

Contents lists available at SciVerse ScienceDirect Journal of Combinatorial Theory, Series B

Journal of Combinatorial Theory

赠

www.elsevier.com/locate/jctb

### Notes

# Characterizing graphic matroids by a system of linear equations $\stackrel{\text{\tiny{$\Xi$}}}{=}$



## Jim Geelen<sup>a</sup>, Bert Gerards<sup>b,c</sup>

<sup>a</sup> Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

<sup>b</sup> Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

<sup>c</sup> The Maastricht University School of Business and Economics, Maastricht, The Netherlands

#### ARTICLE INFO

Article history: Received 4 October 2011 Available online 23 July 2013

Dedicated to William H. Cunningham on the occasion of his 65th birthday

*Keywords:* Matroids Graphic matroids Planar graphs

#### 1. Introduction

We prove the following result.

**Theorem 1.1.** Let *B* be a basis in a binary matroid *M*. Then *M* is graphic if and only if the following system of linear equations admits a solution over GF(2).

- **(G1)**  $\beta(a, b) + \beta(a, c) = 0$ , for each  $(a, b, c) \in B^{(3)}$  with  $C_b^* \cap C_c^* C_a^* \neq \emptyset$ .
- (G2)  $\beta(a,b) + \beta(a,c) + \beta(b,a) + \beta(b,c) + \beta(c,a) + \beta(c,b) = 1$ , for each  $(a,b,c) \in B^{(3)}$  with  $C_a^* \cap C_b^* \cap C_c^* \neq \emptyset$ .

Here  $B^{(k)}$  denotes the set of all ordered k-tuples of distinct elements in B and  $C_e^*$  denotes the fundamental cocircuit of e with respect to B; that is,  $C_e^*$  is the complement of the hyperplane of M

0095-8956/\$ – see front matter  $\hfill \ensuremath{\mathbb{C}}$  2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jctb.2013.07.001

## ABSTRACT

Given a rank-*r* binary matroid we construct a system of  $O(r^3)$  linear equations in  $O(r^2)$  variables that has a solution over GF(2) if and only if the matroid is graphic.

© 2013 Elsevier Inc. All rights reserved.

 $<sup>^{\</sup>star}$  This research was partially supported by a grant from the Office of Naval Research [N00014-10-1-0851].

spanned by  $B - \{e\}$ . The variables and equations have a natural interpretation which is revealed in Section 2.

If *M* is a rank-*r* binary matroid with *n* elements, then the system (G1)–(G2) has  $O(r^3)$  equations and  $O(r^2)$  variables. The system can be easily determined in  $O(nr^3)$ -time and solved in  $O(r^7)$ -time. There are faster algorithms for testing graphicness. By analyzing a method proposed by Tutte [7], Bixby and Cunningham [1] gave an  $O(r^2n)$ -time algorithm. Later, Bixby and Wagner [2] and Fujishige [4], independently, obtained almost linear-time algorithms by using data structures that keep track of 2-separations; these algorithms assume that the binary matroid is given by a matrix in "standard form".

Mighton [5,9] has a closely related characterization of graphic matroids. In fact, it is easy to deduce our main result from Mighton's Theorem which, in turn, can be deduced from Tutte's excluded-minor characterization [8]; we will, however, give a direct proof. We do not know how to deduce either Mighton's or Tutte's characterization from ours; this would be interesting since our characterization has a relatively simple proof.

#### 2. Trees and paths

Let *B* be a basis of a binary matroid *M*. For each  $f \in E(M) - B$ , we define  $P_f \subseteq B$  such that  $P_f \cup \{f\}$  is the unique circuit contained in  $B \cup \{f\}$ ; that is,  $P_f \cup \{f\}$  is the fundamental circuit for *f*. Note that  $e \in P_f$  if and only if  $f \in C_e^*$  for each  $e \in B$  and  $f \in E(M) - B$ . To avoid ambiguity, we will refer to the fundamental circuits and cocircuits of (M, B), as they rely on both *M* and *B*. Our linear system is motivated by the following well-known result; we include the proof for the sake of completeness.

**Lemma 2.1.** If B is a basis of a binary matroid M, then M is graphic if and only if there is a tree T with E(T) = B such that each of the sets  $(P_f: f \in E(M) - B)$  is a path in T.

