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1. Introduction

In this paper we consider classes of matroids that are closed both under taking minors and under
isomorphism; for convenience we shall simply refer to such classes as minor-closed. Our main result,
combined with earlier results of Geelen and Whittle and of Geelen and Kabell, yields the following
theorem, conjectured by Kung [4, Conjecture 4.9].

Theorem 1.1 (Growth rate theorem). If M is a minor-closed class of matroids, then either

(1) there exists c € R such that |[E(M)| < cr(M) for all simple matroids M € M,

(2) M contains all graphic matroids and there exists ¢ € R such that |E(M)| < c(r(M))? for all simple ma-
troids M € M,

(3) thereis a prime-power q and ¢ € R such that M contains all GF(q)-representable matroids and |E(M)| <
cq"™ for all simple matroids M € M, or

(4) M contains all simple rank-2 matroids.

™ This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and
the Marsden Fund of New Zealand.

0095-8956/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jctb.2008.08.006


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jctb
http://dx.doi.org/10.1016/j.jctb.2008.08.006

J. Geelen et al. / Journal of Combinatorial Theory, Series B 99 (2009) 420-427 421

We follow the notation of Oxley [5]. A rank-1 flat is referred to as a point and a rank-2 flat is
referred to as a line. The number of points in M is denoted by €(M). For a class M of matroids and
integer k > 0, we let h(M, k) be the maximum of €(M) among all rank-k matroids M € M. Thus, if

G is the set of graphic matroids, then h(G, k) = (kgl) and, for a prime-power g, if £(q) is the set of

. k_q
all GF(q)-representable matroids, then h(£(q), k) = ‘ZT].

We begin by recounting two significant partial results towards the growth rate theorem. The first
was proved by Geelen and Whittle [2].

Theorem 1.2. If M is a minor-closed class of matroids, then either

(1) there exists ¢ € R such that, h(M, k) < ck for all k,
(2) M contains all graphic matroids, or
(3) M contains all simple rank-2 matroids.

The second result was proved by Geelen and Kabell [1] and in part, by Kung [4, Theorem 6.6].
Theorem 1.3. If M is a minor-closed class of matroids, then either
(1) there exists a polynomial p (k) such that, h(M, k) < p(k) for all k,
(2) there is a prime-power q and ¢ € R such that M contains all GF(q)-representable matroids and

h(M, k) < cg® for all k, or
(3) M contains all simple rank-2 matroids.

In this paper, we bridge the gap by proving the following theorem.
Theorem 1.4. If M is a minor-closed class of matroids, then either
(1) there exists c € R such that, h(M, k) < ck? for all k,

(2) h(M, k) >2% —1 forall k, or
(3) M contains all simple rank-2 matroids.

We conclude the introduction with two interesting corollaries of the growth rate theorem. The
second of these was already known; see Kung [3].

Corollary 1.5. Let q be a power of a prime p and let M be a minor-closed class of GF(q)-representable ma-
troids. If M does not contain all GF(p)-representable matroids, then there exists a constant ¢ € R such that
h(M, k) < ck? for all k.

Corollary 1.6. Let M be a minor-closed class of R-representable matroids. If M does not contain all simple
rank-2 matroids, then there exists a constant ¢ € R such that h(M, k) < ck? for all k.

2. Excluding a line

Kung [4] proved the following theorem.

o 1

Theorem 2.1. For any integer | > 2, if M is a matroid with no Uj ;»-minor, then € (M) < ——

Let /(I) denote the set of all matroids with no Uj j;,-minor. Thus h(U (1), k) < ’;‘:11. Note that, when
[ is a prime-power, this bound is tight since £(I) CU(l). However, when [ is not a prime-power, the
growth rate theorem gives an asymptotically tighter bound of cq¥, where q is the largest prime-power
less than or equal to .

We remark that Kung [4] has made a stronger conjecture.
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Conjecture 2.2. [f| > 2 is an integer and q is the largest prime-power less than or equal to I, then h(U (1), k) =
% for all sufficiently large k.

