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Tutte associates a V' by V skew-symmetric matrix 7', having indeterminate entries, with
a graph G =(V, E). This matrix, called the Tutte matriz, has rank exactly twice the size
of a maximum cardinality matching of GG. Thus, to find the size of a maximum matching
it suffices to compute the rank of T'. We consider the more general problem of computing
the rank of T+ K where K is a real V' by V skew-symmetric matrix. This modest gen-
eralization of the matching problem contains the linear matroid matching problem and,
more generally, the linear delta-matroid parity problem. We present a tight upper bound
on the rank of 7'+ K by decomposing T+ K into a sum of matrices whose ranks are easy
to compute.

1. Introduction

Let G=(V, E) be a simple graph, and let (z.:e € E) be algebraically indepen-
dent commuting indeterminates. We define a V' by V' skew-symmetric matrix
T =(t;j), called the Tutte matriz of G, such that ¢;; ==+z if ij=e€ F, and
ti; =0 otherwise. Tutte observed that 7" is nonsingular (that is, its determi-
nant is not identically zero) if and only if G admits a perfect matching. In
fact, the rank of T" is equal to the size of a maximum cardinality matchable
set in G. (A subset X of V' is called matchable if G[X], the subgraph induced
by X, admits a perfect matching.) By applying elementary linear algebra to
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the Tutte matrix, Tutte proved his famous matching theorem [17]. Similar
techniques prove the following extension of Tutte’s theorem.

1.1 (Tutte—Berge Formula). If G is a graph, then
2v(G) = min(|V] — (odd(G\ S) — |S|) | S C V).

Here, v(G) is the size of a maximum cardinality matching of G, G\\S donotes
the graph obtained from G by deleting the vertices in S, and odd(G) denotes
the number of connected components of G that have an odd number of
vertices.

We call a matrix of the form T+ K, where K is a real V by V skew-
symmetric matrix, a mized skew-symmetric matrix. In the present paper we
consider the problem of determining the rank of a mixed skew-symmetric
matrix. This is a generalization of the linear matroid matching problem; see
Lovész [9-11]. In fact, this problem is equivalent to the linear delta-matroid
parity problem [6]. While there is an efficient algorithm and a min-max
formula for the linear delta-matroid parity problem, the min-max formula
does not lend itself well to applications. We present a new min-max formula
for the rank of 7'+ K, and consider several applications. (While we have
explicity defined K to be over the reals, the results, and their proofs, hold
for any field. However, our results only provide a good characterization when
there is an efficient algorithm for computing the rank of a matrix over the
field.)

Suppose that A, Aq,..., A, are matrices such that A = A; +--- + A;.
Then rank A < rank Ay + --- +rank Ag. This provides a convenient way
to bound the rank of a matrix. We refer to Aq,..., A as a rank-splitting
decomposition of A if rank A=rank A;+---+rank Ag. Every matrix admits a
rank-splitting decomposition into rank-one matrices. That is, if A has rank
r, then we can express A as the sum of r rank-one matrices. This is a useful
fact, but it is often desirable to maintain particular matrix properties in
the decomposition. For example, a skew-symmetric matrix admits a rank-
splitting decomposition into skew-symmetric matrices of rank two. (Skew-
symmetric matrices have even rank.)

The main theorem of this paper concerns rank-splitting decompositions of
mixed skew-symmetric matrices. We require some definitions. For X, Y CV|
K[X,Y] is the submatrix of K induced by rows X and columns Y, and
K[X] denotes the principal submatrix K[X, X|. We say that X supports K
if all nonzero entries of K are in the submatrix K[X]. We call X a cover
of K if each term in K[V — X] is zero. If X is a cover of K, then we get
two upper bounds on the rank of K. First, rank K < 2|X|, since deleting a
row or column of a matrix reduces the rank by at most 1. Second, rank K <
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| X|+rank K[V, V — X]=|X|+rank K[ X,V — X]. If | X|+rank K[ X,V — X] is
odd, then this strengthens to rank K <|X|+rank K[X,V — X]|—1.

1.2 (Decomposition Theorem). Let T+ K be a V' by V mixed skew-
symmetric matrix. Then there exists a rank-splitting decomposition Ky, T1+
Ki,...,Tx+ Ky, Too + Koo of T+ K and disjoint subsets (X1,..., Xk, Xoo) of
V such that

i. Ky isareal V by V skew-symmetric matrix and T1+ K1, ..., Tp+ Ky, T+
K are V by V mixed skew-symmetric matrices,

ii. fori=1,...,k, X; supports T;, X; is a cover of K;, | X;|[4+rank K;[X;,V—X]
is odd, and rank T; + K; =|X;| +rank K;[X;,V — X;] — 1.

iii. Xoo is a cover of Ty + Koo, and rank Too + Koo = 2| X oo |.

The Decomposition Theorem provides a good characterization for the
rank of a mixed skew-symmetric matrix. Indeed, by this theorem, we see
that

k
rank 7'+ K = rank Ko + 2| X | + Z (|.X;| + rank K;[X;,V — X;] —1).
i=1

By the preceding discussion, the right hand side of this expression is a clear
upper bound on rank 74K . Moreover, each of the matrices in this bound have
only real entries, so the ranks are straightforward to compute. (Actually, the
theorem says nothing about the size of the entries in Ky,..., K, K, but
these entries are all obtained via standard matrix operations on K — row
and column elimination, and multiplication and inversion of submatrices —
so their sizes do not grow significantly.) Hence the theorem provides a good
upper bound on the rank of T+ K. To obtain a good lower bound, we take
an evaluation of 7" with suitably chosen real numbers in a way that does not
decrease the rank of T+ K. (In fact, there exists such an evaluation where
each indeterminate is replaced with +1.)

Our proof of Theorem 1.2 is constructive. That is, given a mixed skew-
symmetric matrix we can efficiently determine the rank-splitting decompo-
sition, provided that we have an oracle for determining the rank of a mixed
skew-symmetric matrix. Fortunately, as mentioned earlier, the rank of a
mixed skew-symmetric matrix can be computed efficiently; see [6].

We conclude the introduction by deriving the Tutte—Berge Formula from
the Decomposition Theorem. Firstly, for any S CV it is clear that

2w(G) < |[V] = (0dd(G\ S) —[S]).

Hence we need only find a set S that satisfies this inequality with equality.
Let T be the Tutte matrix of G, and let Ko, T1+K1,...,Tp+ K, Too+ K be
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the rank-splitting decomposition of T" and (X7, ..., Xk, Xs) be the subsets
of V' promised by the Decomposition Theorem. Now,

rankT:ranng+Z(rank1}+Ki ci=1,...,k,00)

> (rank T; : i=1,...,k, 0)
> rank 7.

Therefore, T1,...,T),Ts is a rank-splitting decomposition of 7', and, for
i1=1,...,k, 00,
rank T; = rank T; + K;.

By ii, for i=1,...,k, we see that X; supports T}, and

rank T; = rank T; + K;
= |Xl’ + rank KZ[XZ,V — Xl] —1
> | Xi - 1.

Therefore, either |X;| is even and G[X;] admits a perfect matching, or | X;|
is odd and G[X;] has a matching covering all but one vertex. That is, G[X;]
has a matching covering | X;| —odd(G[X;]) vertices. Now let S= X, then

2v(G) =rank T
= (rank T} + - - - + rank T}) + rank T,
= (X1 U UXg| —odd(G[X1 U---U Xg])) + 2|S|
=(|V =S| —odd(G\ S)) + 2|95]
= V| = (0dd(G'\ 5) — |S5]),

as required.

2. Skew-symmetric matrices

The following result is elementary, and the proof is left to the reader.

2.1. Let A be a matrix with nonzero entry A; j= o, let u denote the row
of A indexed by i and let v denote the column of A indexed by j. Then,
rank (A— 2ou)=rank A—1.

