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ear equations in O (r2) variables that has a solution over GF(2) if
and only if the matroid is graphic.
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1. Introduction

We prove the following result.

Theorem 1.1. Let B be a basis in a binary matroid M. Then M is graphic if and only if the following system of
linear equations admits a solution over GF(2).

(G1) β(a,b) + β(a, c) = 0, for each (a,b, c) ∈ B(3) with C∗
b ∩ C∗

c − C∗
a �= ∅.

(G2) β(a,b) + β(a, c) + β(b,a) + β(b, c) + β(c,a) + β(c,b) = 1, for each (a,b, c) ∈ B(3) with C∗
a ∩ C∗

b ∩
C∗

c �= ∅.

Here B(k) denotes the set of all ordered k-tuples of distinct elements in B and C∗
e denotes the

fundamental cocircuit of e with respect to B; that is, C∗
e is the complement of the hyperplane of M
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spanned by B − {e}. The variables and equations have a natural interpretation which is revealed in
Section 2.

If M is a rank-r binary matroid with n elements, then the system (G1)–(G2) has O (r3) equations
and O (r2) variables. The system can be easily determined in O (nr3)-time and solved in O (r7)-time.
There are faster algorithms for testing graphicness. By analyzing a method proposed by Tutte [7],
Bixby and Cunningham [1] gave an O (r2n)-time algorithm. Later, Bixby and Wagner [2] and Fu-
jishige [4], independently, obtained almost linear-time algorithms by using data structures that keep
track of 2-separations; these algorithms assume that the binary matroid is given by a matrix in “stan-
dard form”.

Mighton [5,9] has a closely related characterization of graphic matroids. In fact, it is easy to deduce
our main result from Mighton’s Theorem which, in turn, can be deduced from Tutte’s excluded-minor
characterization [8]; we will, however, give a direct proof. We do not know how to deduce either
Mighton’s or Tutte’s characterization from ours; this would be interesting since our characterization
has a relatively simple proof.

2. Trees and paths

Let B be a basis of a binary matroid M . For each f ∈ E(M) − B , we define P f ⊆ B such that
P f ∪ { f } is the unique circuit contained in B ∪ { f }; that is, P f ∪ { f } is the fundamental circuit for f .
Note that e ∈ P f if and only if f ∈ C∗

e for each e ∈ B and f ∈ E(M) − B . To avoid ambiguity, we
will refer to the fundamental circuits and cocircuits of (M, B), as they rely on both M and B . Our
linear system is motivated by the following well-known result; we include the proof for the sake of
completeness.

Lemma 2.1. If B is a basis of a binary matroid M, then M is graphic if and only if there is a tree T with E(T ) = B
such that each of the sets (P f : f ∈ E(M) − B) is a path in T .

Proof. Suppose that M = M(G) for some graph G; we may assume that G is connected. Then B is a
tree and each of the sets (P f : f ∈ E(G) − E(T )) are paths in G .

Conversely, suppose that there is a tree T with E(T ) = B such that, for each f ∈ E(G) − E(T ), the
set P f is a path in T . Then there is a graph G such that the fundamental circuits of (M, B) coincide
with the fundamental circuits of (M(G), B). Since M and M(G) are both binary, M = M(G). �

Let 	T be an orientation of a tree T . For each (a,b) ∈ E(T )(2) , we define β	T (a,b) ∈ GF(2) to be 1
if the head of a is in the same component of T − a as the edge b, and 0 otherwise. Note that, for
(a,b, c) ∈ E(T )(3) , the edge b lies between a and c in T if and only if β	T (b,a) + β	T (b, c) = 1. The
following lemma characterizes paths in T by linear equations.

Lemma 2.2. Let 	T be an orientation of a tree T and let P ⊆ E(T ). Then P is a path in T if and only if

(H1) β	T (a,b) + β	T (a, c) = 0, for each (b, c) ∈ P (2) and a ∈ E(T ) − P , and
(H2) β	T (a,b) + β	T (a, c) + β	T (b,a) + β	T (b, c) + β	T (c,a) + β	T (c,b) = 1, for each (a,b, c) ∈ P (3) .