Conjecture 2.2 is the case of Conjecture 4.9(a) in [4] when the set of excluded minors is empty.
The general form of Conjecture 4.9(a) can be restated as follows. Let M be a minor-closed class not
containing all rank-2 simple matroids. If £(q) € M for some prime power q and g is maximum with
this property, then h(M, k) = qqk*l for sufficiently large k. This conjecture is too good to be true. We
construct a counterexample M (using g-lifts or g-cones). Let ¢ be a prime-power, let n > 2 be an
integer, and let F be the set of all pairs (M, e) consisting of a GF(q")-representable matr01d M and
an element e € E(M) such that M/e is GF(q)-representable. Now let M be the set of all matroids
M \ e where (M,e) € F. It is straightforward to verify that every extremal rank-k matroid M’ € M
contains a hyperplane H and an element e’ ¢ H such that M'|H = PG(k — 2, q) and, for each f € H,
the pair (¢/, f) spans a (q" + 1)-point line in M’. By adding an element e in parallel with e’, we obtain
associated pair (M, e) € F. Therefore,

k—1
-1
1

h(M, k) = —

Our proof of the growth rate theorem requires a bound on the number of hyperplanes in a rank-k
matroid in U (l). If M is GF(q)-representable, then, by considering PG(r — 1, q), we see that M has at
most qqk%]l hyperplanes. On the other hand, when M € /(l), we cannot prove a comparable bound, so

we settle for the following crude upper bound from [2]; we include the short proof for completeness.

Lemma 2.3. Let k > 1 and | > 2 be integers and let M € U (l) be a simple rank-k matroid. Then, M has at most
k=1 hyperplanes.

Proof. Let n = |E(M)|; thus n < —11 < I¥. Each hyperplane is spanned by a set of k — 1 points, so the
number of hyperplanes is at most (,",) <n*~1 <KD o

3. Local connectivity

Let M be a matroid and let A, B C E(M). We define ny (A, B) =ry(A) +ry(B) — ry(A U B); this
is the local connectivity between A and B. This definition is motivated by geometry. Suppose that M
is a restriction of PG(k,q) and let F4 and Fp be the flats of PG(k, q) that are spanned by A and B,
respectively. Then F4 N Fp has rank ry; (A, B).

The following properties are intuitively obvious for representable matroids, and follow by elemen-
tary rank calculations for arbitrary matroids.

(1) If A,BC E(M) and A’ C A, then iy (A’, B) <Mu(A, B).
(2) If A and C are disjoint subsets of E(M), then ry,c(A) =1y (A) — My (A, ©).
(3) If A, B, and C are disjoint subsets of E(M), then My,c(A, B) =nm (A, B) —ny (A, 0).

We say that two sets A, B C E(M) are skew if rmy;(A, B) = 0. More generally, the sets Aq,...,A; C
E(M) are skew if ryp(Aq) +--- +ry(Ar) =rm (A1 U--- U Ap).

4. Books and dense minors

A line is long if it has at least 3 points. For sets A and B we let A x B denote {(a,b): ac A, b < B}.
We use the following lemma to identify a dense minor.

Lemma 4.1. Let k > 1 be an integer and let n = k2X. Let F1 and F; be skew flats in a matroid M such that
M|Fq is isomorphic to M(Ky), r(F2) = k, and each pair of points in F{ x F, spans a long line. Then M has a
rank-k minor N with € (N) > 2¥ — 1.
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Proof. We may assume that M is simple and that r(M) =ry(F1 U F). We may also assume that F;
is a k-element independent set in M and that M|F{ = M(G), where G is isomorphic to K. Let C
denote the set of all subsets of F, with at least two elements. Since n > k|C|, there exists a collection
(Px: X €C) of vertex-disjoint paths in G where each path Px has length |X|. For each X €C, let ex
be the edge of G that connects the ends of Py, and let ¢x : X — E(Px) be an arbitrary bijection. For
each x € X, let fy € E(M) — (F1 U F) be an element spanned by {x, ¢x(x)}, and let Sx = {fx: x € X}.
Finally, let S denote the union of the sets (Sx: X € C) and let N be the restriction of M/S to the
flat spanned by F,. Note that the sets F, and (Px: X € C) are skew and, for each X € C, the set Sx
is contained in the flat of M that is spanned by F, U Px. Moreover, F; is independent in N and, for
each X € C and each x € X, the elements x and ¢x(x) are in parallel in N. Therefore, for each X €C,
the set X U{ex} is a circuit of N. Hence €(N) > |F3| + |C| = 2X — 1, as required. O

We call a matroid M round if each cocircuit of M is spanning. Equivalently, M is round if and only
if E(M) cannot be written as the union of two proper flats. The following properties are straightfor-
ward to check:

1. If M is a round matroid and e € E(M) then M/e is round.
2. If N is a spanning minor of M and N is round, then M is round.