Theorem 2.1 describes a rank-splitting decomposition of A. Indeed, vu is
a rank-one matrix, and, hence, (évu,A— évu) is a rank-splitting decompo-
sition of A. Repeatedly applying this theorem, we see that a rankk matrix
can be expressed as the sum of k rank-one matrices.
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A matrix K whose row and column sets are both indexed by a finite set
V' is said to be skew-symmetric if K is equal to the transpose of —K, and all
diagonal entries of K are zero. (For fields of characteristic different from two,
the condition that K has a zero diagonal is implied by the condition that
K = —K".) The following theorem is an easy application of Theorem 2.1;
again the proof is left to the reader.

2.2. Let K be a skew-symmetric matrix with nonzero entry K;; =q, let u
denote the row of K indexed by ¢ and let v denote the column of K indexed
by j. Then, rank (K — 1 (vu—u'ov')) =rank K —2.

Note that, vu—u'v® is a skew-symmetric matrix of rank 2. Thus, (é(vu—
u'v'), K—21 (vu—u'v")) is a rank-splitting decomposition of K into two skew-
symmetrlc matrices. Repeatedly applying this theorem, we see that all skew-
symmetric matrices have even rank, and that a skew-symmetric matrix of
rank 2k can be expressed as the sum of k£ skew-symmetric matrices of rank 2.

Let K be a V by V skew-symmetric matrix. A matrix K is said to be con-
gruent to K if there exists a nonsingular matrix @ such that K'=Q'KQ.
The operation converting K to K’ is called a congruence transformation.
Note that skew-symmetry and rank are invariant under congruence trans-
formations. Also, if K1, K> is a rank-splitting decomposition of Q'K Q, then
(Q Y K1Q7 1, (Q 1 KeQ ™! is a rank-splitting decomposition of K.

The support graph of K is the graph G(K) with vertex set V' and edge
set {(i,7) | K; ; #0}. Skew-symmetric matrices have the property that their
determinants are perfect squares. The square root of the determinant is
called the Pfaffian of K. The Pfaffian of K can be computed by taking
weighted sums over all perfect matchings M of the support graph G:

2.3. PfK= ZUM I Kij
(i.7)eM

where oy takes £1 in a suitable manner, see [7]. In particular, K is singular
if G has no perfect matching (as is the case when |V is odd). Like determi-
nants, Pfaffians can be computed using “row-expansion” [7]: if V.={1,...,n},
then

2.4. PfK= Z D*K pPEK[V —{1,k}].

The following result is an easy consequence of 2.4.

2.5. Let K be a real n by n skew-symmetric matrix, and let K' be the
matrix obtained from K by replacing K1 and Ko 1 with K1 24a and Ko 1—a
respectively. Then

Pf K' = aPf K[V — {1,2}] + Pf K.
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The following result is very useful in finding applications of Theorem 1.2,
and is also used in the proof.

2.6 (Murota [14]). Let T+K be a V' by V mixed skew-symmetric matrix.
Then, T+ K is nonsingular if and only if there exists a partition (X,Y") of
V such that K[X] and T[Y| are both nonsingular.

Note that, this result provides a convenient way to show that the matrix
T+ K is nonsingular. Indeed, we simply provide a subset X of V' such that
K[X] is nonsingular and V' — X is a matchable set in the graph represented
by T'. However, 2.6 is not useful for showing that T'+ K is singular, as that
would require looking at every partition of V.

We require some elementary matroid theory. Let M (K) be the column-
matroid of K. That is, M (K) is a matroid on ground set V', and a subset X
of V' is independent in M (K) if the columns of K indexed by X are linearly
independent. The following result is elementary.

2.7. If X is a basis of M(K), then K[X] is nonsingular.

That is, if X indexes a maximal set of linearly independent columns of a
skew-symmetric matrix K, then the principal submatrix K[X] is nonsingu-
lar. A coloop of a matroid is an element whose deletion decreases the rank
of the matroid. Recall that skew-symmetric matrices have even rank. There-
fore, if deleting a column reduces the rank by one, then deleting the row and
corresponding column must reduce the rank by two. Thus we have proved
that:

2.8. Ifz is a coloop of M(K), then rank K =rank K[V —{z}]+2.

As an immediate corollary we see that:

2.9. If X is a maximal subset of V such that rank K =rank K [V —X]+2|X|,
then M(K[V — X]) has no coloops.

The above result can be interpreted as a result on rank-splitting decompo-
sition. If X is a maximal subset of V' such that rank K =rank K[V —-X]+2|X|,
then we can find a rank-splitting decomposition Ki, Ko of K such that the
nonzero entries of K are in the submatrix K;[V—X], X is a cover of Ky and
M[K1] has no coloops. Therefore, in finding a rank-splitting decomposition
of T+ K we may as well assume that M (T + K) has no coloops.

The following result shows that, if K1, K> is a rank-splitting decomposi-
tion of K, and M (K) has no coloops, then neither M (k) nor M (K3) has
coloops.
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2.10. If Ky, K5 is a rank-splitting decomposition of K and x is a coloop
of M(Ky), then x is a coloop of M (K).

Proof. If z is a coloop of M (K1), then

rank K[V, V — {z}] <rank K;[V,V — {z}] 4+ rank K[V, V — {z}]
<rank K7 +rank K9 — 1
=rank K — 1.

Hence z is a coloop of M (K). |

A pair of elements z,y of M (K) are said to be in series if neither = nor
y are coloops but V —{z,y} has rank less than that of V. It is wellknown
that series pairs are transitive.

2.11. Let M be a matroid on the set V. If x,y,z €V such that x,y are in
series in M and y,z are in series in M, then x,z are in series in M.

The transitivity of series pairs allows us to partition the elements of a ma-
troid without coloops into sets, such that two elements are in series if and
only if they are in the same part of the partition; the sets in this partition
are called series-classes. Note that, if X is the series-class of M (K) that
contains an element x, then X —{x} is the set of coloops of M (K[V —{z}]),
since M(K[V —{z}]) = M(K[V,V —{z}]). The following result is an easy
consequence of this observation.

2.12. If z,y € V are not coloops of M(K), then rank K[V — {z,y}| =
rank K —2 if x,y are in series in M(K), and rank K[V — {z,y}] = rank K
otherwise.

From this result we easily obtain the following corollary. (In the case
that K = 0, this result is tantamout to Gallai’s Lemma; see Lovasz and
Plummer [13, Theorem 3.1.13].)

2.13. If M(T+K) has no coloops, and x and y are in different series-classes
of M(T+K), then T, ,=0.

That is, if T is the Tutte matrix of a graph G, then each edge (z,y) of G
has both of its ends in the same series class of M (T4 K). The next result is
a little technical, but is also an easy consequence of 2.12.

2.14. Let T be the Tutte matrix of a graph G, and let K be a real V by
V' skew-symmetric matrix such that M (T + K) has no coloops. Let x and
y be distinct nonadjacent vertices of G that are in the same series-class of
M(T+K), let G’ be the graph obtained by adding the edge (x,y) to G and
let T" be the Tutte matrix of G'. Then rank T’ + K =rankT + K.
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Let T, G, T', and K be as in the previous result, and let e = (z,y) be
the edge added to G. It is easy to obtain a rank-splitting decomposition of
T+ K from a rank-splitting decomposition of 7"+ K. Indeed, suppose that
T)+ K1, Ty + K is a rank-splitting decomposition of 7"+ K, where T} + K
and Ty + Ko are mixed skew-symmetric matrices. Now, let 77 and T be the
matrices obtained from 77 and T3, respectively, by substituting z. =0. Thus,
T+ K=(T1+ K1)+ (Tx + K3). Moreover,

rank 77 + K =rank T + K
<rank T7 + Ky +rank T, + K>
< rank T| + K7 + rank T2'+K2
=rank 7" + K.

Hence, T1+ K1,15+ K> is a rank-splitting decomposition of T+ K. It is also
straightforward to see that, if M (T4 K) has no coloops, then M (T"+K) has
no coloops. Therefore, to find a rank-splitting decomposition of T+ K we
may as well assume that, for each series-class X of T+ K, G[X] is complete.