Proof. Note that P is a path if and only if

(I1) P induces a connected subgraph of T , and
(I2) there is a path of T containing P .

Now (I1) and (H1) are clearly equivalent and (I2) is equivalent to each triple in P (3) being contained
in a path of T . Consider (a,b, c) ∈ P (3) . If there is a path of T containing a, b and c, then exactly one
of those edges lies between the other two. On the other hand, if a, b and c do not lie on a path, then
none of the edges lies between the other two. Thus (I2) is equivalent to (H2). �

The next lemma determines when β : B(2) → GF(2) encodes a tree.
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Lemma 2.3. Let B be a finite set and let β : B(2) → GF(2). Then there exists an oriented tree 	T such that
E(	T ) = B and β = β	T if and only if the following condition is satisfied:

(T) for each (a,b, c) ∈ B(3) , either β(b,a) + β(b, c) = 0 or β(a,b) + β(a, c) = 0.

Proof. If an edge b lies between edges a and c in an oriented tree 	T , then a does not lie between b
and c. Thus β	T satisfies (T).

Conversely, suppose that β : B(2) → GF(2) satisfies (T). We may assume that there exists
(a,b, c) ∈ B3 such that β(a,b) + β(a, c) = 1 since otherwise we can readily construct an ori-
ented star 	T satisfying the result. Let β ′ denote the restriction of β to (B − {a})(2) . Inductively
we may assume that there is an oriented tree 	Ta such that E(	Ta) = B − {a} and β ′ = β	Ta

. Let
B0 = {e ∈ B − {a}: β(a, e) = 0} and let B1 = {e ∈ B − {a}: β(a, e) = 1}. Since β(a,b) + β(a, c) = 1,
the sets B0 and B1 are both nonempty. If B0 and B1 each form connected subgraphs of 	Ta , then it is
straightforward to get the desired tree 	T . Adding one to each of the values (β(a, e): e ∈ B − {a}) gives
another function satisfying (T) and this change swaps the roles of B0 and B1; this change corresponds
to the operation of reversing the orientation on an edge in a tree. So we may assume that B0 does
not form a connected subgraph of T and, hence, there exist (e, f ) ∈ B(2)

0 and d ∈ B1 such that d lies
between e and f in 	Ta . Note that β(d, e) �= β(d, f ), so, by possibly switching e and f , we may assume
that β(d,a) = β(d, e). Now β(d,a) + β(d, f ) = 1 and β(a,d) + β(a, f ) = 1, contradicting (T). �

Lemmas 2.1, 2.2, and 2.3 immediately imply the following results.

Lemma 2.4. If B is a basis of a graphic matroid M, then the linear system (G1)–(G2) admits a solution.

Lemma 2.5. If B is a basis of a binary matroid M and there is a solution to the system (G1)–(G2) that satis-
fies (T), then M is graphic.

To complete the proof of Theorem 1.1 we need to prove that, when (G1)–(G2) has a solution, there
is a solution satisfying (T). We will prove a stronger result that, when M(G) is 3-connected, every
solution of (G1)–(G2) also satisfies (T).

3. Connectivity

The following two results are self-evident.

Lemma 3.1. Let B be a basis of a matroid M and let (X, Y ) be a partition of E(M) into nonempty sets. Then
(X, Y ) is a separation of M if and only if P x ⊆ X for each x ∈ X − B and P y ⊆ Y for each y ∈ Y − B.

Lemma 3.2. Let B be a basis of a binary matroid M, and let (X, Y ) be a partition of E(M) with |X |, |Y | � 2.
If C∗

x ⊆ X, for each x ∈ X ∩ B, and there is a set Z ⊆ X such that, for each y ∈ Y ∩ B, either C∗
y ∩ X = ∅ or

C∗
y ∩ X = Z , then (X, Y ) is a 2-separation of M.