Let M be a matroid. A flat F of M is called round if the restriction of M to F is round. Each
rank-one flat is round. Moreover, a line is round if and only if it is long. A sequence (Fq, F1, ..., Ft)
is called a k-book if Fg is a rank-k flat of M and Fq, ..., F; are distinct round rank-(k + 1) flats of M
each containing Fy.

The following lemma is the main result of the section.

Lemma 4.2. There exists a function fi : Z2 — Z such that, for integers 1, k > 2, if (Fo, F1, ..., Fr) isa (k+1)-
book in a matroid M € U(l) and t > f1(l, k)r(M), then M has a rank-k minor N with € (N) = 2% — 1.

Proof. By Ramsey’s Theorem, there exists a function R : Z2 — Z such that, for integers n, c > 1, if we
colour the edges of a clique on R(n, c) vertices with ¢ colours, then there is a monochromatic clique
on n vertices. By Theorem 1.2, there exists a function A : Z2 — Z such that, for integers [,n > 2, if
M e U(l) is a matroid with e(M) > A(l,n)r(M), then M has an M(K,)-minor.

Let I,k > 2 be integers. Now let n3 = k2K, n,=n3+3, = R(n’2,12k +1)+1,and ny =12+
R(ny, (kl_z:l)) Finally we let fi(l, k) = A(l, ny).

Now consider a matroid M € U/(l) containing a (k + 1)-book (Fo, F1, ..., Ft) with t > f1(, k)r(M).
By way of contradiction, we assume that, for each rank-k minor N of M, we have €(N) < 2k — 1. If
follows easily that, for each rank-(k + 1) minor N of M, we have €(N) <2k — 1) + 1 < I2k.

4.2.1. There is a minor My of M and a set X; C E(My) such that

(1) Fo €S E(My) and v, (Fo) = k+1,
(2) (M1/Fo)|X1 = M(Kn,), and
(3) foreach e € Xj, the flat of M1 that is spanned by Fo U {e} is round.

Proof of 4.2.1. For each i € {1,...,t}, choose x; € F; — Fg. Now let X = {x1,...,x} and let N =
(M/Fp)|X. Note that €(N) > A(l,n1)r(N). Therefore there is a minor, say N\ D/C, of N that is isomor-
phic to M(Kp,). The claim follows by taking M1 := M/C and X :=E(N\ D/C). O

4.2.2. There is a minor My of M1, a set Xo € E(M>), and a (k + 1)-element independent set Y of M3 such
that

(1) (M2/Y2)1X2 = M(Kn,), and
(2) each pair of elements in X, x Y, spans a long line in M.
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Proof of 4.2.2. Let n’ = R(ny, (,ﬁk])), thus ny = 12X + n’. Note that Fo has rank-(k + 1) and, hence, it

spans at most 12X points. We begin by repeatedly contracting elements from X; if doing so increases
the number of points spanned by Fy; the number of points that we contract will be at most 12X,
Therefore, there is a minor M, of M7 and a set X’ C X; such that:

Fo € E(M3) and ry, (Fo) =k +1,

(M2/Fo)|X" = M(Kp),

for each e € X/, the flat of M, that is spanned by Fo U {e} is round, and

for each element a € X’ and each element b € cly, (Fg U {a}) — clm, (Fo) that is not in parallel
with g, there is an element ¢ € cly, (Fo) such that {a, b, c} is a circuit of M.

NGNS

(1
(2
(3
(4

Let F’ = cly,(Fp). We may assume, for notational convenience, that M, is simple. Thus |F’'| < 12k,
For each element a € X', let B, be a basis of the flat spanned by {a} U F’ with {a} C B, and with
Ba N F' =@ (such a basis exists since the flat is round). By the last property of M, above, there is a

basis B, of F’ such that, for each b € B, — {a}, there is an element c € F" such that {a, b, c} is a circuit.
k

Note that Bj is a (k + 1)-element subset of F’ and the number of such subsets is at most (k’il)

Therefore, by Ramsey’s Theorem, there is a basis Y, of F’ and a set X, € X’ such that (My/Fp)| X2 =

M(Kpn,) and, for each e € X3, we have B, =Y,. Thus M>, X, and Y, satisfy the claim. O
4.2.3. There is a set X}, C X, such that

(1) (M2/Y2)|X) = M(Ky), and
(2) M, (X3, Y2) < 1.