The following result shows that, if K, K5 is a rank-splitting decompo-
sition of K, then any series class of M (K) is the union of series classes of
M(Ky).

2.15. Let Ki,Ks be a rank-splitting decomposition of K, and let x,y be
in series in M (K1) such that neither x nor y are coloops in M(K), then x,y
are in series in M(K).

Proof. By 2.10, x is not a coloop of either M (K;) nor M(Ksy). Thus K[V —

{z}], Ko[V —{z}] is a rank-splitting decomposition of K[V —{z}]. Moreover,

as x,y is a seriespair of M(K), y is a coloop of M(K;[V —{z}]). Thus,

by 2.10, y is a coloop of M(K[V —{x}]), and, hence, x,y are in series in

M(K). |
If T+ K is a V by V mixed skew-symmetric matrix, then we call T+ K

critical if

(1) M(T+ K) has no coloops, and

(2) for each series-class X of M (T + K), G[X] is complete.

From the discussion above, we can focus on critical matrices. In the next
section we will prove the following theorem; below we show that this result
implies Theorem 1.2.

2.16. Let T+ K be a V by V mixed skew-symmetric matrix such that
T+ K is critical, and let Xy,..., X} be the series-classes of M (T + K) that

have at least two elements. Then there exists a rank-splitting decomposition
Ko, Th+ K1q,..., T+ Ki. of T+ K such that
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i. Ko isareal V by V skew-symmetric matrix and Th + K1,..., T+ K}, are
V by V mixed skew-symmetric matrices, and
ii. fori=1,...,k, X; supports T; and X; is a cover of K.

Let Ko,T1+K1,...,T;+ K} be the rank-splitting decomposition of T+ K
given by 2.16. Now consider some part T;+ K; of the decomposition. By 2.15
and the fact that T+ K is critical, X; is a series class of M (T;+K;). Therefore,

rank T; + K; = | X;| + rank (T; + K;)[V,V — X;] — 1
= ’Xl| + rank (T; + Kl)[Xl,V — Xl] —1
= ’XZ| + rank Ki[Xi, V- Xz] — 1;

where the last two equalities follow from the fact that X; is a cover of K;
and that X; supports T;. Also note that, since rank T; + K; is even, |X;|+
rank K;[X;,V — X;] is odd. Therefore, Theorem 2.16 implies Theorem 1.2.

3. Proof of Theorem 2.16

The next result provides a sufficient condition for finding a rank-splitting
decomposition. The result following shows that the sufficient conditions are
met if there are no single element series classes. We complete the proof
of Theorem 2.16 by using congruence transformations to combine single
element series classes with other series classes.

3.1. Let T+ K be a V by V mixed skew-symmetric matrix such that
T+ K is critical. Moreover, let X be a series-class of M (T + K') such that
rank (T + K)[V,V — X]| =rank (T + K)[V — X], and |X| is odd. Then there
exists a rank-splitting decomposition Ty + K1,T5+ K5 of T+ K such that

i. T+ K1 and Th+ Ky are V by V mixed skew-symmetric matrices,

ii. X supports T1 + Ky and rank T} + K7 =|X| —1,

iii. for each v € X, {z} is a series-class of M (T>+ K>), and

iv. if'Y is a series-class of M (T>+ K») that is disjoint from X, then Y is a
series class of M (T + K).

Proof. Let T7 and T5 be the Tutte matrices such that X supports 77, V—X
supports To and T'=T7 +T5.

3.1.1. There exists a unique skew-symmetric V by V matrix K’ such that
rank Th + K’ =rank (T + K)[V — X] and K'[V,V — X| = K[V,V — X]|. (The

entries of K'|X| may be rational functions of the indeterminates in T.)
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Let Y be a maximal subset of V—X such that (T+K)[Y] is nonsingular.
Now, for distinct elements z,y € X, define A= (T + K)[Y U{x,y}]. Now, let
a be a variable, and let A’ be the matrix obtained from A by replacing A, ,
and Ay, with a and —a respectively. By 2.5, there is a unique value o’ for a
that makes A’ singular. Let K} ,=a’ and K, ,=—a’. By considering other
values of x and y we can completely determine K’. Moreover, by definition,
(To + K')[Y] is a maximal nonsingular principal submatrix of 75+ K’, so
rankTh + K'=|Y|=rank (T'+ K)[V — X], as required.

3.1.2. T+ K — K', T, + K’ is a rank-splitting decomposition of T + K.

Since X is a series-class of M (T + K'), we have rank (T'+ K)[V,V — X|=
rank (T4 K) — (] X|—1). Moreover, by definition, T} + K — K’ is supported
by X, and |X]| is odd. Hence rank (T} + K — K') <|X|—1. Consequently,

rank 7'+ K =rank (T + K)[V,V — X]| + | X| -1
> rank (Ty + K') +rank (T} + K — K').

Hence, T} + K — K', Ty + K’ is a rank-splitting decomposition of T+ K, as
required.

3.1.3. All entries in K’ are real.

Let Y be a maximal subset of V—X such that (T+K)[Y] is nonsingular.
Recalling the proof of 3.1.1, we see that any indeterminate that occurs in
K'[X] also occurs in T[Y]. Now, since X is a series class of M(T + K),
M((T+K)[V,V —X]) has no coloops. Moreover, as (T'+K)[V,V —X] has the
same rank as (T'+K)[V—X]|, M((T+K)[V —X]) has no coloops. Therefore,
for any y € V — X there exists a maximal nonsingular principal submatrix
(T+ K)[Y'] of (T+ K)[V — X] such that y ¢ Y’. Consequently, there is no
indeterminate that can occur in each matrix T[Y], where (T + K)[Y] is a
maximal nonsingular principal submatrix of (T'+ K)[V — X]. Therefore, K’
must be a real matrix, as claimed.

Let K1 =K—K' and Ky =K'. Then we have proved parts i and 7. Part 44
follows from 2.12, 2.15, and the fact that M (T>+ K2) has a basis contained
in V—X; part v follows from 2.13, 2.15, and the fact that T+ K is critical. i

3.2. Let T+K be aV by V mixed skew-symmetric matrix such that T+ K
is critical. Now let S be a maximal collection of series classes of M (T + K)
such that (T+K)[U(S €S)] is nonsingular. Then, for each series-class X not
in S, | X| is odd and rank (T + K)[V,V — X]=rank (T + K)[V — X].
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Proof. Let Y =U(S €S), and let G be the graph represented by T'. Since
T+ K is critical, G[X] is complete. If | X]| is even, then G[X]| has a perfect
matching, and, hence, (T'+ K)[Y U X] is nonsingular. This contradicts the
maximality of S, so |X]| is odd.

Suppose that rank (T+K)[XUY,V—X]|>rank (T+K)[Y]. Now (T+K)[Y]
is nonsingular, but it is not a maximal nonsingular submatrix of (T+K)[XU
Y,V — X]. Therefore, there exists 2 € X and 2’ € V — (X UY) such that
(T+ K)[YU{z},YU{2'}] is nonsingular. Now, (T+ K)[Y] and (T+ K)[Y U
{z,2'}] are both skew-symmetric, and, hence, have even rank. Moreover
rank (T+ K)[YU{z,2'}] >rank (T+ K)[Y] since (T'+ K )[Y U{z,2'}] contains
(T+K)[YU{x},YU{a'}] as a submatrix. Consequently, (T+ K)[Y U{z,2'}]
is nonsingular. Now let X’ be the series-class of M (T + K) that contains z’.
Recall that | X| and | X’| are both odd. Hence G[X — {z}] and G[X' —{z'}]
both contain perfect matchings. Therefore, (T+K)[(YU{x,z'})U(X —{z})U
(X'—{2'})] is nonsingular. That is, (T+ K)[YUXUX'] is nonsingular. This
contradicts the maximality of S, and, hence, rank (T'+ K)[X UY,V — X] =
rank (T'+ K)[Y]. Therefore, rank (T'+ K)[V,V — X|=rank (T + K)[V — X]. I

It may seem that Theorem 2.16 follows from 3.1 and 3.2. However, if | X|=
1 in Theorem 3.1, then T3+ K7 =0, and we do not obtain a proper reduction
of T+ K. So, in the remainder of this section we consider singleton series
classes; to obtain further reductions we use congruence transformations.

