representation of
M ′, T1 and T2 are triads spanning a common line. Now, by Lemma 4.3, we see that
T1 is an N ′-contractible triad of M ′. Hence, T1 is either an N -contractible triad or
an N -deletable triangle of M , proving the result.

Lemma 5.5. Let M be an internally 4-connected binary matroid and let N be an
internally 4-connected minor of M with E(N) ≥ 10. Let e ∈ E(M) such that both
M\e and M/e have an N -minor. Then there exists f ∈ E(M) such that either M\f
or M/f is 4-connected up to separators of size 5 and has an N -minor.

Proof. First assume e belongs to a triangle (or a triad) T of M . Since both M\e
and M/e have an N -minor, T is an N -deletable triangle (or an N -contractible triad)
of M . So the lemma follows from Lemma 5.2. Now we assume that e is not in a
triangle or triad of M . Hence both M\e and M/e are 3-connected. So the result
follows from Lemmas 5.3 and 5.4.
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Proof of Theorem 5.1. By the discussion in section 2, we may assume that
|E(N)| ≥ 10. By the Splitter Theorem, there exists e ∈ E(M) and M ′ ∈ {M \e,M/e}
such that M ′ is 3-connected and has an N -minor. Now, by Lemma 5.4, we can assume
that M ′ is not a TT-connected minor of M . Let (A,B) be a 3-separation of M ′, where
|A|, |B| ≥ 6 and neither A nor B is a disjoint union of two 3-element 3-separating sets
of M ′. We may assume that |E(N) ∩ B| ≤ 3. Since |E(N)| ≥ 10, |A ∩ E(N)| ≥ 7.
Now, we may further assume that B is fully closed in M ′.

By Lemma 5.5, we may assume that there is no element f ∈ B such that M ′ \ f
and M ′/f both have an N -minor. Then, by Lemma 4.5, there exists an element f ∈ B
that is in the closure or the coclosure of A in M ′. By duality we may assume that
f ∈ clM ′(A). By Lemma 4.4, M ′ \ f has a minor N ′ isomorphic to N .

Let B′ = B ∪ {e} − {f}. Note that (A,B − {f}) is a 2-separation of M ′/f and,
hence, (A,B′) is a 3-separation of M/f . By Lemma 3.6, M ′\f is 3-connected. Now it
is easy to verify that e either blocks or coblocks the 3-separation (A,B−{f}) in M ′\f
and, hence, M \ f is also 3-connected. By Lemma 5.4, we may assume that M ′ \ f is
not a TT-connected minor of M . Therefore, by Lemma 5.3, M ′/f is a TT-connected
minor of M . Now (A,B′) is a 3-separation of M and |A| ≥ 7. Therefore, |B′| = 6
and B′ is the union of two 3-separating sets of M . Therefore there exists a triangle
or triad T ⊆ B′ of M that contains e. First we consider the case that T is a triangle.
Then, since M ′ is 3-connected, we have M ′ = M \ e. However, T − {e} ⊆ B, which
contradicts the fact that e blocks the 3-separation (A,B) in M ′. Now suppose that T
is a triad. Then, since M ′ is 3-connected, we have M ′ = M/e. However, T −{e} ⊆ B,
which contradicts the fact that e coblocks the 3-separation (A,B) in M ′.

6. Proof of the main theorem. In this section we complete the proof of The-
orem 1.1. We break the proof into two cases depending on whether or not M is
4-connected up to separators of size 4.

Lemma 6.1. Let M be a binary matroid that is 4-connected up to separators of size
4 and let N be an internally 4-connected proper minor of M with |E(N)| ≥ 8. Then
there exists e ∈ E(M) such that either M\e or M/e is 4-connected up to separators
of size 5 and has an N -minor.

Proof. By Theorem 5.1, we may assume that M has a 4-element 3-separating set
X = {a, b, c, d}. Let Y = E(M) −X. By the Splitter Theorem, we may assume that
|E(M)| ≥ 13. Since M is binary, it suffices to consider the following two cases.

Case 1. (a, b, c, d) is a fan of M .
By symmetry we may assume that {a, b, c} is a triangle. Note that N is a minor

of either M \ a or M/d. By duality we may assume that N is a minor of M \ a.
Since M is 4-connected up to separators of size 4, X is fully closed in M . Then, by
Lemma 3.6, M \a is 3-connected. Suppose that (A,B) is a 3-separation of M \a with
|A∩{b, c, d}| ≥ 2. Then A∪{b, c, d} is 3-separating in M \a and, since a ∈ clM ({b, c}),
A ∪X is 3-separating in M . It follows that M \ a is 4-connected up to separators of
size 5, as required.

Case 2. X is both a circuit and a cocircuit of M .
Since |E(N)| ≥ 8 and N is internally 4-connected, we have |E(N) ∩ B| ≤ 3.

