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1. Introduction

We prove the following result.

Theorem 1.1. Let B be a basis in a binary matroid M. Then M is graphic if and only if the following system of
linear equations admits a solution over GF(2).

(G1) B(a,b) + B(a,c) =0, for each (a, b, c) € B® with C; N C; — Ck # 0.
(G2) B(a,b) + B(a,c) + B(b.a) + (b, c) + B(c,a) + B(c,b) =1, for each (a, b, c) € B® with C; N C; N
Cr#0.

Here B® denotes the set of all ordered k-tuples of distinct elements in B and C3 denotes the
fundamental cocircuit of e with respect to B; that is, C; is the complement of the hyperplane of M
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spanned by B — {e}. The variables and equations have a natural interpretation which is revealed in
Section 2.

If M is a rank-r binary matroid with n elements, then the system (G1)-(G2) has O (r3) equations
and O (r2) variables. The system can be easily determined in O (nr3)-time and solved in O (r7)-time.
There are faster algorithms for testing graphicness. By analyzing a method proposed by Tutte [7],
Bixby and Cunningham [1] gave an O (r?n)-time algorithm. Later, Bixby and Wagner [2] and Fu-
jishige [4], independently, obtained almost linear-time algorithms by using data structures that keep
track of 2-separations; these algorithms assume that the binary matroid is given by a matrix in “stan-
dard form”.

Mighton [5,9] has a closely related characterization of graphic matroids. In fact, it is easy to deduce
our main result from Mighton’s Theorem which, in turn, can be deduced from Tutte’s excluded-minor
characterization [8]; we will, however, give a direct proof. We do not know how to deduce either
Mighton’s or Tutte’s characterization from ours; this would be interesting since our characterization
has a relatively simple proof.

2. Trees and paths

Let B be a basis of a binary matroid M. For each f € E(M) — B, we define Py C B such that
Py U{f} is the unique circuit contained in BU {f}; that is, Py U{f} is the fundamental circuit for f.
Note that e € Py if and only if f € C; for each e € B and f € E(M) — B. To avoid ambiguity, we
will refer to the fundamental circuits and cocircuits of (M, B), as they rely on both M and B. Our
linear system is motivated by the following well-known result; we include the proof for the sake of
completeness.

Lemma 2.1. If B is a basis of a binary matroid M, then M is graphic ifand only if there is a tree T with E(T) = B
such that each of the sets (Ps: f € E(M) — B) isapathinT.

Proof. Suppose that M = M(G) for some graph G; we may assume that G is connected. Then B is a
tree and each of the sets (Py: f € E(G) — E(T)) are paths in G.

Conversely, suppose that there is a tree T with E(T) = B such that, for each f € E(G) — E(T), the
set Py is a path in T. Then there is a graph G such that the fundamental circuits of (M, B) coincide
with the fundamental circuits of (M(G), B). Since M and M(G) are both binary, M = M(G). O

Let T be an orientation of a tree T. For each (a,b) € E(T)@®, we define B;(a,b) € GF(2) to be 1
if the head of a is in the same component of T —a as the edge b, and 0 otherwise. Note that, for
(a,b,c) € E(T)®, the edge b lies between a and c in T if and only if B;(b,a) + B7(b,c) = 1. The
following lemma characterizes paths in T by linear equations.

Lemma 2.2. Let T be an orientation ofatree T and let P C E(T). Then P is a path in T if and only if

(H1) B;(a,b) + B;(a,c) =0, for each (b,c) € P and a € E(T) — P, and
(H2) Bs(a,b) + B (a,c) + B5 (b, a) + B3 (b, ¢) + B3 (c,a) + B (c,b) = 1, for each (a, b, c) € PP,

Proof. Note that P is a path if and only if

(IT) P induces a connected subgraph of T, and
(I12) there is a path of T containing P.

Now (I1) and (H1) are clearly equivalent and (I2) is equivalent to each triple in P® being contained
in a path of T. Consider (a, b, c) € P®. If there is a path of T containing a, b and c, then exactly one
of those edges lies between the other two. On the other hand, if a, b and ¢ do not lie on a path, then
none of the edges lies between the other two. Thus (I2) is equivalent to (H2). O

The next lemma determines when B : B® — GF(2) encodes a tree.
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Lemma 2.3. Let B be a finite set and let B : B®) — GF(2). Then there exists an oriented tree T such that
E(T) = B and B = B; if and only if the following condition is satisfied:

(T) foreach (a, b, c) € B, either B(b, a) + B(b, c) =0 or B(a, b) + B(a, c) =0.