3.3. Let T+K be aV by V mixed skew-symmetric matrix such that T+ K
is critical. Let {x} and Y be series classes of M (T + K) and let y €Y such
that K., # 0. Then there exists a real nonsingular matrix () such that
QTQ'=T, every series class of M(Q(T + K)Q") that does not contain z is
also a series class of M(T+ K), and either x is a coloop of M (Q(T + K)Q")
or Y U{z} is a series-class of M(Q(T + K)Q"). In particular, if |Y|=1 then
x is a coloop of M(Q(T+ K)Q").

Proof. Construct a matrix K’ from K by adding multiples of the row and
column indexed by x to other rows and columns so that every entry in row
and column indexed by y are zero except for K, , and K ,. Now there
exists a nonsingular matrix Q so that K’ = QKQ". By 2.13, T = QTQ".
For any Z CV —{z}, rank (T + K)[V,V — Z] =rank (T + K')[V — Z] since
(T+K'")[V,V—Z] is obtained from (T+ K)[V,V —Z] by elementary row and
column operations. In particular, M (T+K') has no coloops excect, possibly,
x, and elements i,j € V —{x} are in series in M (T + K) if and only if they
are in series in M (T + K'). If x is a coloop of M(T+ K') then we are done;
assume otherwise.
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We claim that YU{z} is a series-class of M (Q(T+K)Q"). By the transitiv-
ity of series pairs, it suffices to prove that x and y are in series in M (T+K").
Suppose that z and y are not in series, then there exists Y’ CV —{x,y} such
that (T'+ K')[Y'] is nonsingular and |Y’| =rank T + K. Now, by 2.6, there
exists a partition (Y1,Y2) of Y/ such that T[Y;] and K'[Y>] are nonsingular.
Consider K'[YoU{z,y}]. K}, # 0 but all other entries in the row indexed
by y are zero. Hence, by 2.4, K'[YoU{z,y}| is nonsingular. Then, by 2.6,
(T+ K")[Y'U{x,y}] is nonsingular. This contradicts that |Y’'|=rankT + K.
Therefore, © and y are in series as required.

Now consider the particular case when |Y| = 1; that is, Y = {y}. Now
the row and column of (T + K')[V —{z}] indexed by y contain only zero
entries. Consider a maximal subset Y/ of V —{z} such that (T+ K")[Y"] is
nonsingular. Clearly y¢Y’. Now, by 2.4, (T'+K')[Y'U{z,y}] is nonsingular.
Therefore, |Y'| <rankT + K’, and, hence, by our choice of Y’, x is a coloop
of M(T+ K'), as required. 1

3.4. Let T4+K be aV by V mixed skew-symmetric matrix such that T+ K
is critical. Let {x} be a singleton series-class of M (T+K) and let Q) be a real
nonsingular matrix such that QT Q=T and x is a coloop of M (Q(T+K)Q").
Then there exists a real V by V skew-symmetric matrix K' of rank two such
that K', T+ K — K’ is a rank-splitting decomposition of T + K.

Proof. Since x is a coloop of M(Q(T+ K)Q"), there exists a rank-splitting
decomposition K1,T + Ko of Q(T + K)Q' such that Kj is a real skew-
symmetric matrix of rank two. Thus Q 'K1(Q")~!,Q YT+ K3)(Q') ! is
a rank-splitting decomposition of T+ K. Let K'=Q ' K1(Q")~!. Thus K’
is a real skew-symmetric matrix of rank two. Since QT Q' = T we have
T=Q 'T(Q")"!. Hence K',T+ K — K' is a rank-splitting decomposition of
T+K. |

We prove Theorem 2.16 by double induction, first on rank 7'+ K, and
then on the number of series classes of M (T + K). In summary, the above
lemmas leave us in one of the following cases.

(1) There exists a series class X of M (T + K) such that |X| is odd and
contains at least 3 elements, and there is a rank-splitting decomposition
of T+ K into mixed skew-symmetric matrices 177 + K1 and T+ K5 such
that 71 + K7 is supported by X, rank T} + K7 =|X|—1, for each x € X,
{z} is a series class of Th + Ko, and each series class of M (T2 + K32) that
is disjoint from X is also a series class of M (T + K).

(2) There exists a real V by V skew-symmetric matrix K’, with positive
rank, such that K', T+ K — K’ is a rank-splitting decomposition of T+ K.
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(3) There exists a real nonsingular matrix @, a singleton series class {z}
of M(T+ K) and a nonsingleton series class Y of M (T + K) such that
QTQ'=T, YU{x} is a series class of M(Q(T+ K)Q") and every other
series class of M (Q(T + K)Q") is a series class of M (T +K).

In the first case we can readily apply induction to prove Theorem 2.16.
Consider the second case. That is, K’ is a rank two skew-symmetric matrix
such that K/, T+ K —K' is a rank-splitting decomposition of T+ K. By 2.13,
2.15, and the fact that T+ K is critical, we see that M(T'+ K — K;) has
the same series classes as M (T + K). Again Theorem 2.16 follows easily by
induction. Now consider the remaining case. Let K’ = QKQ"; thus Q(T +
K)Q'=T+K'. By 2.14, we can add indeterminates to 7" such that 7"+ K’
is critical and rank 7'+ K’/ =rank T+ K'. By 2.13 and the fact that T+ K
is critical, M(T" + K') and M (T + K') have the same series classes. Let
X1,..., X be the series classes of M (T"+K") that have two or more elements;
we may assume that X; =Y U{z}.

Since M (T"+ K') has fewer series classes than M (T + K), we may apply
the induction hypothesis to 77+ K'. Let K{,T] + K{,...,T| + K}, be the
rank-splitting decomposition of T+ K’ given by Theorem 2.16. We may
assume that rank K = 0 since otherwise we could apply case (2). Now,
for each i € {1,...,k}, let T; be the matrix obtained from T by setting
each of the new indeterminates to zero, and let K; = Q 'K!(Q")~!. Thus,
T+ K1,..., T+ K}, is a rank-splitting decomposition of 7'+ K, and, hence,
71+ Kq,..., T, + Ki, is a rank-splitting decomposition of T+ K. It remains
to show that the matrices T; + K; are of the appropriate form.

For each i € {1,...,k}, X; supports 7] and X; is a cover of T] + K.
Then, for each i€ {2,...,k}, X; supports T; and, since QT;Q!'=T; and since
X, is a cover of K/, X; is a cover of T; + K;. Recall that, X; =Y U{z},
and, by 3.3, |Y| > 1. Moreover, Y is a series-class of M (T + K) and, since
X; supports Ty, Y supports T;. If Y is not a cover of T} + K7, then it is
straightforward to find a V' by V skew-symmetric matrix L, with positive
rank, such that L,T7 + K1 — L is a rank-splitting decomposition of T7 + K.
But, then L, T+ K — L is a rank-splitting decomposition of T+ K and we
can apply case (2). Therefore, we may assume that Y is a cover of 71 + K7,
as required.

4. Matroid parity

In this section we derive a min-max theorem for the linear matroid parity
problem.
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Matroid parity problem Given a matroid M on the ground set V, and a
partition IT = (my,...,my,) of V into pairs, find a maximum size collection
(Tiy,...,m;, ) of these pairs such that m;, U---Um;, is independent in M.

Let v (M) denote the maximum number of pairs whose union is inde-
pendent in M. A subset S of V is called a parity set if each pair in IT is
either contained in S or is disjoint from S.