**Proof.** Suppose that M = M(G) for some graph *G*; we may assume that *G* is connected. Then *B* is a tree and each of the sets  $(P_f: f \in E(G) - E(T))$  are paths in *G*.

Conversely, suppose that there is a tree *T* with E(T) = B such that, for each  $f \in E(G) - E(T)$ , the set  $P_f$  is a path in *T*. Then there is a graph *G* such that the fundamental circuits of (M, B) coincide with the fundamental circuits of (M(G), B). Since *M* and M(G) are both binary, M = M(G).  $\Box$ 

Let  $\vec{T}$  be an orientation of a tree T. For each  $(a, b) \in E(T)^{(2)}$ , we define  $\beta_{\vec{T}}(a, b) \in GF(2)$  to be 1 if the head of a is in the same component of T - a as the edge b, and 0 otherwise. Note that, for  $(a, b, c) \in E(T)^{(3)}$ , the edge b lies between a and c in T if and only if  $\beta_{\vec{T}}(b, a) + \beta_{\vec{T}}(b, c) = 1$ . The following lemma characterizes paths in T by linear equations.

**Lemma 2.2.** Let  $\vec{T}$  be an orientation of a tree T and let  $P \subseteq E(T)$ . Then P is a path in T if and only if

**(H1)**  $\beta_{\vec{T}}(a,b) + \beta_{\vec{T}}(a,c) = 0$ , for each  $(b,c) \in P^{(2)}$  and  $a \in E(T) - P$ , and **(H2)**  $\beta_{\vec{T}}(a,b) + \beta_{\vec{T}}(a,c) + \beta_{\vec{T}}(b,a) + \beta_{\vec{T}}(b,c) + \beta_{\vec{T}}(c,a) + \beta_{\vec{T}}(c,b) = 1$ , for each  $(a,b,c) \in P^{(3)}$ .

**Proof.** Note that *P* is a path if and only if

(I1) *P* induces a connected subgraph of *T*, and

(I2) there is a path of T containing P.

Now (I1) and (H1) are clearly equivalent and (I2) is equivalent to each triple in  $P^{(3)}$  being contained in a path of *T*. Consider  $(a, b, c) \in P^{(3)}$ . If there is a path of *T* containing *a*, *b* and *c*, then exactly one of those edges lies between the other two. On the other hand, if *a*, *b* and *c* do not lie on a path, then none of the edges lies between the other two. Thus (I2) is equivalent to (H2).  $\Box$ 

The next lemma determines when  $\beta : B^{(2)} \to GF(2)$  encodes a tree.

**Lemma 2.3.** Let B be a finite set and let  $\beta : B^{(2)} \to GF(2)$ . Then there exists an oriented tree  $\vec{T}$  such that  $E(\vec{T}) = B$  and  $\beta = \beta_{\vec{T}}$  if and only if the following condition is satisfied:

**(T)** for each  $(a, b, c) \in B^{(3)}$ , either  $\beta(b, a) + \beta(b, c) = 0$  or  $\beta(a, b) + \beta(a, c) = 0$ .

**Proof.** If an edge *b* lies between edges *a* and *c* in an oriented tree  $\vec{T}$ , then *a* does not lie between *b* and *c*. Thus  $\beta_{\vec{T}}$  satisfies (T).

Conversely, suppose that  $\beta : B^{(2)} \to GF(2)$  satisfies (T). We may assume that there exists  $(a, b, c) \in B^3$  such that  $\beta(a, b) + \beta(a, c) = 1$  since otherwise we can readily construct an oriented star  $\vec{T}$  satisfying the result. Let  $\beta'$  denote the restriction of  $\beta$  to  $(B - \{a\})^{(2)}$ . Inductively we may assume that there is an oriented tree  $\vec{T}_a$  such that  $E(\vec{T}_a) = B - \{a\}$  and  $\beta' = \beta_{\vec{T}_a}$ . Let  $B_0 = \{e \in B - \{a\}: \beta(a, e) = 0\}$  and let  $B_1 = \{e \in B - \{a\}: \beta(a, e) = 1\}$ . Since  $\beta(a, b) + \beta(a, c) = 1$ , the sets  $B_0$  and  $B_1$  are both nonempty. If  $B_0$  and  $B_1$  each form connected subgraphs of  $\vec{T}_a$ , then it is straightforward to get the desired tree  $\vec{T}$ . Adding one to each of the values ( $\beta(a, e): e \in B - \{a\}$ ) gives another function satisfying (T) and this change swaps the roles of  $B_0$  and  $B_1$ ; this change corresponds to the operation of reversing the orientation on an edge in a tree. So we may assume that  $B_0$  does not form a connected subgraph of T and, hence, there exist  $(e, f) \in B_0^{(2)}$  and  $d \in B_1$  such that d lies between e and f in  $\vec{T}_a$ . Note that  $\beta(d, e) \neq \beta(d, f)$ , so, by possibly switching e and f, we may assume that  $\beta(d, a) = \beta(d, e)$ . Now  $\beta(d, a) + \beta(d, f) = 1$  and  $\beta(a, d) + \beta(a, f) = 1$ , contradicting (T).  $\Box$ 

