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Let C be the clutter of odd circuits of a signed graph ðG;SÞ: For nonnegative

integral edge-weights w; we are interested in the linear program minðwtx: xðCÞ51; for
C 2 C; and x50Þ; which we denote by (P). The problem of solving the related integer

program clearly contains the maximum cut problem, which is NP-hard. Guenin

proved that (P) has an optimal solution that is integral so long as ðG;SÞ does not

contain a minor isomorphic to odd-K5: We generalize this by showing that if ðG;SÞ
does not contain a minor isomorphic to odd-K5 then (P) has an integral optimal

solution and its dual has a half-integral optimal solution. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

A signed graph is a pair ðG;SÞ where G is an undirected graph and S �
EðGÞ: We think of the edges in S as having odd length while the other edges
have even length. A subset X of edges is called odd (resp. even) if jX \ Sj is
odd (resp. even). We denote the set of all odd circuits of ðG;SÞ by CðG;SÞ:
The set CðG;SÞ is a clutter; that is, no element of CðG;SÞ properly contains
another. We are interested in packings and coverings of this clutter. A subset
P of CðG;SÞ is a packing of odd circuits of ðG;SÞ if no two circuits inP share
a common edge. A subset B of EðGÞ is an odd-circuit cover of ðG;SÞ if every
odd circuit of ðG;SÞ contains some edge of B: Evidently, if P is a packing of
odd circuits and B is an odd-circuit cover then jBj5jPj: Moreover, if jBj ¼
jPj then B is a transversal ofP; that is, each circuit inP contains exactly one
edge in B and each edge in B is contained in some circuit of P: We say that
ðG;SÞ packs if there exists an odd-circuit cover B and a packing of odd
circuits P with the same cardinality.

For n53; let odd-Kn denote the signed graph ðKn;EðKnÞÞ; where Kn is the
complete graph with n vertices. Note that odd-K4 does not contain two edge
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disjoint odd circuits, but any odd-circuit cover of odd-K4 has at least two
edges. Therefore, odd-K4 does not pack. Similarly, it can be checked that
odd-K5 does not pack.

There is a natural relationship between the problem of finding a minimum
odd-circuit cover and the maximum cut problem. Let G ¼ ðV ;EÞ be a graph
with edge-weights w 2 ZE

þ: The maximum cut problem is the problem of
finding a subset U of V maximizing wðdðU ÞÞ; where dðU Þ denotes the set of
edges having exactly one end in U ; and wðdðU ÞÞ :¼ Sðwe: e 2 dðU ÞÞ:
Equivalently, one could look for a minimum weight set S of edges such
that G=S is bipartite. (Where G=S is the graph obtained from G by deleting
the edges in S:) That is, S is a minimum weight odd-circuit cover of ðG;EÞ:

Given edge-capacities w 2 Z
EðGÞ
þ consider the linear program

ðPÞ

Minimize
P

ðwexe: e 2 EÞ

subject to xðCÞ51; C 2 CðG;SÞ;

xe50; e 2 E;

8>>><
>>>:

and its dual

ðDÞ

Maximize yðCðG;SÞÞ

subject to
P

ðyC: e 2 C 2 CðG;SÞÞ4we; e 2 E;

yC50; C 2 CðG;SÞ:

8>>><
>>>:

We say that ðG;SÞ packs with respect to w if (P) and (D) both have optimal
solutions that are integral. Define a signed graph ðG0;S0Þ by replacing each
edge e in ðG;SÞ with we parallel edges. (Two edges are parallel in a signed
graph if they have the same ends and the same sign.) Evidently, ðG;SÞ packs
with respect to w if and only if ðG0;S0Þ packs. We say that ðG;SÞ is strongly

bipartite if ðG;SÞ packs with respect to any nonnegative integral
edge-capacities. Thus odd-K4 is not strongly bipartite.

We call S0 � EðGÞ a signature of ðG;SÞ if ðG;SÞ and ðG;S0Þ have the same
odd circuits. For example, if U � V ðGÞ; then SDdðU Þ is a signature of ðG;SÞ:
(Here D denotes symmetric difference.) It is straightforward to prove that
S0 � EðGÞ is a signature of ðG;SÞ if and only if there exists U � V ðGÞ such
that E0 ¼ SDdðU Þ: Obviously, any signature of ðG;SÞ is an odd-circuit cover.
While the converse is clearly not true, in general, it is straightforward to
prove that any minimal odd-circuit cover is a signature.

If S � EðGÞ then we let ðG;SÞ=S denote the signed graph ðG=S;S
 SÞ: If
S � EðGÞ and S is disjoint from S then we let ðG;SÞ=S denote the signed
graph ðG=S;SÞ; where G=S is the graph obtained from G by contracting the
edges in S: More generally, if S � EðGÞ and S does not contain an odd
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circuit, then there exists a signature S0 that is disjoint from S; and we let
ðG;SÞ=S denote ðG;S0Þ=S: While ðG;SÞ=S need not have a uniquely
defined signature, its clutter of odd circuits is uniquely determined. We
say that ðG;SÞ is isomorphic to ðG0;S0Þ if G is isomorphic to G0 and up to
relabeling edges of G0; CðG;SÞ ¼ CðG0;S0Þ: A signed graph ðG0;S0Þ is a
minor of ðG;SÞ if there exist disjoint subsets Xd ;Xc of EðGÞ such that Xc does
not contain an odd circuit and ðG0;S0Þ is isomorphic to a graph obtained
from ðG;SÞ=Xd=Xc by possibly deleting isolated vertices. The family of
strongly bipartite signed graphs is closed under taking minors, so one can
characterize this family by describing the minor-minimal signed graphs not
in the family.

1.1 (Seymour [10]). A signed graph ðG;SÞ is strongly bipartite if and only

if ðG;SÞ has no minor isomorphic to odd-K4:

Edge-capacities w 2 Z
EðGÞ
þ are called Eulerian if wðdðvÞÞ is even for all v 2 V :

(Here dðvÞ denotes dðfvgÞ:) A signed graph ðG;SÞ is called evenly bipartite if
CðG;SÞ packs with respect to any Eulerian edge-capacities. While odd-K4 is
not strongly bipartite, it is straightforward to check that it is evenly
bipartite. However, odd-K5 is clearly not evenly bipartite. We prove the
following conjecture of Bert Gerards (pers. comm.).