The matroid parity problem is intractible (using the usual oracle based
approach to matroid algorithms) [8,9] and NP-hard [13]. More surprisingly,
Lovész [11] showed that vj(M) can be computed efficiently if M is linear
(that is, M is represented by a matrix). We shall see that, for a linear
matroid, computing v (M) can be formulated as matrix rank problem, from
which we derive a min-max theorem. A different formulation is given by
Lovéasz and Plummer [13, Theorem 11.1.2].

4.1 (Matrix formulation). Let A be a matrix with rows and columns
indexed by R and V respectively, and let II be a partition of V' into pairs.
Now let T be the Tutte matrix of the graph with vertex set RUV and edge
set II, and let

RV

R 0 A
B )

Then, 2v (M (A))=rank (T'+ K)—|V]|.

Proof. Note that T[V] is nonsingular. Therefore, V' is an independent set
of M(T+K). Let VUR' be a basis of M(T+K). Therefore, (T+K)[VUR/|
is nonsingular. By 2.6, there exists X CV such that K[(V — X)UR/] and
T[X] are both nonsingular. Since T'[X] is nonsingular, X is a parity set.
Thus V — X is also a parity set. Now, since K[(V — X)UR’] is nonsingular,
|R'|=|V—X| and A[R',V—X] is nonsingular. Hence V—X is an independent
set of M(A). Thus,

2ug(M(A) > |V - X|=|R|=|RuV|—|V]|=rank (T + K) — |V|.

Now suppose that Y CV is a parity set of size 2v;7(M(A)) that is in-
dependent in M(A). Then, there exists R’ C R such that |R/| = Y| and
A[R',Y] is nonsingular. Hence, K[R'UY] is nonsingular. Since Y is a parity
set, so is V=Y. Therefore, T[V —Y] is nonsingular. By 2.6, (T+ K)[VUR/|
is nonsingular. Hence,

rank (T + K) — |[V| > |[VUR| = |V]| = |R| = |Y| = 2v (M (A)).

The result follows from the two inequalities above. |
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Using the formulation above, we will derive a min-max theorem for linear
matroid parity. The following two lemmas provide the desired upper bound
on vi(M). (The reader is left to check the validity of these bounds.)

4.2. Let A = Ay + Ay, where A, A1, Ay are matrices whose columns are
indexed by V', then

vir(M(A)) <rank Ay + v (M(Ag)).

4.3. Let (X1,...,X)) be a partition of V into parity sets, then
) < Z {rankAR X]J .

The following theorem is a slight variation on Lovasz’ min-max theorem
for linear matroid parity [13]. The essential difference is that Lovész finds a
decomposition A=A+ Ay in which rank A=rank A; +rank As.

4.4 (Lovéasz’ min-max theorem). Let A be a matrix whose rows and
columns are indexed by R and V respectively, and let II be a partition of
V' into pairs. Now, if A=Ay + Ay and (Xq,...,X) is a partition of V' into
parity sets, then

vir(M(A)) <rank A; + Z {

rank As[R, X]J
i=1

2

Moreover, equality is attained by some such matrices A; and Ay and some
partition (X1,...,Xy) of V into parity sets.

Proof. The upper bound on vj(M(A)) follows immediately from 4.2
and 4.3; thus it remains to show that equality can be attained. We make the
following two assumptions without loss of generality.
4.4.1. If A=A1+ As and vi(M(A))=rank Ay +v(M(As2)), then A;=0.
4.4.2. For any pair 7 in II, rank A[R, | =2.

Note that the result is invariant under elementary row operations on A.
Define K and T as in Theorem 4.1.

4.4.3. No element of R is a coloop of M (T + K).
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Suppose otherwise, and let 7 € R be a coloop of M (T+K). Define matrices
Ay and As such that A=A+ As, Ay is only nonzero in the row indexed by
r, and Aj is zero in the row indexed by 7. Since r is a coloop of M (T+ K),
rank (T'+ K)[(RUV) —{r}]=rank (T+ K)—2. Then, by 4.1, we deduce that
vir(M(A))=rank A1 +v(M(Asz)). This contradicts 4.4.1, which proves the
claim.

4.4.4. Let (T1+ K1,T>+ K3) be a rank-splitting decomposition of T+ K
where T and T, are Tutte matrices supported by V, K; and Ky are real
skew-symmetric matrices, and K;[R]=0 and K;[V]=0. IfveV is a loop of
M (T), then v is a loop of M (K}).

Suppose otherwise. Thus, there exists v €V such that v is a loop of M (77)
but not of M (K7). Then, for some r€ R, (K1),,#0. Define A; and Ay such
that

R % R \%4
R 0 A R 0 A
Kl:_V(—Atl 01>3LndK2:—V<_A5 02>.

Applying row operations simultaneously to A;, As and A, we may assume
that (A1), is the only nonzero element in the column of A; indexed by wv.
Thus, (T1+K1)y,, is the only nonzero element in the row of 77+ K indexed
by v. Hence, r is a coloop of M(T; + K1). Thus, by 2.10, r is a coloop of
M (T + K). This contradicts 4.4.3, which completes the proof of the claim.

4.4.5. M(T+ K) has no coloops.

Suppose otherwise, and let v be a coloop of M(T+ K). By 4.4.3, veV.
Suppose that {v,w} is the pair in IT containing v. Define matrices K7 and T}
such that (VUR)—{v} supports T1+K1, T1[(VUR)—{v}|=T[(VUR)—{v}] and
K1 [(VUR)—{v}]|=K[(VUR)—{v}]. Now let T5:=T—T; and K9 = K—K;. Since
v is a coloop of M(T+K), (T1+K7,To+K>) is a rank-splitting decomposition
of T+ K. Now w is a loop of M(T}), so w is a loop of M(K7). But, then, w
is a loop of M(A). This contradicts 4.4.2, which proves the claim.

By applying elementary row operations to A, we may assume that, for
some basis B of M(A), A has the form

B V-B
A:=R (I A ).

Now, by 2.14, we can extend T to a Tutte matrix T such that T + K is
critical.

4.4.6. M (K +T) has no singleton series-class.
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Note that, if {v,w} is a pair in [T, then v and w are in the same series-class
of M(T+K). Therefore, if M(T+K) has a singleton series-class, then there
exists 7 € R such that {r} is a series-class of M (T + K). There exists some
v € B such that A, , is the only nonzero entry in the column of A indexed
by v. Now, since r and v are not in series in M (K +1T), there exists disjoint
subsets X,Y of (VUR)—{r,v} such that |X|+|Y|=rank(T+K), and T[X]
and K[Y] are nonsingular. However, it is easy to see that K[Y U{r,v}] is
nonsingular, so, by 2.6, (T+K)[XUYU{r,v}] is nonsingular. This contradicts
that rank (T'+ K)=|X|+|Y|; which proves the claim.

By 3.2, there exists a series-class X of M (T+K) such that | X| is odd, and
rank (T+K)[VUR, (VUR)—X|=rank (T+K)[(VUR)—X]. By 3.1, there exists
a rank splitting decomposition of T+K into mixed skew- symmetric matrices
T+ K7 and T2+K2 such that X supports T1+K, and rank (T1+K1) | X|—1.
Note that rank (Th+Ks) =rank (T+K)—| X |+1, and, since X is a series-class
of M(T+K) rank (T+K) [RUV, (RUV )—X] =rank (T+K)—| X |+1. Therefore,
rank (T + Ky) =rank (T + K)[RUV,(RUV) — X]=rank (T + K)[(VUR) — X].