Proof. If an edge b lies between edges a and c in an oriented tree T, then a does not lie between b
and c. Thus B3 satisfies (T).

Conversely, suppose that g : B® — GF(2) satisfies (T). We may assume that there exists
(a,b,c) € Bi such that B(a,b) + B(a,c) = 1 since otherwise we can readily construct an ori-
ented star T satisfying the result. Let g’ denote_the restriction of B to (B — {a})®. Inductively
we may assume that there is an oriented tree T, such that E(Tq) = B — {a} and B’ = Bz, Let
Bo ={e € B — {a}: B(a,e) =0} and let B = {e € B — {a}: B(a,e) = 1}. Since B(a,b) + B(a,c) =1,
the sets By and By are both nonempty. If By and By each form connected subgraphs of T, then it is
straightforward to get the desired tree T. Adding one to each of the values (B(a,e): e € B — {a}) gives
another function satisfying (T) and this change swaps the roles of By and By; this change corresponds
to the operation of reversing the orientation on an edge in a tree. So we may assume that Bg does
not form a connected subgraph of T and, hence, there exist (e, f) € B(()Z) and d € By such that d lies
between e and f in Ta. Note that 8(d, e) # 8(d, f), so, by possibly switching e and f, we may assume
that 8(d,a) = B(d,e). Now B(d,a) + B(d, f) =1 and B(a,d) + B(a, f) =1, contradicting (T). O

Lemmas 2.1, 2.2, and 2.3 immediately imply the following results.
Lemma 2.4. If B is a basis of a graphic matroid M, then the linear system (G1)-(G2) admits a solution.

Lemma 2.5. If B is a basis of a binary matroid M and there is a solution to the system (G1)-(G2) that satis-
fies (T), then M is graphic.

To complete the proof of Theorem 1.1 we need to prove that, when (G1)-(G2) has a solution, there
is a solution satisfying (T). We will prove a stronger result that, when M(G) is 3-connected, every
solution of (G1)-(G2) also satisfies (T).

3. Connectivity
The following two results are self-evident.

Lemma 3.1. Let B be a basis of a matroid M and let (X, Y) be a partition of E(M) into nonempty sets. Then
(X, Y) is a separation of M if and only if Px C X foreachx € X —Band P, CY foreachy € Y — B.

Lemma 3.2. Let B be a basis of a binary matroid M, and let (X, Y) be a partition of E(M) with |X|, |Y| > 2.
If C; € X, for each x € X N B, and there is a set Z X such that, for each y € Y N B, either C; N X =@ or
C;’; N X =Z, then (X, Y) is a 2-separation of M.

The next lemma describes solutions to (G1).

Lemma 3.3. Let B be a basis of a matroid M and let 8 be a solution to (G1). Then B(b,a) = B(b, c) for each
(a,b, c) € B® where a and c are in the same component of M \ C;.

Proof. Suppose that the result fails and let N be the component of M\ C; containing a and c. Let X =
{e € E(N): B(b,e) = B(b,a)}. By Lemma 3.1, there exists f € E(N) — B such that PN X and Py — X
are both nonempty. Let a’ € Py N X and ¢’ € Py — X. Note that b ¢ Py, so, by (G1), B(b,a’) = B(b, ')
— contradicting the definition of X. O
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Let B be a basis of a matroid M. For X € E(M), we let M[B; X] denote M/(B — X) \ (E(M) — (XU
B)). Note that BN X is a basis of M[B; X] and the fundamental cocircuits of (M[B; X], BN X) are
(CxN X: x € BN X). Therefore, if  satisfies (G1)-(G2) for M, then the restriction of g to X satisfies
(G1)-(G2) for M[B; X].

We now reduce Theorem 1.1 to the 3-connected case.

Lemma 3.4. Let B be a basis of a matroid M. If M is not graphic, then there exists Z C E(M) such that M[B; Z]
is 3-connected and is not graphic.

Proof. We may assume that M is not graphic and that, for each proper subset Z of E(M), M[B; Z]
is graphic. Then M is connected. We may also assume that M is not 3-connected; let (X,Y) be a
2-separation in M. Note that r(X) +r(Y) =r(M) + 1, so, up to symmetry, we may assume that XN B
is a basis of M|X. Thus Py C X for each f € X — B. Then, by Lemma 3.1, there exists y € Y — B and
x € XN B such that x € Py,. By minimality, M[B; X U{y}] and M[B; Y U {x}] are both graphic. However,
M is the 2-sum of M[B; X U {y}] and M[B;Y U {x}] and, hence, M is graphic. This contradiction
completes the proof. O

4. The final step

Combining the following result with Lemmas 2.4, 3.4, and 2.5 completes the proof of Theorem 1.1.