Lemmas 2.1, 2.2, and 2.3 immediately imply the following results.

Lemma 2.4. If B is a basis of a graphic matroid M, then the linear system (G1)–(G2) admits a solution.

**Lemma 2.5.** If *B* is a basis of a binary matroid *M* and there is a solution to the system (G1)-(G2) that satisfies (T), then *M* is graphic.

To complete the proof of Theorem 1.1 we need to prove that, when (G1)–(G2) has a solution, there is a solution satisfying (T). We will prove a stronger result that, when M(G) is 3-connected, every solution of (G1)–(G2) also satisfies (T).

#### 3. Connectivity

The following two results are self-evident.

**Lemma 3.1.** Let *B* be a basis of a matroid *M* and let (X, Y) be a partition of E(M) into nonempty sets. Then (X, Y) is a separation of *M* if and only if  $P_x \subseteq X$  for each  $x \in X - B$  and  $P_y \subseteq Y$  for each  $y \in Y - B$ .

**Lemma 3.2.** Let *B* be a basis of a binary matroid *M*, and let (X, Y) be a partition of E(M) with  $|X|, |Y| \ge 2$ . If  $C_x^* \subseteq X$ , for each  $x \in X \cap B$ , and there is a set  $Z \subseteq X$  such that, for each  $y \in Y \cap B$ , either  $C_y^* \cap X = \emptyset$  or  $C_y^* \cap X = Z$ , then (X, Y) is a 2-separation of *M*.

The next lemma describes solutions to (G1).

**Lemma 3.3.** Let *B* be a basis of a matroid *M* and let  $\beta$  be a solution to (*G*1). Then  $\beta(b, a) = \beta(b, c)$  for each  $(a, b, c) \in B^{(3)}$  where *a* and *c* are in the same component of  $M \setminus C_{h}^{*}$ .

**Proof.** Suppose that the result fails and let *N* be the component of  $M \setminus C_b^*$  containing *a* and *c*. Let  $X = \{e \in E(N): \beta(b, e) = \beta(b, a)\}$ . By Lemma 3.1, there exists  $f \in E(N) - B$  such that  $P_f \cap X$  and  $P_f - X$  are both nonempty. Let  $a' \in P_f \cap X$  and  $c' \in P_f - X$ . Note that  $b \notin P_f$ , so, by (G1),  $\beta(b, a') = \beta(b, c')$  – contradicting the definition of *X*.  $\Box$ 

Let *B* be a basis of a matroid *M*. For  $X \subseteq E(M)$ , we let M[B; X] denote  $M/(B - X) \setminus (E(M) - (X \cup B))$ . Note that  $B \cap X$  is a basis of M[B; X] and the fundamental cocircuits of  $(M[B; X], B \cap X)$  are  $(C_X^* \cap X: x \in B \cap X)$ . Therefore, if  $\beta$  satisfies (G1)–(G2) for *M*, then the restriction of  $\beta$  to  $X^{(2)}$  satisfies (G1)–(G2) for M[B; X].

We now reduce Theorem 1.1 to the 3-connected case.

**Lemma 3.4.** Let *B* be a basis of a matroid *M*. If *M* is not graphic, then there exists  $Z \subseteq E(M)$  such that M[B; Z] is 3-connected and is not graphic.