4.4.7. K3[R]=0 and K3[V]=0.

Consider any pair a,b € RN X. Recall that rank (75 4+ K5) = rank (75 +
K3)[(VUR)—X], and that (T+K)[VUR,(VUR)—X]=(Ty+K>)[VUR, (VU
R)—X]. By 2.6, there exist disjoint subsets A, B of (VUR)—X such that T[A]
is nonsingular, K [B] is nonsingular, and |A|+|B|=rank (T+K)[(VUR)—X].
By 2.6 and since rank (T + K») =rank (Th + K3)[(VUR) — X], it must be the
case that rank Ks[BU{a,b}| =rank K»[B]. By 2.5, there is a unique choice
for (K3)qp such that rank K>[BU {a,b}] =rank Ky[B]. However, since V is
a cover for K, rank K[BU{a,b}| = rank K[B]. Hence (K3),p = K,p = 0.
Thus, K3[RNX]|=0. Since K[R]=0 and X supports K1, K2[R,R— X]=0.
Therefore, K5[R]=0 as claimed. A similar argument proves that K»[V]=0.

Note that, since K = K1+ K2 we also have K;[R] =0 and K;[V]=0.
Since rank (T4 K)=rank (T4 K), there exist Tutte matrices T} and T, such
that (T} + K1,To+ K3) is a rank-splitting decomposition of T+ K. By 4.4.4,
VNX is a cover of K1 and V — X is a cover of Kj. Let A;:=A[R, XNV
and Ag:=A[R,V — X]. Now let ITy and II5 be the pairs of IT in XNV and
V — X respectively. By 4.1, we see that

vir(M(A)) = vz, (M (A1) + v, (M (Ag)).

Now rank (T} + K1) =rank (T} 4+ K1) =|X|— 1. Thus, by 4.1,

v (M(A1) = 5(1X V] - 1)
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Moreover, as X supports K7, rank A[R, X NV] =rank A; <|X — V|. Then,
from 4.3, we see that

v (M (A1) = |

rank A[R, X N V]J
5 .
Now the result follows inductively by considering vz, (M (As2)). |

5. Delta-matroids

Let K be a V by V skew-symmetric matrix, and let Fx = {X C V :
rank K [X]=|X|}. Bouchet [1] observed that the setsystem (V,F ) satisfies
the following axiom:

delta-matroid exchange axiom If XY € F and x € X AY', then there exists
y€ XAY such that X A{z,y}€F.

Here X AY denotes the symmetric difference of X and Y. A setsystem (V,F)
satisfying the delta-matroid exchange axiom is called a delta-matroid. Thus,
DM(K):=(V,Fk) is a delta-matroid. The sets in F are called the feasible
sets of (V,F). Note that the feasible sets in DM (K) all have even cardinality.
A delta-matroid whose feasible sets all have even cardinality or all have
odd cardinality are called even delta-matroids. By 2.7, the maximal sets in
(V,Fk) are the bases of M(K). In fact, the maximal feasible sets in any
delta-matroid always form the bases of a matroid. Moreover, a collection of
equicardinal sets is a delta-matroid if and only if they are the bases of a
matroid.

Note that, if T' is the Tutte matrix of a graph G, then Fr is the set of
matchable sets of G. We call DM (T') the matching delta-matroid of G.

For a delta-matroid M = (V,F) and X CV, we denote MAX =(V, FAX),
where FAX = {FAX | F € F}. It is easy to see that MAX is a delta-
matroid. This operation is referred to as twisting by X, and MAX is said
to be equivalent to M. For any V by V skew-symmetric matrix K, and any
subset X of V, we call DM (K)AX a linear delta-matroid. The delta-matroid
M*:=MAV is the dual of M. It is also easy to see that M\X = (V\X,F\X)
defined by F\X ={F|FeF, FCV\ X} is a delta-matroid. This operation
is referred to as the deletion of X. The contraction of M by X means
(MAX)\ X, and is denoted by M/X. Note that evenness is invariant under
these operations.

Suppose the skew-symmetric matrix K has the form:

Y X

=x (G 5)
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where = K[Y] is nonsingular. We define a matrix K Y by

Y X
Y at a~1p
Kx¥=x (ﬂtal 'y+6ta1ﬂ>'

This operation converting K to K xY is called a pivoting. The following
theorem is fundamental to linear delta-matroids.

5.1 (Tucker [16]). Let K[Y] be a nonsingular principal submatrix of a
skew-symmetric matrix K. Then, for all SCV,

det(K * Y)[S] = det K[Y AS]/det K[Y].
The following is an immediate corollary of 5.1.

5.2. If K is a'V by V skew-symmetric matrix, and F' is a feasible set of
M(K), then M(K)AF =M (K xF).

Bouchet and Cunningham [3] introduced jump systems, which are a nice
generalization of delta-matroids. See also Lovdasz [12] for the “membership
problem” in jump systems.

6. Delta-cover problem

Consider the following problems for delta-matroids.

Intersection problem Given two delta-matroids M; and Ms on a common
ground set V', does there exist a common feasible set?

Partition problem Given two delta-matroids M; and Ms on a common
ground set V', does there exist a partition (Fj,Fy) of V' such that Fj
is feasible in M7 and Fy is feasible in Ms?

Parity problem Given a delta-matroid M on a ground set V', and a partition
II of V into pairs, does there exist a feasible set F' that is the union of
pairs in I17

The intersection problem on M; and Ms is equivalent to the partition
problem on M; and M AV. Now consider the parity problem on M and IT. A
subset of V' is called a parity set if it is the union of pairs in I1. The parity sets
are in fact the feasible sets of a (linear) delta-matroid M;. Thus the parity
problem is a special case of the intersection problem. Conversely, consider
the intersection problem on M; and M,. Suppose that V :={1,...,n} and
define V':={1',...,n'} and IT:=({1,1'},...,{n,n'}). Let M) be a copy of M>
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on the ground set V'. Now M;® M, is the delta-matroid on ground set VUV’
whose feasible sets are the union of each feasible set of M7 and each feasible
set of MJ. Tt is straightforward to check that the intersection problem on M
and My is equivalent to the parity problem on M; @& M) and IT. Therefore,
the three problems mentioned above are all equivalent. As they contain
matroid parity, they are intractible in general. However, they can be solved
for linear delta-matroids; see [6]. Bouchet and Jackson [4] have extended
many of Lovasz’s results on linear matroid matching to the linear delta-
matroid parity problem. Their methods are elegant and provide much insight
into the problem, but they fall short of providing a good characterization.

It is often more convenient to work with optimization problems than de-
cision problems. A natural generalization of the parity problem is considered
in [6]. The following natural generalizations of the partition problem were
proposed by Bouchet [2].

Delta-cover problem Given two delta-matroids My = (V,F1) and My =
(V,Fs), find F} € F1 and Fy € Fo maximixing |F} AFy|.

Disjoint union problem Given two delta-matroids M; = (V,F;) and Ma =
(V,Fs), find disjoint sets F} € F1 and Fh € Fo maximixing |F} U Fy|.

Let F1AFy denote {F\AF, : F) € Fy, Fy € Fo}, and F{UF;5 denote
{F\UFy: F € F1, Fy € Fy, FiNFy=0}. Now let M; AM, denote (V,F1 AF),
and let M7UM, denote (V,F1UF3). Bouchet and Cunningham [3] proved
that M1AM2 and M;UMy are delta-matroids. If M; and Ms do not con-
tain disjoint feasible sets, then the disjoint union problem is infeasible. The
following result shows that, if M; and M, have disjoint feasible sets, then
the disjoint union problem and the delta-cover problem are equivalent. See
Murota [14] for a simple direct proof.

6.1. Let My = (V,F1) and My = (V,F3) be delta-matroids that contain
disjoint feasible sets. Then ,

max(|X| : X € F1AF,) =max(|X| : X € F1UF,).

Let K be aV by V skew-symmetric matrix, and let T' be a Tutte matrix.
By 2.6,
rank (T + K) = max(|X| : X € FgUFr).

Therefore, computing rank (T'+ K) is a disjoint union problem (or, equiva-
lently, a delta-cover problem). Now consider the delta-cover problem for a
pair of linear delta-matroids DM (K1)AX, and DM (K2)AX,. We will show
how this can be formulated as computing rank (T'+ K) for an appropriate
choice of K and T. First, let X =X; AX5 and note that

(DM (K1)AX)A(DM (K3)AXy) = DM (K)A(DM (K3)AX).
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Thus it suffices to consider the delta-cover problem for M;:= DK (K;) and
My:=DM (K3)AX.