Theorem 1.2. A signed graph ðG;SÞ is evenly bipartite if and only if

ðG;SÞ has no minor isomorphic to odd-K5:

Theorem 1.2 has a number of surprising corollaries, which we discuss now
and in the next section. We call ðG;SÞ weakly bipartite if (P) has an integral
optimal solution for any nonnegative integral edge-capacities. Evidently,
evenly bipartite signed graphs are also weakly bipartite. Indeed, suppose
that ðG;SÞ is evenly bipartite and w 2 Z

EðGÞ
þ : Now, 2w is Eulerian, so there

exists an integral optimal solution x to (P) with respect to the weights 2w:
Clearly, x is also optimal with respect to w: Thus, ðG;SÞ is weakly bipartite,
as claimed. The striking thing is that the converse also holds. In the light of
Theorem 1.2, it suffices to show that odd-K5 is not weakly bipartite.
Consider odd-K5 with unit edge-capacities. The smallest odd-circuit cover of

odd-K5 has 4 edges. However, assigning xe ¼ 1
3
for all e 2 EðK5Þ defines a

feasible solution to (P) with objective value 10
3
: Therefore, odd-K5 is not

weakly bipartite. Thus we obtain the following theorem of Guenin [4] as a
corollary.

Corollary 1.3. A signed graph is weakly bipartite if and only if it does

not contain a minor isomorphic to odd-K5:

Using the same trick, as above, of doubling the edge-capacities, we also
obtain the following result.
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Corollary 1.4. Let ðG;SÞ be an evenly bipartite signed graph. Then, for

any edge-capacities w 2 Z
EðGÞ
þ ; the linear program (P) has an optimal solution

that is integral and its dual (D) has an optimal solution that is half-integral.

Schrijver [9] provided a very short proof of Corollary 1.3. Theorem 1.1 is
actually a special case of a more general theorem of Seymour on binary
clutters, and Guenin [5] provided a short proof of this more general
theorem. Our proof of Theorem 1.2 combines ideas from these two proofs.
We introduce some of these ideas by first proving Theorem 1.1.

2. MULTICOMMODITY FLOWS

In this section, we discuss the close connection between the packing and
covering problems described in the introduction and multicommodity flows.
We begin by defining the multi-commodity flow problem. We are given a
signed graph ðG;SÞ; and a function c 2 Z

EðGÞ
þ : An edge d 2 S is called a

demand edge, and cd is the demand on d: For e 2 E 
 S; we call ce the
capacity of e: Let C1 be the set of all circuits C of G such that jC \ Sj ¼ 1:
Thus, if C 2 C1 then there exists a demand edge d 2 S such that C 
 fdg is a
path connecting the ends of d: We say that y 2 RC1

þ is a fractional ðG;S; cÞ-
flow if:

(1) for each d 2 S;
P

ðyP : d 2 P 2 C1Þ ¼ cd ; and
(2) for each e 2 E 
 S;

P
ðyP : e 2 P 2 C1Þ4ce:

The first condition requires that the demands are satisfied, and the second
condition requires that the capacities are not exceeded. A natural condition
for the existence of a fractional flow is that, the demand across a cut should
not exceed its capacity. That is

2.1 (Cut-condition). For all U 
 V ; cðdðU Þ 
 SÞ5cðdðU Þ \ SÞ:

Gerards [2] notes that for a weakly bipartite signed graph, there exists a
fractional flow if and only if the cut-condition is satisfied. Here, we are
interested in integer flows. A flow y is an integer flow if y 2 Z

EðGÞ
þ ; and y is a

half-integer flow if 2y 2 Z
EðGÞ
þ :

Lemma 2.2. Let ðG;SÞ be a signed graph that packs with respect to edge-

capacities c 2 Z
EðGÞ
þ : Then, there exists an integer ðG;S; cÞ-flow if and only if

the cut-condition is satisfied.

Proof. The cut-condition is clearly necessary for the existence of such a
flow, so it suffices to prove the converse. Suppose that the cut-condition is
satisfied. It follows that, for all U � V ðGÞ;

cðSDdðU ÞÞ5cðSÞ:
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Therefore, S is a minimum cost odd-circuit cover of ðG;SÞ: Thus, since
ðG;SÞ packs with respect to c; the characteristic vector of S is an optimal
solution to (P). Let y 2 Z

CðG;SÞ
þ be an optimal solution to (D). Now, by the

complementary slackness conditions, we see that

(i) for C 2 CðG;SÞ; if yC > 0 then jC \ Sj ¼ 1; and
(ii) for each d 2 S;

P
ðyC: e 2 C 2 CðG;SÞÞ ¼ cd :

Therefore, the restriction of y to C1 given an integer ðG;S; cÞ-flow. ]

Applying 2.2 to evenly bipartite signed graphs we obtain the following
theorem.

Theorem 2.3. Let ðG;SÞ be an evenly bipartite signed graph. Then, for

any Eulerian edge-weights c 2 Z
EðGÞ
þ ; there exists an integer ðG;S; cÞ-flow if

and only if the cut-condition is satisfied.

There is an analogous result for strongly bipartite graphs, which we
choose to omit. Using the trick of doubling integer edge-weights, we obtain
the following theorem.

Theorem 2.4. Let ðG;SÞ be an evenly bipartite signed graph. Then, for

any c 2 Z
EðGÞ
þ ; there exists a half-integer ðG;S; cÞ-flow if and only if the

cut-condition is satisfied.

Theorems 2.2 and 2.3 have numerous applications. The following results
give classes of evenly bipartite graphs; other classes are described by
Gerards [2]. In each case, it is straightforward to verify that the signed
graphs do not contain a minor isomorphic to odd-K5 and, hence, that they
are evenly bipartite.

2.5 (Hu [6] and Rothschild and Whinston [8]). If ðG;SÞ is a signed graph

and jSj ¼ 2; then ðG;SÞ is evenly bipartite.