Proof of 4.2.3. Recall that (M/Y32)|X2 = M(G) where G is a graph that is isomorphic to Kj,. Let
v € V(G) and let C be the set of edges of G that are incident with v. Note that Y, U C spans X,
in M. Define a partition (So, S1, ..., Sm) of Xa such that Sg =cly,(C) N X2 and (S1,..., Sy) are the
parallel classes of (M2|X2)/So. The flat spanned by Y, in My /C has rank k+ 1 and at least m points,
so m < I2¥. By definition, ny = R(n, 124+ 1)+ 1. So, by Ramsey’s Theorem, there is a set X, CE(G—v)
and an element j € {0, ..., m} such that (My/Y3)|X}, = M(I(n/z) and X} € S;. Applying identities from
the previous section, we get

M, (X5, Y2) <M, (S;UC, Ya)
<Mmyyc(Sj, Y2) + M, (C, Y2)
=Mpy/c(Sj,Y2)

<TMy/c(S))

<1,

as required. O

4.2.4. There is a minor M3 of M3, a set X3 C E(M3), and a k-element independent set Y3 of M3 such that

(1) M3|X3 = M(Kn,),
(2) each pair of elements in X3 x Y3 spans a long line in M3, and
(3) X3 and Y3 are skew in M3.

Proof of 4.2.4. Recall that (M2/Y2)|X}, = M(G) where G is a graph that is isomorphic to K,.,/Z. More-
over, My, (X5, Y2) < 1. We may assume that My, (X5, Y2) =1 otherwise the claim holds. It follows
that ry, (X5) =ru, v, (X5) + 1. Now it is routine to show that there is a triangle T of G that is in-
dependent in M. Let a, b, c € V(G) be the three vertices in G that are incident with edges in T, let
X3:=E(G —{a,b,c}), and let M3 =M;/T. Now Ap, (T, Y2) =1y, (T) —rm,v,(T) =1 and, hence,
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Mt (X3, Y2) < Mayy7 (X — T, Y2)
=, (X5, Y2) — M, (T, Y2)
=0.

Therefore X3 is skew to Y, in M3. Moreover, Y, has rank k in Ms; let Y3 C Y, be a maximal inde-
pendent set in M3. Then M3, X3, and Y3 satisfy the claim. O

The result now follows by Lemma 4.1. O
5. Building a book

In order to build an appropriate book, we use the methods of [2]; in fact, this section is taken
almost verbatim from that paper.

Lemma 5.1. For integers o« > 1 and [ > 2, if M € U(l) is a matroid with € (M) > ot(r(Mz)H), then there is a
minor N of M that contains > (lf—l)zr(N)e(N) long lines.

Proof. We may assume that M is simple. For each v € E, let N, = M/v. Inductively, we may assume
that €(Ny) < a("5") for each v € E. Note that, r(N,) =r(M) — 1 and ("™)*") = ("") +-r(M). So
€(M) —€(Ny) > ar(M) + 1. Since M € U(l), each long line in M has at most [ + 1 points; so when we
contract an element the parallel classes contain at most | elements. Thus v is on at least w long

lines. So the number of long lines is at least ‘,"(,rfr’\f))e(M). O

The following lemma is proved in [2].

Lemma 5.2. Let M be a matroid, let F1 and F, be round flats of M such that ry;(F1) = ry(F2) = k and
rm(F1 U Fy) =k+ 1, and let F be the flat of M spanned by F1 U Fo. If F # F1 U F; then F is round.

Let F be a set of round flats in a matroid M. A rank-k flat F is called F-constructed if there exist
two rank-(k— 1) flats Fy, F, € F such that F = cly(F1 UF3) and F # F{ U F;. Thus, the F-constructed
flats are round. We let F* denote the set of F-constructed flats.

Most of the remaining work is in the proof of the following technical lemma.

Lemma 5.3. There exists an integer-valued function fo(k, o, 1) such that, for all integers k > 2, o > 1, and
[>2,if M eU(]) is a matroid with e (M) > fa(k, o, l)(r(Mz)H), then there exists a minor N of M and a set F
of round rank-(k — 1) flats of N such that | F+| > ar(N)|F|.