Let V={1,...,n}, V'={1,...;n'} and V":={1",...,n"}. For ACV, let
Al:={2' :x€ A} and A”:={z2" : x€ A}. Now, let K} be a copy of K2 on V',
then define

V V/ V// _ X//

1% K 0 0
K=V 0 K} 0 .
v/ —x"\0 0 0

Now let G be a graph with vertex set VUV’ U (V" — X”) and edge set
{#i' :ieXYulit" :ieV-X}U{i'i" :ieV—X}, and let T be the Tutte
matrix of G. We leave the proof of the following result as an exercise.

6.2. max(|FyAFy|: FL € Fg,, Fye (Fi,AX))=rank (T+K)-2|V |+ X|.

A min-max theorem for the delta-cover problem is given in [6]. This the-
orem can be proved using the matrix formulation above, and the techniques
developed in Sections 2 and 3. We have chosen to omit the derivation as it
is long and technical. Instead, in the next section, we will consider a special
case of the delta-cover problem, for which, we shall derive a new min-max
theorem.

7. The diameter of a delta-matroid

Let M =(V,F) be a delta-matroid. We define the diameter of M, denoted
diam(M) or diam(F), to be max(|F1AF;| : Fy,Fy € F). Determining the
diameter of M is obviously a delta-cover problem. Note that, for any X C V|
diam(M)=diam(M AX). That is, the diameter is invariant under twisting.
For a general delta-matroid, determining the diameter is intractible; see [5].
However, there is an efficient algorithm [6] for computing the diameter of a
linear delta-matroid. It is not known whether the diameter can be efficiently
computed for even delta-matroids, but we conjecture otherwise. We prove a
new min-max theorem for the diameter of a linear delta-matroid.

7.1. Let K=K+ Ko where K1, K9 and K are skew-symmetric matrices.
Then,

diam(Fg) < diam(Fg,) + diam(Fg,).
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Proof. By 6.1, there exist disjoint sets Fy, Fy € F such that diam(Fg)=
|F1|+ | F2|. Therefore,

diam(F k) = rank K[Fi] + rank K[F5]
< (rank K;[F1] + rank Ks[F1]) + (rank K;[F3] 4 rank Ks[Fb])
= (rank K [Fi] + rank K;[F5]) + (rank K5[F;] 4 rank K>[F5])
< diam(Fg,) + diam(Fx,),

as required. 1

7.2. If K is a' V' by V skew-symmetric matrix, X is a cover of K, and | X|
is odd, then

diam(Fg) < |X|+ 2rank K[X,V — X] — 1.

Proof. By 6.1, there exist disjoint sets F;, F € F such that diam(Fg)=
|F1|+ |F»|. Therefore,

diam(F ) = rank K[F}] + rank K[F5]
< (rank K[Fy, Fi N X]| + rank K[F}, F} — X))
+ (rank K[F, Fo N X]| 4 rank K[Fy, Fy — X])
< (JFi N X| +rank K[X,V — X])
+(|Fo N X |+ rank K[X,V — X])
< | X| + 2rank K[X,V — X]).

However diam(F ) is even and | X |4 2rank K[X,V — X] is odd. Therefore,
diam(F ) <|X|+2rank K[X,V — X]—1, as required. 1

The following result is the main theorem of this section.

7.3. Let K be a V. by V skew-symmetric matrix. For any set F € Fp,
disjoint odd subsets X1,..., X, of V, and V by V skew-symmetric matrices
Ky,...,K}, such that Kx =K +---+ K}, and, for i=1,...,k, X; Is a cover
of K;, we have

k
diam(F ) < > (|| + 2rank K;[X;,V — X;] — 1).
i=1

Moreover, this bound is attained for some choice of F, X1i,...,X}, and
Ky,....,K}.
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We now outline the proof of Theorem 7.3. The inequality follows easily
from 7.1 and 7.2. Thus, it remains to prove that equality is attained; the
proof is by induction on diam(F k). Firstly, suppose that we can reduce the
diameter by deleting or contracting a single element. By possibly pivoting,
we may assume that diam(DM (K)\{z}) =diam(DM (K))—2. Now let K; be
the matrix obtained from K by changing the entries in the row and column
indexed by z to zero, and let Ko:=K — K. Note that, diam(DM (K3))=2
and that diam(DM (K))=diam(DM (K))+diam(DM (K3)). Now let Xo:=
{z}. Thus, X» is a cover of K3 and diam(DM (K2))=|Xa|+2rank K[ X,V —
Xs]— 1. Now Theorem 7.3 follows inductively. Henceforth, we assume that
we cannot reduce the diameter by deleting or contracting a single element.
This gives the following conditions.

7.3.1. For any x € V there exist Fy,F» € Fi such that x ¢ Fy UFy and
dlam(fK):]FlAF2|

7.3.2. For any x € V there exist Fy,Fs € F such that x € F; N Fy and
dlam(]:K) == ’F1AF2|

Since ) € F, we have diam(F ) > rank K. Suppose that diam(Fg) =
|F1AF,|, where Fi,Fy € Fg. Now, since F1AF, € Fgup, we have
diam(F g+, ) =rank K « F;. Consider replacing K by K *F}.

7.3.3. We assume that diam(F i) =rank K.

We now formulate the problem of computing diam(F k) as a matrix rank
problem. This formulation is a special case of the one given in the previous
section, but we restate it for clarity.

Let V. ={1,....n}, V' ={l',....n}, V= {1",...,n"}, and let V :=
VUV'UV". For ACV, let A":={a’:x€ A} and A”:={2" : z€ A}. Now, let
K’ be a copy of K on V'’ and let K” be a copy of K on V”. Define

V V/ V//

V. /0 0 0
K=V |0 K 0 |.

V// 0 O K//

Now let G be a graph with vertex set V and edge set {ii’ : i€V }U{ii" : i€V},
and let T" be the Tutte matrix of G.

7.3.4. diam(F)=rank (T'+K)—2|V|. Therefore, rank (T + K ) =rank K +
2|V].
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The next claim follows easily from 7.3.1 and 7.3.2 and from the construc-
tion of T+ K.

7.3.5. M(T+ K) has no coloops. Moreover, for any i€V, i i and i’ are
all in the same series-class of M (T + K).

We do not see how to obtain Theorem 7.3 as a direct corollary of Theo-
rem 1.2, but rather, we prove the result using the methods of Section 3. To
do this we need to show that the block diagonal structure of K is preserved
in the decomposition. Toward this end, we require the following extension
of 3.1. The proof is a minor variation of the proof of 3.1, and is left to the
reader.

7.3.6. Let T+ K be aV by V mixed skew-symmetric matrix such that
T+ K is critical. Moreover, let X be a series-class of M (T + K') such that
rank (T+ K)[V,V — X]| =rank (T + K)[V — X], and |X| is odd. Then there
exists a rank-splitting decomposition 11+ K1, 15+ Ky of T+ K such that

i. T+ Ky and T5 + Ko are V' by V mixed skew-symmetric matrices and,
for each set S CV such that K[S,V —S] =0, we have K;[S,V —S] =
K]S,V —S]=

ii. X supports Th + Ky and rank Ty + K; =|X|—1,

iii. for each x € X, {x} is a series-class of M (T, + K>), and

iv. if'Y is a series class of M (Ty+ K3) that is disjoint from X, then Y is a
series-class of M (T + K).

It is also necessary to maintain the symmetry between ¥V’ and V" in the
decomposition of T'+ K, however this is quite straightforward.

7.3.7. Let Ky beaV by 1% skew-symmetric matrix such that the nonzero
entries of Ky are all in K[V'] or in K;[V"). If Ki #0 then rank T+ K <
rank K| +rank (T + K — K1).