2.6 (Seymour [11]). If ðG;SÞ is a signed graph and G is planar, then ðG;SÞ
is evenly bipartite.

Gerards (pers. comm.) observed that the following signed graphs have no
odd-K5 minor, but, prior to proving Theorem 1.2, we did not know that they
were evenly bipartite. Although, significant partial results of this ilk were
obtained by Lomonosov [7].

2.7. If ðG;SÞ is a signed graph and S is a circuit of length 5, then ðG;SÞ is

evenly bipartite.

2.8 (Gerards and Seb +oo [3]). If ðG;SÞ is a signed graph that has an even
face embedding on the Klein bottle then ðG;SÞ is evenly bipartite.
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3. STRONGLY BIPARTITE GRAPHS

In this section we prove Theorem 1.1, for which we require some
additional definitions. If ðG;SÞ is a signed graph and S � EðGÞ then we
denote by ðG;SÞ½S� the signed graph ðG½S�;S\ SÞ; where G½S� is the
subgraph of G induced by S: That is ðG;SÞ½S� is obtained from ðG;SÞ=ðE
ðGÞ 
 SÞ by deleting all isolated vertices. We call a signed graph bipartite if it
has no odd circuits. Finally, if x and y are vertices of a path P ; then we
denote by P ½x; y� the subpath of P with ends x and y:

Proof of Theorem 1.1. Let ðG0;S0Þ be a minor-minimal-signed graph
that is not strongly bipartite, and let e0 2 EðG0Þ: Now choose edge-capacities
w 2 Z

EðG0Þ
þ minimizing wðEðG0ÞÞ 
 3

2
we0 such that the clutter of odd circuits

of ðG0;S0Þ does not pack with respect to w:
Let ðG;SÞ be the signed graph obtained from ðG0;S0Þ by replacing each

edge f 2 EðG0Þ with wf parallel edges. Thus, the clutter of odd circuits of
ðG;SÞ does not pack. Let e be one of the copies of e0 in G; and let x and y be
the ends of e:

Choose a set C of odd circuits of ðG;SÞ such that:

(i) The sets fC 
 feg: C 2 Cg are pairwise disjoint.
(ii) C has maximum cardinality with respect to (i).
(iii) fC: C 2 C; e 2 Cg has minimum cardinality with respect to (i) and

(ii).
(iv)

P
ðjCj: C 2 CÞ is minimum with respect to (i)–(iii).

Now let ðCe;C%eeÞ be the partition of C into circuits containing e and circuits
not containing e; respectively.

3.1. jCej ¼ 2:

Proof. Let C0 ¼ fC 
 feg: C 2 Cg: Then C0 is a maximum packing of
odd circuits in ðG;SÞ=e: Now ðG;SÞ=e packs, so there exists an odd-circuit
cover B of ðG;SÞ=e such that jBj ¼ jC0j ¼ jCj: Evidently, B is also an odd-
circuit cover of ðG;SÞ: However, ðG;SÞ does not pack, so jCej52: Suppose
that jCje > 2:

Construct a signed graph ðG1;S1Þ by adding to ðG;SÞ an edge e1 parallel
with e: By our choice of w; we see that ðG1;S1Þ packs. Let C1 be a maximum
cardinality packing of odd circuits in ðG1;S1Þ; and let B1 be a minimum odd-
circuit cover of ðG1;S1Þ: Thus, jC1j ¼ jB1j: By our choice of C; and since
jCej > 2; we must have jC1j5jCj: Therefore, jB1j5jCj: Nevertheless, B1 must
intersect each of the odd circuits in C; so we must have e 2 B1: Moreover,
since e1 is in parallel with e; we also have e1 2 B1:

Now, B1 
 fe1g is an odd-circuit cover of ðG;SÞ; and there exists a
packing C0 
 C1 of odd circuits of ðG;SÞ such that jC0j ¼ jC1j 
 1 ¼
jB1 
 fe1gj; contrary to the fact that ðG;SÞ does not pack. ]
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Let C1 and C2 be the two odd circuits in Ce:

3.2. For any odd circuit C � C1 [ C2 of ðG;SÞ there exists an odd-circuit

cover B of ðG;SÞ such that B
 C is a transversal of C%ee:

Proof. By the definition of C; C%ee is a maximum packing of odd circuits
of ðG;SÞ=C: However, by our choice of w; ðG;SÞ=C packs. Therefore, there
exists an odd-circuit cover B0 of ðG;SÞ=C that is a transversal of C%ee: Now B0

extends to an odd-circuit cover B of ðG;SÞ with the desired properties. ]

Let P1 :¼ C1 
 feg and P2 :¼ C2 
 feg: Thus P1 and P2 are both ðx; yÞ-
paths. These paths are edge disjoint but not necessarily internally vertex
disjoint. Nevertheless, P1 and P2 do not intersect wildly.

3.3. ðG;SÞ½P1 [ P2� is bipartite and if v is a common vertex of P1 and P2
then P1½x; v� [ P2½v; y� and P2½x; v� [ P1½v; y� are both ðx; yÞ-paths.

Proof. Suppose that ðG;SÞ½P1 [ P2� contains an odd circuit C0: Then,
there exists an odd circuit C � C1DC2DC0 in ðG;SÞ: Now C%ee [ fC;C0g
contradicts (iii) of our choice of C: Thus ðG;SÞ½P1 [ P2� is indeed
bipartite.