**Proof.** We may assume that *M* is not graphic and that, for each proper subset *Z* of *E*(*M*), *M*[*B*; *Z*] is graphic. Then *M* is connected. We may also assume that *M* is not 3-connected; let (*X*, *Y*) be a 2-separation in *M*. Note that r(X) + r(Y) = r(M) + 1, so, up to symmetry, we may assume that  $X \cap B$  is a basis of M|X. Thus  $P_f \subseteq X$  for each  $f \in X - B$ . Then, by Lemma 3.1, there exists  $y \in Y - B$  and  $x \in X \cap B$  such that  $x \in P_y$ . By minimality,  $M[B; X \cup \{y\}]$  and  $M[B; Y \cup \{x\}]$  are both graphic. However, *M* is the 2-sum of  $M[B; X \cup \{y\}]$  and  $M[B; Y \cup \{x\}]$  and, hence, *M* is graphic. This contradiction completes the proof.  $\Box$ 

#### 4. The final step

Combining the following result with Lemmas 2.4, 3.4, and 2.5 completes the proof of Theorem 1.1.

**Lemma 4.1.** Let B be a basis of a binary matroid M. If M is 3-connected, then every solution of (G1)–(G2) also satisfies (T).

**Proof.** Let  $\beta$  be a solution to (G1)–(G2).

**4.1.1.** Let  $(a', b', c') \in B^{(3)}$  be such that  $\beta(b', a') + \beta(b', c') = 1$  and  $\beta(a', b') + \beta(a', c') = 1$ , and let  $Z = C_{a'}^* \cap C_{b'}^*$ . Then neither a' nor b' is in the same component of  $M \setminus Z$  as c'.

**Proof of claim.** Let  $Z' = (C_{a'}^* - \{a'\}) \cup (C_{b'}^* - \{b'\})$  and let *N* be the component of  $M \setminus Z'$  containing *c'*. Since *a'* and *b'* are coloops of  $M \setminus Z'$ , neither *a'* nor *b'* is contained in *N*. If the claim fails, then *N* is not a component of  $M \setminus Z$  so, by Lemma 3.1, there exists  $f \in Z' - Z$  such that  $P_f \cap E(N) \neq \emptyset$ . Up to symmetry, we may assume that  $f \in C_{a'}^* - C_{b'}^*$ . Now  $P_f \cup \{f\}$  is a circuit in  $M \setminus C_{b'}^*$ , so there is a component of  $M \setminus C_{b'}^*$  containing  $E(N) \cup \{a', f\}$ . This component contains both *a'* and *c'*, and  $\beta(b', a') \neq \beta(b', c')$ , contrary to Lemma 3.3.  $\Box$ 

**4.1.2.** Let  $(a', b', c') \in B^{(3)}$  be such that  $\beta(b', a') + \beta(b', c') = 1$  and  $\beta(a', b') + \beta(a', c') = 1$ , and let  $Z = C_{a'}^* \cap C_{b'}^*$ . If  $d \in B$  is in the same component of  $M \setminus Z$  as c' and  $C_d^* \cap Z \neq \emptyset$ , then  $\beta(b', a') + \beta(b', d) = 1$ ,  $\beta(a', b') + \beta(a', d) = 1$ ,  $\beta(d, a') + \beta(d, b') = 1$ , and  $Z \subseteq C_d^*$ .

**Proof of claim.** By 4.1.1, a' is not in the same component of  $M \setminus Z$  as c' and d. Now  $C_{a'}^* - Z$  is a cocircuit of  $M \setminus Z$ , and therefore disjoint from the component containing c' and d. So c' and d are in the same component of  $M \setminus C_{a'}^*$ , and, hence, by Lemma 3.3,  $\beta(a', d) = \beta(a', c')$ . By symmetry,  $\beta(b', d) = \beta(b', c')$ . So  $\beta(b', a') + \beta(b', d) = 1$  and  $\beta(a', b') + \beta(a', d) = 1$ . Note that  $C_{a'}^* \cap C_{b'}^* \cap C_d^* \neq \emptyset$ , so, by (G2),  $\beta(d, a') + \beta(d, b') = 1$ . Finally, if there were an element  $f \in Z - C_d^*$ , then, since a' and b' are contained in the circuit  $P_f \cup \{f\}$ , a' and b' would be in the same component of  $M \setminus C_d^*$ , contrary to Lemma 3.3. So  $Z \subseteq C_d^*$ .  $\Box$ 