Proof. Suppose to the contrary that Ki,T+K—-K, is a rank-splitting
decomposition of T+ K. We can find a rank-splitting decomposition K! 1s f(
of K such that K{[V"] =0 and K{[V']=0. By possibly swapping V' and
V" we may assume that K}[V’]#0. Now, Kl,T—l—K K! is a rank-splitting
decomposition of T+ K. However, rank (T+ K — Kl) >rank T[VUV'] +
rank (K — Kl)[V”]—rankT[VUV’]—l—rankK-rankT—l—K This contradiction
proves the result. |

In order to use induction to prove 7.3, we need to consider a slightly
broader class of matrices. We now describe the type of matrices that will be
used in the decomposition.
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Let L be a V by V skew-symmetric matrix, and let L' and L” be copies
of L with row and column labels V’ and V”. Now define

V V/ V//

V. /0 0 0
L=V [0 L 0 |.

V// O O L//

Now, for X CV, let Gx be a graph with vertex set VUV'UV" and edge set
{ii' - ie X}U{ii" : 1€ X}, and let Tx be the Tutte matrix of Gx. We are
interested in mixed skew-symmetric matrices of the form T'x 4+ L such that

i. rank (T'x + L)=rankTy +rank L,
ii. M(Tx+ L) has no coloops, and, for each z€V — X, {z}, {2'}, and {2"}
are all series-classes.

Note that our matrix T+ K has this form. Suppose that we have a rank-
splitting decomposition of T+ K into such matrices, and let Ty + L be one
such matrix in the decomposition. Note that, by 7.3.7, Tx #0. Moreover,
by 7.3.7 and 2.2 it is easy to prove the following result.

7.3.8. X is a cover of L.

7.3.9. If XUX'UX" is a series-class of M(Tx + L), then |X| is odd and
rank Ty + L=3|X |+ 2rank L[ X,V — X] —1.

Proof. If XUX'UX" is a series-class of M (Tx + L), then rank (T + L) =
rank (Tx +L)[V,V —(XUX'UX")]+3|X|-1=2rank L[ X,V - X]|+3|X|-1. 11

If each of the matrices in the rank-splitting decomposition have the form
described in 7.3.9, then 7.3 follows easily. Thus we need to consider the case
that X UX’UX" contains more than one series-class of M (T +L). In this
case Tx 4+ L can be further decomposed by 3.3 and 7.3.6; the details are left
to the reader. This completes our outline of the proof of 7.3.

8. A conjecture of Bouchet and Jackson

In this section we use 7.3 to prove a conjecture of Bouchet and Jackson.
This conjecture provides an alternative min-max theorem for diam(F ).
Let My =(V1,F1) and Ms=(V5,F>) be delta-matroids on disjoint ground
sets. The direct sum of My and My is the delta-matroid My @ Ms on ground
set V1 UV, and with feasible sets {Fy UF, : Fy € Fy, Fy € Fo}. Given any
delta-matroid M = (V,F) there is a unique maximal partition (V1,..., V)
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of V and delta-matroids Mji,..., M} with ground sets Vi,...,V}, respectively
such that M = M, @ ---® M. (For a delta-matroid represented by a skew-
symmetric matrix K the sets V,...,V, are the vertex sets of the connected
components of G(K).) We let odd(M) denote the number of odd sets among
Vi,...,Vi. The following results are straightforward.

8.1. If M is an even delta-matroid, then diam(M)<|V|—odd(M).

8.2. If N=(V,F) is a delta-matroid and Y CV such that N\Y and N/Y
both contain feasible sets, then diam(N \Y') <diam(N/Y)+2|Y|.

These bounds on the diameter combine to give the following bound.

8.3. If M and N are even delta-matroids such that M = N \Y, then
diam(M) <|V|—(odd(N/Y)—2|Y]).

We will prove the conjecture of Bouchet and Jackson, personal commu-
nication, that the bound given by 8.3 is attained for a linear delta-matroid.

8.4. If K is a V. by V skew-symmetric matrix, then there exists a skew-
symmetric matrix L with rows and columns indexed by V UY such that
DM(K)=DM(L)\Y and diam(DM (K))=|V|—(odd(DM(L)/Y)—2|Y)).

Proof. If M and N are delta-matroids such that M =N\Y and S is a set
of elements of M, then (MAS)=(NAS)\Y. Hence the conclusion of the
theorem is invariant under twisting in DM (K). Therefore, by Theorem 7.3
and possibly twisting, we may assume that there exist disjoint odd subsets
Xq,..., X of Vand V by V skew-symmetric matrices Ki,..., Ky such that
K=K+ -+ K}, X; is a cover of K; for each 7, and

k
diam(Fg) = Z(’XJ + 2rank KG[X;,V — X;] —1).
i=1

If there exists some element € V—(X U---UX}), then we can define X1 =
{z} and K}, =0. Whence, we may assume that (X1,...,X}) is a partition of
V. Let Y1,...,Y\ be pairwise disjoint sets such that |Y;|=rank K;[X;,V —X}]
for each ¢. Now, for each i, let B; be an X; by ¥; matrix whose columns span
the column space of K;[X;,V — X;]. Now let Y=Y, U---UY} and let L be
the skew-symmetric matrix with rows and columns indexed by V UY such
that L[V] =K, L[X;,Y;] = B; for each i, and all other entries are zero; see
Figure 1.

For each ¢ let L; be the skew-symmetric matrix with rows and columns
indexed by VUY such that L;[V]=K;, L;|X;,Y;]=B;, and all other entries
are zero. Note that L=Lj+---+ L, X; is a cover of L; and rank L;[X;, (VU
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Figure 1. L

Y) — X;] =rank K;[X;,V — X;]. Therefore, it follows that diam(DM (L)) =
diam(DM(K)). We claim that diam(DM(K)) = |V|— (odd(DM(L)/Y ) —
2|Y|). If Y is empty then L = K and K;[X;,V — X;] =0 for each i, so the
claim follows. We prove the claim inductively by contracting the elements
of Y one at a time. Suppose that y € Y7, and let x € X such that L, #0.
By scaling, we may assume that L,, = 1. Note that diam(DM(L)/{y}) =
diam(DM (L*{x,y})\{y}). Let a denote the vector L[(VUY)—{z,y},x],
let b denote the vector L[(VUY)—{x,y},y|, and let D=L[(VUX)—{z,y}].

Thus we have
T
z /0
L=y| -1

Q

T O~ e
bll
< &,

v

and
z )
z /0 -1 bt
Lx{z,yt=y| 1 O —a® .
-b a D—abt+bat

Let W denote Lx{z,y}[(V UX)—{y}]. Now, for each i € {1,...,k} let q;
denote the vector L;[(VUY) —{z,y},x], let

T

t
W= T 0 b
V7 \=b Li[(VUY) = {z,y}] — a1b* + bat )’
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and, for i#£1, let

X

z (0 0
Wii= (o Li[<vuy>—{x,y}]—aibt+ba¥>'

Thus W = Wy +--- + Wj. Note that, for ¢ # 1, all nonzero entries of a;
are indexed by elements of X;, and all nonzero entries of b are indexed by
elements of X;. Then, it is straightforward to show that, for each i#£1, X is
a cover of W; and rank W;[X;, (VU(Y —{y}))—X;|=rank L;[X;, (VUY)—-X;].
Moreover, X is a cover of Wj and, by 2.1, rank W1 [ X, (VU(Y —{y}))—X1|=
rank L1 [ X1, (VUY)—X;]—1. Consequently, diam(DM (W))=diam(DM (L))—
2. Repeating this for the other elements of Y, we obtain diam(DM (L)/Y )=

diam(DM (K))—2|Y|. Moreover, diam(DM (L)/Y)=|V|—odd(DM(L)/Y).
Thus, diam(DM (K))=|V|—(odd(DM(L)/Y)—2|Y|), as required. 1
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