By duality and symmetry, we may assume that N is a minor of M \ a. We claim
that M \ a is 4-connected up to separators of size 5. Since X is coclosed in M ,
M \ a is cosimple. Suppose that (A,B) is a 2- or a 3-separation in M \ a with
|A∩{b, c, d}| ≥ 2. Then, since a ∈ clM ({b, c, d}) and since {b, c, d} is a triad in M \ a,
λM (B−X) = λM (A∪X) = λM\a(A∪ {b, c, d}) = λM\a(A). Now |B−X| ≥ |B| − 1.
Thus if (A,B) is a 2-separation in M \ a, then, since M is 3-connected, |B| ≤ 2.
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Fig. 2. 3-separating sets of size 5.

Since M \ a is cosimple, |B| ≤ 1 and, hence, M \ a is 3-connected. Thus if (A,B)
is a 3-separation in M \ a, then, since M is 4-connected up to separators of size 4,
|B| ≤ 5. Thus, M \ a is 4-connected up to separators of size 5.

Suppose that M is a binary matroid that is 4-connected up to separators of size
5 and that (X,Y ) is a 3-separation of M with |X| = 5. Note that rM (X) + r∗M (X) =
rM (X) + |X| − (r(M) − rM (Y )) = |X| + λM (X) = 7. Moreover, since M is binary,
rM (X), r∗M (X) ≥ 3. By duality we may assume that rM (X) = 3. Now, since M
is 3-connected and binary, there are either one or two elements of X in the guts of
(X,Y ). Thus, X = {a, b, c, d, e} is of one of the following two types:

Type 1. {a, b, d, e} is both a circuit and a cocircuit of M , and {a, b, c} and {c, d, e}
are both triangles of M .

Type 2. (a, b, c, d, e) is a fan where {a, b, c} is a triangle.

These two types of separations are depicted in Figure 2. The next lemma can be
found in Hall [4].

Lemma 6.2. Let M be a matroid that is 4-connected up to separators of size 5
and let (X,Y ) be a 3-separation of M with X = {a, b, c, d, e}.

• If X is a separation of Type 1, then one of M\a, M\b, and M\c is 4-connected
up to separators of size 5.

• If X is a separation of Type 2, then one of M \ a, M \ e, and co(M \ c) is
4-connected up to separators of size 5.

Lemma 6.3. Let M be a binary matroid that is 4-connected up to separators of
size 5 and let N be an internally 4-connected proper minor of M with |E(N)| ≥ 8. If
X = {a, b, c, d, e} is a 3-separating set of Type 1, then there exists f ∈ X such that
M \ f is 4-connected up to separators of size 5 and has an N -minor.

Proof. Since |E(N)| ≥ 8, |E(N) ∩X| ≤ 3. By Lemma 4.3, each of M \ a, M \ c,
and M \ e has an N -minor. So the theorem follows from Lemma 6.2.

Lemma 6.4. Let M be a binary matroid that is 4-connected up to separators of
size 5 and let N be an internally 4-connected proper minor of N with |E(N)| ≥ 7.
If X = {a, b, c, d, e} is a 3-separating set of Type 2, then one of M \ a, M \ e, and
M \ c/d is 4-connected up to separators of size 5 and has an N -minor.

Proof. Since X is a fan and N is internally 4-connected, |E(N) ∩ X| ≤ 3. By
Lemma 4.3, both M \ a and M \ e have an N -minor. So we may assume that neither
M \ a nor M \ e is 4-connected up to separators of size 5. So, by Lemma 6.2, M \ c/d
is 4-connected up to separators of size 5. Thus we may assume that M \ c/d has no
N -minor. It follows that |E(N) ∩X| = 3, that E(N) ∩X is a triad of N , and that
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none of M/b, M/c, and M/d has an N -minor.
6.5. M \ a is 3-connected and there exists a 3-separation (A,B) in M \ a with

|A|, |B| ≥ 6 and with b or c in its coguts.
Subproof. By Lemma 3.6, M \a is 3-connected. However, M \a is not 4-connected

up to separators of size 5. So there exists a 3-separation (A,B) of M \a with |A|, |B| ≥
6. By symmetry we may assume that |{b, c, d} ∩ A| ≥ 2. Since a ∈ clM ({b, c}) and
since a blocks the separation (A,B), we have |B ∩ {b, c}| = 1. Let f ∈ {b, c} ∩ B.
Since {b, c, d} is a triad, f is in the coguts of (A,B).

Let (A,B) be the 3-separation of M \ a mentioned above and let f ∈ {b, c} be in
its coguts. By Lemma 4.4, M \ a/f has an N -minor. But this contradicts the fact
that M/f has no N -minor.
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