The next lemma describes solutions to (G1).

Lemma 3.3. Let B be a basis of a matroid M and let β be a solution to (G1). Then β(b,a) = β(b, c) for each
(a,b, c) ∈ B(3) where a and c are in the same component of M \ C∗

b .

Proof. Suppose that the result fails and let N be the component of M \C∗
b containing a and c. Let X =

{e ∈ E(N): β(b, e) = β(b,a)}. By Lemma 3.1, there exists f ∈ E(N) − B such that P f ∩ X and P f − X
are both nonempty. Let a′ ∈ P f ∩ X and c′ ∈ P f − X . Note that b /∈ P f , so, by (G1), β(b,a′) = β(b, c′)
— contradicting the definition of X . �
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Let B be a basis of a matroid M . For X ⊆ E(M), we let M[B; X] denote M/(B − X) \ (E(M) − (X ∪
B)). Note that B ∩ X is a basis of M[B; X] and the fundamental cocircuits of (M[B; X], B ∩ X) are
(C∗

x ∩ X : x ∈ B ∩ X). Therefore, if β satisfies (G1)–(G2) for M , then the restriction of β to X (2) satisfies
(G1)–(G2) for M[B; X].

We now reduce Theorem 1.1 to the 3-connected case.

Lemma 3.4. Let B be a basis of a matroid M. If M is not graphic, then there exists Z ⊆ E(M) such that M[B; Z ]
is 3-connected and is not graphic.

Proof. We may assume that M is not graphic and that, for each proper subset Z of E(M), M[B; Z ]
is graphic. Then M is connected. We may also assume that M is not 3-connected; let (X, Y ) be a
2-separation in M . Note that r(X) + r(Y ) = r(M) + 1, so, up to symmetry, we may assume that X ∩ B
is a basis of M|X . Thus P f ⊆ X for each f ∈ X − B . Then, by Lemma 3.1, there exists y ∈ Y − B and
x ∈ X ∩ B such that x ∈ P y . By minimality, M[B; X ∪{y}] and M[B; Y ∪{x}] are both graphic. However,
M is the 2-sum of M[B; X ∪ {y}] and M[B; Y ∪ {x}] and, hence, M is graphic. This contradiction
completes the proof. �
4. The final step

Combining the following result with Lemmas 2.4, 3.4, and 2.5 completes the proof of Theorem 1.1.

Lemma 4.1. Let B be a basis of a binary matroid M. If M is 3-connected, then every solution of (G1)–(G2) also
satisfies (T).

Proof. Let β be a solution to (G1)–(G2).

4.1.1. Let (a′,b′, c′) ∈ B(3) be such that β(b′,a′) + β(b′, c′) = 1 and β(a′,b′) + β(a′, c′) = 1, and let Z =
C∗

a′ ∩ C∗
b′ . Then neither a′ nor b′ is in the same component of M \ Z as c′ .

Proof of claim. Let Z ′ = (C∗
a′ − {a′})∪ (C∗

b′ − {b′}) and let N be the component of M \ Z ′ containing c′ .
Since a′ and b′ are coloops of M \ Z ′ , neither a′ nor b′ is contained in N . If the claim fails, then
N is not a component of M \ Z so, by Lemma 3.1, there exists f ∈ Z ′ − Z such that P f ∩ E(N) �= ∅.
Up to symmetry, we may assume that f ∈ C∗

a′ − C∗
b′ . Now P f ∪ { f } is a circuit in M \ C∗

b′ , so there
is a component of M \ C∗

b′ containing E(N) ∪ {a′, f }. This component contains both a′ and c′ , and
β(b′,a′) �= β(b′, c′), contrary to Lemma 3.3. �
4.1.2. Let (a′,b′, c′) ∈ B(3) be such that β(b′,a′) + β(b′, c′) = 1 and β(a′,b′) + β(a′, c′) = 1, and let Z =
C∗

a′ ∩ C∗
b′ . If d ∈ B is in the same component of M \ Z as c′ and C∗

d ∩ Z �= ∅, then β(b′,a′) + β(b′,d) = 1,
β(a′,b′) + β(a′,d) = 1, β(d,a′) + β(d,b′) = 1, and Z ⊆ C∗

d .