Now P1½x; v� [ P2½v; y� and P2½x; v� [ P1½v; y� contain ðx; yÞ-paths, say P 0
1

and P 0
2; respectively. Since ðG;SÞ½P1 [ P2� is bipartite, P 0

1 [ feg and P 0
2 [ feg

are both odd circuits. By our choice (iv) of C we must have P 0
1 [ P 0

2 [ feg ¼
C1 [ C2: Therefore, P 0

1 ¼ P1½x; v� [ P2½v; y� and P 0
2 ¼ P2½x; v� [ P1½v; y�; as

required. ]

The following technical claim allows us to fully disentangle P1 and P2:

3.4. There exists a minor ðG0;S0Þ of ðG;SÞ and odd circuits C0
1;C

0
2 �

C1 [ C2 of ðG0;S0Þ such that

(i) EðGÞ 
 EðG0Þ � P1 [ P2:
(ii) C0

1 
 feg and C0
2 
 feg are internally vertex disjoint ðx; yÞ-paths in G0:

(iii) For i 2 f1; 2g; there exists an odd-circuit cover B0 of ðG0;S0Þ such that

B0 
 C0
i is a transversal of C %ee:

(iv) For any transversal T of C %ee; T [ feg is not an odd-circuit cover of

ðG0;S0Þ:

Proof. Choose a minor ðG0;S0Þ of ðG;SÞ that is minimal subject to:

(1) EðGÞ 
 EðG0Þ � P1 [ P2:
(2) There exist odd circuits C0

1;C
0
2 � C1 [ C2 of ðG0;S0Þ such that C0

1 \
C0
2 ¼ feg:

(3) For any odd circuit C � C1 [ C2 of ðG0;S0Þ there exists an odd-
circuit cover B0 of ðG0;S0Þ such that B0 
 C is a transversal of C%ee:
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(4) For any transversal T of C%ee; T [ feg; is not an odd-circuit cover of
ðG0;S0Þ:

Note that these conditions are satisfied by ðG;SÞ; so ðG0;S0Þ is well defined.
Let C0

1 and C0
2 be the circuits of G0 given in (2). Now, ðG0;S0Þ; C0

1 and C0
2

satisfy (i), (iii), and (iv). So it remains to prove that (ii) is satisfied. Let
P 0
1 :¼ C0

1 
 feg and P 0
2 :¼ C0

2 
 feg: Suppose that P 0
1 and P 0

2 are not internally
vertex disjoint and let v be a common internal vertex. We break the proof
into two cases.

Case 1. There exists an ðx; vÞ-path P � P 0
1½x; v� [ P 0

2½x; v� such that there
does not exist any odd-circuit cover B of ðG0;S0Þ such that B
 ðP [ fegÞ is a
transversal of C %ee:

Let P 0 be an ðx; vÞ-path in PDP 0
1½x; v�DP

0
2½x; v�: Now ðG0;S0Þ=P=P 0 certainly

satisfies (1) and (2). Moreover, by our choice of P ; it is straightforward to
check that ðG0;S0Þ=P=P 0 satisfies (4). Now, if C � C1 [ C2 is an odd circuit of
ðG0;S0Þ=P=P 0 then, by 3.3, P [ C is an odd circuit in ðG0;S0Þ: Then, since
ðG0;S0Þ satisfies (3) we easily deduce that ðG0;S0Þ=P=P 0 also satisfies (3).
However, this contradicts the minimality of ðG0;S0Þ:

Case 2. For any ðx; vÞ-path P � P 0
1½x; v� [ P 0

2½x; v� there exists an odd-circuit
cover B of ðG0;S0Þ such that B
 ðP [ fegÞ is a transversal of C%ee:

Let ðG00;S00Þ :¼ ðG0;S0Þ=ðP 0
1½v; y� [ P 0

2½v; y�Þ: Now ðG00;S00Þ certainly satisfies
(1), (2) and (4). Moreover, by the hypothesis of this case, it is easy to see that
ðG00;S00Þ also satisfies (3). However, this contradicts the minimality of
ðG0;S0Þ:

Let ðG0;S0Þ; C0
1 and C0

2 be as given in 3.4, and, for i 2 f1; 2g; let B0
i be a

minimal odd-circuit cover of ðG0;S0Þ such that B0
i 
 C0

i is a transversal of C %ee:
As B0

1 and B0
2 are both minimal odd-circuit covers, they are also both

signatures of ðG0;S0Þ; and, hence, B0
1DB

0
2 is a cut. Moreover, e =2 B0

1DB
0
2:

Therefore, there exists U � V ðG0Þ such that dG0 ðU Þ ¼ B0
1DB

0
2 and x; y =2 U :

Let X1 :¼ V ðC0
1Þ \ U and let X2 :¼ V ðC0

2Þ \ U :

3.5. There exists a path from X1 to X2 in G0½U �=B0
1:

Proof. We first show that there exists a path from X1 to X2 in G0½U �:
Suppose not, then there exists X � U such that X1 � X ; X � U 
 X2; and
dG0½U �ðX Þ ¼ |: Let B :¼ B1DdG0 ðX Þ: Now, B is an odd-circuit cover of ðG0;S0Þ;
and B
 feg is a transversal of C%ee; contrary to part (iv) of 3.4. Thus, there
exists a path from X1 to X2 in G0½U � as claimed.

Let P be a path from X1 to X2 in G0½U � minimizing jP \ B0
1j: Suppose that

there exists an edge f 2 P \ B0
1: Since f =2 dG0 ðU Þ; we see that f 2 B0

2: Thus,
there exists an odd circuit C 2 C%ee of ðG0;S0Þ containing f ; and, by the
definition of B0

1; we have C \ B0
1 ¼ ff g: Therefore, C is a circuit of G0½U �:

We can obtain another path P 0 from X1 to X2 in G0½U � by rerouting P
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through C 
 ff g: However jP 0 \ B0
1j5jP \ B0

1j; which contradicts our
choice of P : We conclude that P is in fact disjoint from B0

1: ]

Let P be a path from X1 to X2 in G0½U �=B0
1: Now, B0

1 is a signature for
ðG0;S0Þ; and it is straightforward to check that ðG0;B0

1Þ½C
0
1 [ C0

2 [ P � is a
subdivision of odd-K4:

4. EVENLY BIPARTITE GRAPHS

In this section, we prove Theorem 1.2. The proof is very similar to that of
Theorem 1.1, but to obtain the odd-K5-minor at the end, we require the
following lemma. (This lemma is essentially due to Schrijver [9].)