Lemma 4.1. Let B be a basis of a binary matroid M. If M is 3-connected, then every solution of (G1)-(G2) also
satisfies (T).

Proof. Let 8 be a solution to (G1)-(G2).

41.1. Let (@', b, c’) € B® be such that B(b',a’) + B(b',c) =1 and B(@,b') + B(@,c’) =1, and let Z =
C N Cy;.. Then neither a’ nor b’ is in the same component of M\ Z as ¢'.

Proof of claim. Let Z' = (C}, — {a'}) U(C}, — {b'}) and let N be the component of M\ Z’ containing c'.
Since a’ and b’ are coloops of M \ Z’, neither @’ nor b’ is contained in N. If the claim fails, then
N is not a component of M\ Z so, by Lemma 3.1, there exists f € Z’ — Z such that Py N E(N) ##.
Up to symmetry, we may assume that f € C;, — Cj,. Now Py U {f} is a circuit in M\ C},, so there
is a component of M \ C}, containing E(N) U {d’, f}. This component contains both a’ and c¢’, and
Bb',a")# B, '), contrary to Lemma 3.3. O

41.2. Let (@', b',c’) € B® be such that B(b',a’) + B(b',c’) =1 and B(a’,b’) + B(@,c) =1, and let Z =
C N Cp,. Ifd € B is in the same component of M \ Z as ¢’ and C; N Z # @, then p(b’,a’) + B(b’,d) =1,
g, b)+p@.d)=1,8d,a)+pd.b')=1,and Z S C}.

Proof of claim. By 4.1.1, a’ is not in the same component of M\ Z as ¢’ and d. Now C}, — Z is
a cocircuit of M\ Z, and therefore disjoint from the component containing ¢’ and d. So ¢’ and d
are in the same component of M \ C}, and, hence, by Lemma 3.3, (a’,d) = g(d’, ¢’). By symmetry,
B’ .d)y=B®".c"). So B(b’,a’)+ pb’.d)=1 and B(a’,b") + B(a’,d) = 1. Note that C, N C};, N C; # ¥,
so, by (G2), B(d,d’) + B(d,b’) = 1. Finally, if there were an element f € Z — Cj, then, since ¢’ and b
are contained in the circuit Py U{f}, @’ and b’ would be in the same component of M \ C}, contrary
to Lemma 3.3.S0 ZC C}. O

Suppose that 8 does not satisfy (T) and let (a,b,c) € B® be such that g(b,a) + 8(b,c) =1 and
B(a,b) + B(a,c) = 1. Let Z=C; NC}. By 4.1.1, neither a nor b is in the same component of M \ Z
as c. By Lemma 3.1, there exists an element d € B that is in the same component of M \ Z as c and
that satisfies Cjj N Z # ¢. By possibly changing our choice of ¢, we may assume that C¢ N Z # . Now,
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by 4.1.2, there is symmetry among a, b, and c, and, hence, by 4.1.1, no two of a, b, and c are in the
same component of M\ Z.

Let X, and X, be the ground sets of the components of M \ Z that contain a and b respectively.
Since M is connected, Z # @, and, hence, |Xg U Xp|, |[E(M) — (Xq U Xp)| > 2. By 4.1.2, for each d’ €
(XaU Xp) N B, either Cj, — (XqU Xp) =¥ or Cj, — (XqU Xp) = Z. Then, by Lemma 3.2, (Xq U Xp, E(M) —
(Xa U Xp)) is a 2-separation of M, contradicting that M is 3-connected. O

5. Planar graphs

Our theorem was motivated by a result of Naji [6] who characterized the class of circle graphs
by a system of linear equations over GF(2). Circle graphs are related to graphic matroids through the
following two results: De Fraysseix [3] showed that the fundamental graph of a binary matroid M
is a circle graph if and only if M is the cycle matroid of a planar graph. Whitney [10] proved that
M is the cycle matroid of planar graph if and only if M is both graphic and cographic. By Whitney’s
theorem, any characterization for the class of graphic matroids immediately gives a characterization
for the class of planar graphs; so we obtain the following corollary.

Corollary 5.1. Let T be a spanning tree in a connected graph G. Then G is planar if and only if the following
system of equations has a solution over GF(2).

(P1) B(a,b) + B(a, c) =0, for each (a, b, ¢) € (E(G) — E(T))® with P, N P, — Py 0.
(P2) B(a,b)+ B(a,c)+ B(b,a) + B(b,c)+ B(c,a) + B(c,b) =1, foreach (a, b, c) € (E(G) — E(T)® with
Py N Py N Pe 0.
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