Proof of claim. By 4.1.1, a′ is not in the same component of M \ Z as c′ and d. Now C∗
a′ − Z is

a cocircuit of M \ Z , and therefore disjoint from the component containing c′ and d. So c′ and d
are in the same component of M \ C∗

a′ , and, hence, by Lemma 3.3, β(a′,d) = β(a′, c′). By symmetry,
β(b′,d) = β(b′, c′). So β(b′,a′) + β(b′,d) = 1 and β(a′,b′) + β(a′,d) = 1. Note that C∗

a′ ∩ C∗
b′ ∩ C∗

d �= ∅,
so, by (G2), β(d,a′) + β(d,b′) = 1. Finally, if there were an element f ∈ Z − C∗

d , then, since a′ and b′
are contained in the circuit P f ∪ { f }, a′ and b′ would be in the same component of M \ C∗

d , contrary
to Lemma 3.3. So Z ⊆ C∗

d . �
Suppose that β does not satisfy (T) and let (a,b, c) ∈ B(3) be such that β(b,a) + β(b, c) = 1 and

β(a,b) + β(a, c) = 1. Let Z = C∗
a ∩ C∗

b . By 4.1.1, neither a nor b is in the same component of M \ Z
as c. By Lemma 3.1, there exists an element d ∈ B that is in the same component of M \ Z as c and
that satisfies C∗

d ∩ Z �= ∅. By possibly changing our choice of c, we may assume that C∗
c ∩ Z �= ∅. Now,
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by 4.1.2, there is symmetry among a, b, and c, and, hence, by 4.1.1, no two of a, b, and c are in the
same component of M \ Z .

Let Xa and Xb be the ground sets of the components of M \ Z that contain a and b respectively.
Since M is connected, Z �= ∅, and, hence, |Xa ∪ Xb|, |E(M) − (Xa ∪ Xb)| � 2. By 4.1.2, for each d′ ∈
(Xa ∪ Xb)∩ B , either C∗

d′ − (Xa ∪ Xb) = ∅ or C∗
d′ − (Xa ∪ Xb) = Z . Then, by Lemma 3.2, (Xa ∪ Xb, E(M)−

(Xa ∪ Xb)) is a 2-separation of M , contradicting that M is 3-connected. �
5. Planar graphs

Our theorem was motivated by a result of Naji [6] who characterized the class of circle graphs
by a system of linear equations over GF(2). Circle graphs are related to graphic matroids through the
following two results: De Fraysseix [3] showed that the fundamental graph of a binary matroid M
is a circle graph if and only if M is the cycle matroid of a planar graph. Whitney [10] proved that
M is the cycle matroid of planar graph if and only if M is both graphic and cographic. By Whitney’s
theorem, any characterization for the class of graphic matroids immediately gives a characterization
for the class of planar graphs; so we obtain the following corollary.

Corollary 5.1. Let T be a spanning tree in a connected graph G. Then G is planar if and only if the following
system of equations has a solution over GF(2).

(P1) β(a,b) + β(a, c) = 0, for each (a,b, c) ∈ (E(G) − E(T ))(3) with Pb ∩ Pc − Pa �= ∅.
(P2) β(a,b) + β(a, c) + β(b,a) + β(b, c) + β(c,a) + β(c,b) = 1, for each (a,b, c) ∈ (E(G) − E(T ))(3) with

Pa ∩ Pb ∩ Pc �= ∅.
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