Lemma 4.1. Let G ¼ ðV ;EÞ be a graph, let e be an edge of G with ends x

and y, let ðY0; Y1; Y2; Y3Þ be disjoint subsets of V, and let P1; P2; and P3 be

internally vertex disjoint ðx; yÞ-paths in G=e: Moreover, suppose that

(1) x; y 2 Y0 and, for i 2 f0; 1; 2; 3g; Yi is a stable set of G=e;
(2) for i 2 f1; 2; 3g; V ðPiÞ � Y0 [ Yi; and

(3) for distinct i; j 2 f1; 2; 3g; there exists a path from V ðPiÞ to V ðPjÞ in

G½Yi [ Yj�:

Then ðG;EðGÞÞ has a minor isomorphic to odd-K5:

Proof. Suppose otherwise, and let G be a counterexample minimizing
jV ðGÞj þ jEðGÞj: For distinct i; j 2 f1; 2; 3g; let Pij be a path from V ðPiÞ to
V ðPjÞ in G½Yi [ Yj�: (We assume that Pij ¼ Pji:) By the minimality of G; we
have EðGÞ :¼ feg [ P1 [ P2 [ P3 [ P12 [ P23 [ P13; and V ðGÞ :¼ V ðP1Þ[
V ðP2Þ [ V ðP3Þ [ V ðP12Þ [ V ðP23Þ [ V ðP13Þ:

Suppose that G has a vertex v of degree 2, and define G0 :¼ G=dGðvÞ: Note
that ðG;EðGÞÞ=dGðvÞ ¼ ðG0;EðG0ÞÞ; and that G0 satisfies the conditions of the
lemma. However, this contradicts the minimality of G; and, hence, G has no
vertices of degree 2. Thus, we see that Y0 ¼ fx; yg; and, for each i 2 f1; 2; 3g;
Pi has exactly one internal vertex, say vi:

Now, the neighbours of x are v1; v2; v3; and y; and the neighbours of y
are v1; v2; v3; and x: Moreover, since G has no vertices of degree 2, we also
conclude that Y1 ¼ V ðP12Þ \ V ðP13Þ; Y2 ¼ V ðP12Þ \ V ðP23Þ; and Y3 ¼ ðP13Þ \
V ðP23Þ: Therefore, jY1j ¼ jY2j ¼ jY3j:

If jY1j ¼ 1; then ðG;EðGÞÞ is isomorphic to odd-K5; so we may assume that
jY1j > 1: For distinct i; j 2 f1; 2; 3g; let eij be the edge on Pij that is incident
with vi: Let G0 :¼ G=fe13; e32; e21g=e12; e23; e31g; and, for distinct i; j 2 f1; 2; 3
g; let P 0

ij :¼ Pij 
 feij; ejig: Now let Y 0
1 :¼ V ðP 0

12Þ \ V ðP 0
13Þ; Y 0

2 :¼ V ðP 0
12Þ \

V ðP 0
23Þ; Y 0

3 :¼ V ðP 0
13Þ \ V ðP 0

23Þ; and Y 0
0 :¼ fx; yg: Note that ðG0;EðG0ÞÞ is a

minor of ðG;EðGÞÞ and that G0 satisfies the conditions of the lemma.
However, this contradicts the minimality of G: ]
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Proof of Theorem 1.2. Let ðG0;S0Þ be a signed graph that is
minor-minimally and not evenly bipartite, and let e0 2 EðG0Þ: Now
choose Eulerian edge-capacities w 2 Z

EðG0Þ
þ minimizing wðEðG0ÞÞ 
 3

2we0
such that the clutter of odd circuits of ðG0;S0Þ does not pack with respect
to w:

Let ðG;SÞ be the signed graph obtained from ðG0;S0Þ by replacing each
edge f 2 EðG0Þ with wf parallel edges. Thus, the clutter of odd circuits of
ðG;SÞ does not pack. Note that G is Eulerian; that is, all its vertices have
even degree. Let e be one of the copies of e0 in G; and let x and y be the
ends of e:

Choose a set C of odd circuits of ðG;SÞ such that:

(i) The sets ðC 
 feg: C 2 C) are pairwise disjoint.
(ii) C has maximum cardinality with respect to (i).
(iii) fC: C 2 C; e 2 Cg has minimum cardinality with respect to (i) and

(ii).
(iv)

P
ðjCj: C 2 CÞ is a minimum with respect to (i)–(iii).

Now let ðCe;C%eeÞ be the partition of C into circuits containing e and
circuits not containing e; respectively.

4.2. jCej ¼ 3:

Proof. Let C0 ¼ fC 
 feg: C 2 Cg: Then C0 is a maximum packing of
odd circuits in ðG;SÞ=e: Now G=e is Eulerian, so, by the minimality of
ðG;SÞ; ðG;SÞ=e packs. Thus, there exists an odd-circuit cover B of ðG;SÞ=e
such that jBj ¼ jC0j ¼ jCj: Evidently, B is also an odd-circuit cover of ðG;SÞ:
However, ðG;SÞ does not pack, so jCej52:

Now, we claim that jCej is odd. Suppose otherwise. Let S ¼
S
ðC: C 2 CÞ;

and consider ðG;SÞ=S: Note that x and y are the only two vertices in G=S
with odd degree. Therefore, there exists an ðx; yÞ-path P in G=S: If P [ feg is
an odd circuit of ðG;SÞ then C[ fP [ fegg contradicts our choice (ii) of C:
Thus P [ feg is even. Let C 2 Ce: Then, CDðP [ fegÞ contains an odd circuit
C0 of ðG;SÞ: Now, since e =2 C0; we see that ðC
 fCgÞ [ fC0g contradicts our
choice (iii) of C: We conclude that Ce is odd, as claimed. Thus jCej53:
Suppose that jCej > 3:

Construct a signed graph ðG1;S1Þ by adding two edges e1 and e2 in
parallel with e: Thus G1 is Eulerian, and, by our choice of w; we see that
ðG1;S1Þ packs. Let C1 be a maximum cardinality packing of odd circuits in
ðG1;S1Þ; and let B1 be a minimum odd-circuit cover of ðG1;S1Þ: Thus, jC1j ¼
jB1j: By our choice of C; and since jCej > 3; we must have jC1j5jCj:
Therefore, jB1j5jCj: Nevertheless, B1 must intersect each of the odd circuits
in C; so we must have e 2 B1:Moreover, since e1 and e2 are in parallel with e;
we also have e1; e2 2 B1:
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Now, B1 
 fe1; e2g is an odd-circuit cover of ðG;SÞ; and there exists a
packing C0 
 C1 of odd circuits of ðG;SÞ such that jC0j ¼ jC1j 
 2 ¼
jB1 
 fe1; e2gj; contrary to the fact that ðG;SÞ does not pack. ]

Let C1; C2; and C3 be the three odd circuits in Ce; and let Pi :¼ Ci 
 feg
for i 2 f1; 2; 3g: Thus P1; P2; and P3 are ðx; yÞ-paths. These paths are edge
disjoint but not necessarily internally vertex disjoint. We first show that no
two of these paths intersect wildly.