Proof. Let f(2, o, 1) =a(+ 1)2, and, for k > 2, we recursively define

f2(k+La,l):fz(k,l(kﬂ)za+lk,l).

The proof is by induction on k. Consider the case that k = 2. Now, let M € U/(l) be a simple matroid
with [E(M)| > f2(2, «, l)(r(MZ)”). By Lemma 5.1, there exists a simple minor N of M with more than
ar(N)e(N) long lines. Now, if F is the set of points of N, then F7 is the set of long lines of N and
|F*| > ar(N)|F]|, as required.

Suppose that the result holds for k =n and consider the case that k =n + 1. Now let M € U(l)
be a simple matroid with e(M) > B(n + ],a,l)(r(M2)+l). We let o’ = M+D’q 4+ 7. By the induction
hypothesis there exists a minor N of M and a set F of round rank-(n — 1) flats of N such that
|F*| > a'r(N)|F|. We may assume that no proper minor of N contains such a collection of flats. We
may also assume that N is simple. We will prove that |(FT)*| > ar(N)|FT|.

Now, for each v € E(N), let N, = N/v. Let F, denote the set of rank-(n—1) flats in N, correspond-
ing to the set of flats in F in N. That is, if F € F and v ¢ F, then cly, (F) € Fy. By our choice of N,
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|F*| > «'r(N)|F|, and, by the minimality of N, |F;| < &'r(Ny)|Fy| < &’'r(N)|Fy| for all v € E(N).
Thus,

(175 = |(FDT)) > 1N (171 = 1 ).

Let

A=Y (1FI- 1A ] :veEN)) and At =>"(|FF - [F)T|: veEN)).

This proves:
531. AT > a'r(N)A.

Consider a flat F € FT. By definition there exist flats F{, Fp € F such that F =cly(F; U F») and
there exists an element v € F — (F{ U F). Now cly, (F1) = cly, (F2), so these two flats in F are
reduced to a single flat in . This proves:

532. A>|FH|.

Now, for some v € E(N), compare FT with (F,)*. There are two ways to lose constructed flats;
we can either contract an element in a flat or we contract two flats onto each other. Firstly, suppose
Fe F*™ and v € F. Note that F — {v} only has rank n — 1 in N/v, so it will not determine a flat in
(F,)T. Now F has rank n and, by Theorem 2.1, a rank-n flat contains at most I;L;]] < I" points; we
destroy F if we contract any one of these points. Secondly, consider two flats Fq, F; € F* that are
contracted onto each other in Ny . Let F be the flat of N spanned by F; UF, in N. Since F; and F, are
contracted onto a common rank-k flat in Ny, we see that F has rank k+1 and v € F — (F{ UF3). Thus,
F € (FH)*. Now, F has rank n+ 1, so it has at most ["*! points. Moreover, by Lemma 2.3, in a flat of
rank n + 1 there are at most [™tD" rank-n flats avoiding a given element. Thus, F — {v} contains at

most [™+D flats of F; these flats will be contracted to a single flat in (F,)*. This proves:
5.3.3. AT <V FH| 4 10D (FH)H|,
Now, combining 5.3.1-5.3.3, we get
(D (FH) Y > At =P FH] > o/r(N) A = 1| F |
> (a'r(N) = I")|F*| = (o = 1")r(N)| F |
= 1D gr(N)| FH.

Therefore |(F7)*| > «a|FT|; as required. O
We are now ready to prove Theorem 1.4, which we restate here in a more convenient form.

Theorem 5.4. For all integers | > 2 and k > 1, there is an integer c such that, if M € U(l) is a matroid with
e(M) > c(r(Mz)H), then M has a rank-k minor N such that € (N) = 2k — 1.

Proof. Let o = I®T2&+D (1 ky and let c = fo(k + 2, a,1). Now, let M € U(l) be a matroid with
e(M) > c("™)*1). By Lemma 5.3, there is a minor N of M and a collection  of round rank-(k + 1)
flats of N such that |F*| > ar(N)|F|. By Lemma 2.3, each flat in F* contains at most [k+2k+1) flats
from F. Let t = fi(l, k)r(N). Therefore, there is a flat Fo € F that is contained in t flats in FT; let
F1,..., Fr € F* be flats containing Fo. Then (Fo, F1, ..., F¢) is a (k+1)-book and, hence, the theorem
follows by Lemma 4.2. O
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