Suppose that  $\beta$  does not satisfy (T) and let  $(a, b, c) \in B^{(3)}$  be such that  $\beta(b, a) + \beta(b, c) = 1$  and  $\beta(a, b) + \beta(a, c) = 1$ . Let  $Z = C_a^* \cap C_b^*$ . By 4.1.1, neither *a* nor *b* is in the same component of  $M \setminus Z$  as *c*. By Lemma 3.1, there exists an element  $d \in B$  that is in the same component of  $M \setminus Z$  as *c* and that satisfies  $C_d^* \cap Z \neq \emptyset$ . By possibly changing our choice of *c*, we may assume that  $C_c^* \cap Z \neq \emptyset$ . Now,

by 4.1.2, there is symmetry among *a*, *b*, and *c*, and, hence, by 4.1.1, no two of *a*, *b*, and *c* are in the same component of  $M \setminus Z$ .

Let  $X_a$  and  $X_b$  be the ground sets of the components of  $M \setminus Z$  that contain a and b respectively. Since M is connected,  $Z \neq \emptyset$ , and, hence,  $|X_a \cup X_b|, |E(M) - (X_a \cup X_b)| \ge 2$ . By 4.1.2, for each  $d' \in (X_a \cup X_b) \cap B$ , either  $C_{d'}^* - (X_a \cup X_b) = \emptyset$  or  $C_{d'}^* - (X_a \cup X_b) = Z$ . Then, by Lemma 3.2,  $(X_a \cup X_b, E(M) - (X_a \cup X_b))$  is a 2-separation of M, contradicting that M is 3-connected.  $\Box$ 

#### 5. Planar graphs

Our theorem was motivated by a result of Naji [6] who characterized the class of circle graphs by a system of linear equations over GF(2). Circle graphs are related to graphic matroids through the following two results: De Fraysseix [3] showed that the fundamental graph of a binary matroid M is a circle graph if and only if M is the cycle matroid of a planar graph. Whitney [10] proved that M is the cycle matroid of planar graph if and only if M is both graphic and cographic. By Whitney's theorem, any characterization for the class of graphic matroids immediately gives a characterization for the class of planar graphs; so we obtain the following corollary.

**Corollary 5.1.** Let *T* be a spanning tree in a connected graph *G*. Then *G* is planar if and only if the following system of equations has a solution over GF(2).

- (P1)  $\beta(a, b) + \beta(a, c) = 0$ , for each  $(a, b, c) \in (E(G) E(T))^{(3)}$  with  $P_b \cap P_c P_a \neq \emptyset$ .
- (P2)  $\beta(a, b) + \beta(a, c) + \beta(b, a) + \beta(b, c) + \beta(c, a) + \beta(c, b) = 1$ , for each  $(a, b, c) \in (E(G) E(T))^{(3)}$  with  $P_a \cap P_b \cap P_c \neq \emptyset$ .

#### References

- [1] R.E. Bixby, W.H. Cunningham, Converting linear programs to network problems, Math. Oper. Res. 5 (1980) 321–357.
- [2] R.E. Bixby, D.K. Wagner, An almost linear-time algorithm for graph realization, Math. Oper. Res. 13 (1988) 99–123.
- [3] H. de Fraysseix, A characterization of circle graphs, European J. Combin. 5 (1984) 223-238.
- [4] S. Fujishige, An efficient PQ-graph algorithm for solving the graph-realization problem, J. Comput. System Sci. 21 (1980) 63–86.
- [5] J. Mighton, A new characterization of graphic matroids, J. Combin. Theory Ser. B 98 (2008) 1253–1258.
- [6] W. Naji, Reconnaissance des graphes de cordes, Discrete Math. 54 (1985) 329–337.
- [7] W.T. Tutte, An algorithm for determining whether a given binary matroid is graphic, Proc. Amer. Math. Soc. 11 (1960) 905–917.
- [8] W.T. Tutte, Lectures on matroids, J. Res. Natl. Bur. Stand. Sect. B 69 (1965) 1-47.
- [9] D.K. Wagner, On Mighton's characterization of graphic matroids, J. Combin. Theory Ser. B 100 (2010) 493-496.
- [10] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932) 339-362.