4.3. For distinct i; j 2 f1; 2; 3g; ðG;SÞ½Pi [ Pj� is bipartite and if v is a

common vertex of Pi and Pj then Pi½x; v� [ Pj½v; y� and Pj½x; v� [ Pi½v; y� are both

ðx; yÞ-paths.

Proof. By symmetry we may assume that i ¼ 1 and j ¼ 2: Suppose that
ðG;SÞ½P1 [ P2� contains an odd circuit C0: Then, there exists an odd circuit
C � C1DC2DC0 in ðG;SÞ:Now C%ee [ fC;C0;C3g contradicts (iii) of our choice
of C: Thus ðG;SÞ½P1 [ P2� is indeed bipartite.

Now P1½x; v� [ P2½v; y� and P2½x; v� [ P1½v; y� contain ðx; yÞ-paths, say P 0
1

and P 0
2; respectively. Since ðG;SÞ½P1 [ P2� is bipartite, P 0

1 [ feg and P 0
2 [ feg

are both odd circuits. By our choice of C we must have P 0
1 [ P 0

2 [ feg ¼
C1 [ C2: Therefore, P 0

1 ¼ P1½x; v� [ P2½v; y� and P 0
2 ¼ P2½x; v� [ P1½v; y�; as

required. ]

4.4. ðG;SÞ½P1 [ P2 [ P3� is bipartite.

Proof. We may assume e 2 S: For i 2 f1; 2; 3g; since Ci is an odd circuit
and e 2 S; there exists a unique subset Ui of V ðPiÞ such that x 2 Ui; y =2 Ui and
Pi \ dðUiÞ ¼ Pi \ S: By 4.3, for distinct i; j 2 f1; 2; 3g; we see that ðPi [ PjÞ \
dðUi [ UjÞ ¼ ðPi [ PjÞ \ S: It follows that ðP1 [ P2 [ P3Þ \ dðU1 [ U2[
U3Þ ¼ ðP1 [ P2 [ P3Þ \ S: Thus, ðG;SÞ½P1 [ P2 [ P3� is bipartite, as
claimed. ]

Let H be the directed graph obtained by directing the edges of G½P1 [
P2 [ P3� such that P1; P2; and P3 are ðx; yÞ-dipaths.

4.5. H is acyclic, and, for any ðx; yÞ-dipath P in H, P [ feg is an odd

circuit of ðG;SÞ:

Proof. Since ðG;SÞ½P1 [ P2 [ P3� is bipartite, P [ feg is certainly an
odd circuit of ðG;SÞ: Now, define fa :¼ 1 for all a 2 EðH Þ: Then, by
construction, f is an ðx; yÞ-flow in H of value 3. Now suppose that C is a
directed circuit in H : Change f by setting fa :¼ 0 for all a 2 C: Thus, f is still
an ðx; yÞ-flow in H of value 3. Therefore, there exists 3 edge-disjoint ðx; yÞ-
dipaths P 0

1; P 0
2; and P 0

3 in H =C: Now, P 0
1 [ feg; P 0

2 [ feg; and P 0
3 [ feg are all

odd circuits of ðG;SÞ: Replacing C1; C2 and C3 with these circuits gives a
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contradiction to condition (iv) of our choice of C: Therefore, H is acyclic, as
claimed. ]

4.6. If P is an ðx; yÞ-dipath in H there exists two other ðx; yÞ-dipaths P 0
1 and

P 0
2 such that P ; P 0

1 and P 0
2 are edge disjoint.

Proof. This follows easily from the fact that H is acyclic. ]

4.7. If P is an ðx; yÞ-dipath in H then there exists an odd-circuit cover B of

ðG;SÞ such that B
 ðP [ fegÞ is a transversal of C%ee:

Proof. By 4.6, there exist ðx; yÞ-dipaths P 0
1 and P 0

2 in H such that P ; P 0
1;

and P 0
2 are edge-disjoint. Let C0

1 :¼ P 0
1 [ feg; C0

2 :¼ P 0
2 [ feg and C0

3 :¼
P [ feg: Now, by our choice of w; ðG;SÞ=C0

3 packs. Let B0 be a minimum
odd-circuit cover of ðG;SÞ=C0

3; and let B � B0 [ C0
3 be a minimal odd-circuit

cover of ðG;SÞ: If C%ee is a maximum packing of odd circuits of ðG;SÞ=C0
3

then B0 is a transversal of C%ee; and, hence, B has the desired properties.
Therefore, we may assume that C %ee is not a maximum packing of odd
circuits of ðG;SÞ=C0

3: Nevertheless, by our choice of C; there is no
packing of odd circuits of ðG;SÞ=C0

3 of size jCj 
 1 ¼ jC %eej þ 2: Therefore,
jB0j ¼ jC %eej þ 1:

Since B is a minimal odd-circuit cover, B is a signature for ðG;SÞ:
Therefore, B has an odd intersection with each circuit in C%ee [ fC0

1;C
0
2;C

0
3g:

However, jB0j ¼ jC%eej þ 1: Therefore, there exists a unique edge f 2 B0 that is
not contained in a circuit in C%ee: Now f is not contained in both C0

1 and C0
2;

so we must have e 2 B: Moreover, as C0
1 and C0

2 both have an odd
intersection with B; neither C0

1 nor C0
2 contains f : We conclude that f is in

none of the circuits in C %ee [ fC0
1;C

0
2;C

0
3g: Let G

0 be the graph obtained from
G by deleting all of the edges in the circuits in C%ee [ fC0

1;C
0
2;C

0
3g: Note that

G0 is Eulerian. Therefore, there is a circuit C of G0 that contains f :However,
jC \ Bj ¼ 1; so C is an odd circuit of ðG;SÞ: Then, C%ee [ fC;C0

1;C
0
2;C

0
3g

contradicts our choice of C: ]

The following technical claim allows us to fully disentangle P1; P2; and P3:

4.8. There exists a minor ðG0;S0Þ of ðG;SÞ and odd circuits C0
1;C

0
2;C

0
3 �

C1 [ C2 [ C3 of ðG0;S0Þ such that:

(i) EðGÞ 
 EðG0Þ � P1 [ P2 [ P3;
(ii) C0

1 
 feg; C0
2 
 feg; and C0

3 
 feg are internally vertex disjoint ðx; yÞ-
paths in G0:

(iii) for i 2 f1; 2; 3g; there exists an odd-circuit cover B0 of ðG0;S0Þ such

that B0 
 C0
i is a transversal of C %ee:

(iv) for any transversal T of C%ee; T [ feg is not an odd-circuit cover of

ðG0;S0Þ:
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Proof. Let ðG0;S0Þ be a minor of ðG;SÞ and let H 0 be a directed graph
obtained by orienting edges in a subgraph of G0; where ðG0;S0Þ and H 0 are
minimal subject to:

(1) EðGÞ 
 EðG0Þ � P1 [ P2 [ P3; and EðH 0Þ � P1 [ P2 [ P3:
(2) H 0 is acyclic and there exist three edge disjoint ðx; yÞ-dipaths in H 0:
(3) For any ðx; yÞ-dipath P of H 0; P [ feg is an odd circuit, and there

exists an odd-circuit cover B0 of ðG0;S0Þ such that B0 
 ðP [ fegÞ is a
transversal of C%ee:

(4) For any transversal Tof C %ee; T [ feg is not an odd-circuit cover of
ðG0;S0Þ:

Note that these conditions are satisfied by ðG;SÞ and H ; so ðG0;S0Þ and H 0

are well defined. Let P 0
1; P 0

2 and P 0
3 be edge-disjoint ðx; yÞ-dipaths in H 0; and

let C0
i ¼ P 0

i [ feg for i 2 f1; 2; 3g: By the minimality of H 0; we have EðH 0Þ ¼
P 0
1 [ P 0

2 [ P 0
3: Now, ðG0;S0Þ; C0

1; C
0
2; and C0

3 satisfy (i), (iii), and (iv), so it
remains to prove that (ii) is satisfied. Suppose that P 0

1; P 0
2; and P 0

3 are not
internally vertex disjoint. Let v1 2 V ðP 0

1Þ 
 fxg be the closest vertex on P 0
1 to x

that lies on P 0
2 or P

0
3: Define v2 and v3 similarly. Since H 0 is acyclic it must be

the case that at least two of v1; v2 and v3 coincide. By symmetry we may
assume that v1 ¼ v2:

4.8.1. For each i 2 f1; 2g; there exists an odd-circuit cover B of ðG0;S0Þ
such that B
 ðP 0

i ½x; vi� [ fegÞ is a transversal of C%ee:

Suppose otherwise. By symmetry, we may assume that there does not exist
an odd-circuit cover B of ðG0;S0Þ such that B
 ðP 0

1½x; v1� [ fegÞ is a
transversal of C %ee: Let ðG00;S00Þ :¼ ðG0;S0Þ=P 0

1½x; v1�=P
0
2½x; v1�: If v1=v3

then let H 00 :¼ H 0=P 0
1½x; v1�=P

0
2½x; v1�; otherwise, when v1 ¼ v3; let H 00 :¼

H 0=P 0
1½x; v1�=ðP

0
2½x; v1� [ P 0

3½x; v1�Þ: Now ðG00;S00Þ and H 00 certainly satisfy (1),
and (2). Moreover, it is straightforward to check that ðG00;S00Þ satisfies (4).
Now, if P is an ðx; yÞ-dipath of H 00 then P 0

1½x; v1� [ P is an ðx; yÞ-dipath in H 0:
Then, since ðG0;S0Þ and H 0 satisfy (3), we easily deduce that ðG00;S00Þ and H 00

also satisfy (3). However, this contradicts the minimality of ðG0;S0Þ and H 0:
This proves 4.8.1.

4.8.2. There exists a ðv3; yÞ-dipath *PP3 such that, for each odd-circuit cover

B of ðG0;S0Þ; B
 ð *PP3 [ fegÞ is not a transversal of C%ee:

Suppose otherwise. Thus, for any ðv3; yÞ-dipath P in H 0 there exists an
odd-circuit cover B of ðG0;S0Þ such that B
 ðP [ fegÞ is a transversal of C%ee:
Let ðG00;S00Þ :¼ ðG0;S0Þ=P 0

3½x; v3�; and let H 00 be the directed graph obtained
from H 0 by deleting all arcs entering v3 except for the arc on P 0

3 and then
contracting the arcs in P 0

3½x; v3�: Now ðG00;S00Þ and H 00 certainly satisfies (1),
(2) and (4). Moreover, by the hypothesis of this case, it is easy to see that
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ðG00;S00Þ also satisfies (3). However, this contradicts the minimality of
ðG0;S0Þ: This proves 4.8.2.

By possibly changing P 0
1; P 0

2; and P 0
3; we may assume that *PP3 ¼ P 0

3½v3; y�:
Let ðG00;S00Þ :¼ ðG0;S0Þ= *PP3=ðP 0

1½v1; y� [ P 0
2½v1; y�Þ; H

00 :¼ H 0= *PP3=ðP 0
1½v1; y� [ P 0

2

½v1; y�Þ; and, for i ¼ 1; 2; let P 00
i :¼ P 0

i ½x; vi�: Note that P 00
1 ; P 00

2 and P 00
3 are

internally vertex disjoint ðx; yÞ-dipaths in H 00: Thus ðG00;S00Þ and H 00 certainly
satisfy (1) and (2). Moreover, by 4.8.2, ðG00;S00Þ and H 00 satisfy (4). By 4.8.1,
for i 2 f1; 2g; there exists an odd-circuit cover B of ðG00;S00Þ such that
B
 ðP 00

i [ fegÞ is a transversal of C%ee: By (3), there exists an odd-circuit cover
B of ðG0;S0Þ such that B
 ðP 0

3 [ fegÞ is a transversal of C%ee: Hence, B
 *PP3 is
an odd-circuit cover of ðG0;S0Þ such that ðB
 *PP3Þ 
 ðP 0

3 [ fegÞ is a
transversal of C %ee: We conclude that ðG00;S00Þ and H 00 satisfy (3). However,
this contradicts the minimality of (G0;S0Þ and H 0: ]

Let ðG0;S0Þ; H 0 be as given in 4.8, let P 0
1; P 0

2; and P 0
3 be disjoint ðx; yÞ-

dipaths in H 0; and, for i 2 f1; 2; 3g; let C0
i :¼ P 0

i [ feg and let B0
i be a minimal

odd-circuit cover of ðG0;S0Þ such that B0
i 
 C0

i is a transversal of C%ee: We may
assume that G0 is connected, since otherwise we could delete any component
not containing e: As B0

1; B0
2; and B0

3 are minimal odd-circuit covers, they are
also signatures of ðG0;S0Þ: Hence, for distinct i; j 2 f1; 2; 3g; B0

iDB
0
j is a cut;

moreover, e =2 B0
iDB

0
j: Therefore, for distinct i; j 2 f1; 2; 3g; there exists Uij �

V ðG0Þ such that dG0 ðUijÞ ¼ B0
iDB

0
j; and x; y =2 Uij: Note that

dG0 ðU12DU23DU13Þ ¼ dG0 ðU12ÞDdG0 ðU23ÞDdG0 ðU13Þ ¼ |:

Moreover, x; y =2 U12DU23DU13 and G0 is connected. Therefore, U12DU23D
U13 ¼ |: Let Y1 :¼ U12 \ U13; Y2 :¼ U12 \ U23; Y3 :¼ U13 \ U23; and let Y0 :
¼ V ðG0Þ 
 ðY1 [ Y2 [ Y3Þ; thus, x; y 2 Y0:

4.9. For i 2 f1; 2; 3g; C0
i is a circuit in G0½Y0 [ Yi�:

Proof. By symmetry we may assume that i ¼ 1: Recall that x; y 2 Y0:
Moreover, P 0

1 is disjoint from B0
2 and B0

3: Thus, if f 2 P 0
1 \ B0

1; then f 2
dG0 ðU12Þ \ dG0 ðU13Þ: Therefore, either f has one end in Y0 and the other end
in Y1; or f has an end in Y2 and an end in Y3: The edges in P 0

1 
 B0
1 are

disjoint from each of the cuts dG0 ðU12Þ; dG0 ðU13Þ; and dG0 ðU23Þ: However, P 0
1 is

a path with both ends in Y0: We conclude that C0
1 is contained in G0½Y0 [ Y1�;

as required. ]

4.10. For distinct i; j 2 f1; 2; 3g; there exists a path from V ðP 0
i Þ to V ðP 0

jÞ in

G0½Uij�=ðB0
i [ B0

jÞ:

Proof. Let Xi :¼ V ðP 0
i Þ \ Uij and Xj :¼ V ðP 0

jÞ \ Uij: We first show that
there exists a path from Xi to Xj in G0½Uij�: Suppose not, then there exists
X � Uij such that Xi � X ; X � Uij 
 Xj; and dG0 ½Uij�ðX Þ ¼ |: Let B :¼ B0

iDdG0

ðX Þ:Now, B is an odd-circuit cover of ðG0;S0Þ; and B
 feg is a transversal of
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C%ee; contrary to part (iv) of 4.8. Thus, there exists a path from Xi to Xj in
G0½Uij� as claimed.

Note that an edge of G0½Uij� is contained in B0
i if and only if it is also

contained in B0
j: Let P be a path from Xi to Xj in G0½Uij� minimizing jP \ B0

ij:
Suppose that there exists an edge f 2 P \ B0

i: Now, f is in both B0
i and B0

j; so
there exists an odd-circuit C 2 C%ee of ðG0;S0Þ containing f : Moreover, by the
definition of B0

i; we have C \ B0
i ¼ ff g: Therefore, C is a circuit of G0½Uij�:

We can obtain another path P 0 from Xi to Xj in G0½Uij� by rerouting P
through C 
 ff g: However jP 0 \ B0

ij5jP \ B0
ij; which contradicts our choice

of P :We conclude that P is, in fact, disjoint from B0
i; and, hence, also disjoint

from B0
j: ]

Let B :¼ B0
1DB

0
2DB

0
3: Thus, B is a signature for ðG0;S0Þ: Now, for distinct

i; j 2 f1; 2; 3g let P 0
ij be the path from V ðP 0

i Þ to V ðP 0
jÞ in G0½Uij�=ðB0

i [ B0
jÞ: Let

S ¼ feg [ P 0
1 [ P 0

2 [ P 0
3 [ P 0

12 [ P 0
13 [ P 0

23: Each edge in S 
 feg is in at most
one of the sets B0

1; B0
2; and B0

3: Therefore, the odd edges of ðG0;BÞ½S� are e
and any edge whose ends are in different parts of ðY0; Y1; Y2; Y3Þ: Let ðG1;S1Þ
be the signed graph obtained from ðG0;BÞ½S� by contracting the edges in
S 
 B; thus S1 ¼ EðG1Þ: For distinct i; j 2 f1; 2; 3g; let P 00

ij ¼ P 0
ij \ B; and, for

l 2 f0; 1; 2; 3g let Y 00
l be the set of vertices of G00 corresponding to Yi: Now, by

4.1, we see that ðG00;S00Þ contains a minor isomorphic to odd-K5; as
required. ]
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