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imum number of elements in a simple rank-k matroid in M. We
prove that, if M does not contain all simple rank-2 matroids, then
h(k) is finite and is either linear, quadratic, or exponential.
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1. Introduction

In this paper we consider classes of matroids that are closed both under taking minors and under
isomorphism; for convenience we shall simply refer to such classes as minor-closed. Our main result,
combined with earlier results of Geelen and Whittle and of Geelen and Kabell, yields the following
theorem, conjectured by Kung [4, Conjecture 4.9].

Theorem 1.1 (Growth rate theorem). If M is a minor-closed class of matroids, then either

(1) there exists c ∈ R such that |E(M)| � cr(M) for all simple matroids M ∈ M,
(2) M contains all graphic matroids and there exists c ∈ R such that |E(M)| � c(r(M))2 for all simple ma-

troids M ∈ M,
(3) there is a prime-power q and c ∈ R such that M contains all GF(q)-representable matroids and |E(M)| �

cqr(M) for all simple matroids M ∈ M, or
(4) M contains all simple rank-2 matroids.

✩ This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and
the Marsden Fund of New Zealand.
0095-8956/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jctb.2008.08.006

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jctb
http://dx.doi.org/10.1016/j.jctb.2008.08.006


J. Geelen et al. / Journal of Combinatorial Theory, Series B 99 (2009) 420–427 421
We follow the notation of Oxley [5]. A rank-1 flat is referred to as a point and a rank-2 flat is
referred to as a line. The number of points in M is denoted by ε(M). For a class M of matroids and
integer k � 0, we let h(M,k) be the maximum of ε(M) among all rank-k matroids M ∈ M. Thus, if
G is the set of graphic matroids, then h(G,k) = (k+1

2

)
and, for a prime-power q, if L(q) is the set of

all GF(q)-representable matroids, then h(L(q),k) = qk−1
q−1 .

We begin by recounting two significant partial results towards the growth rate theorem. The first
was proved by Geelen and Whittle [2].

Theorem 1.2. If M is a minor-closed class of matroids, then either

(1) there exists c ∈ R such that, h(M,k) � ck for all k,
(2) M contains all graphic matroids, or
(3) M contains all simple rank-2 matroids.

The second result was proved by Geelen and Kabell [1] and in part, by Kung [4, Theorem 6.6].

Theorem 1.3. If M is a minor-closed class of matroids, then either

(1) there exists a polynomial p(k) such that, h(M,k) � p(k) for all k,
(2) there is a prime-power q and c ∈ R such that M contains all GF(q)-representable matroids and

h(M,k) � cqk for all k, or
(3) M contains all simple rank-2 matroids.

In this paper, we bridge the gap by proving the following theorem.

Theorem 1.4. If M is a minor-closed class of matroids, then either

(1) there exists c ∈ R such that, h(M,k) � ck2 for all k,
(2) h(M,k) � 2k − 1 for all k, or
(3) M contains all simple rank-2 matroids.

We conclude the introduction with two interesting corollaries of the growth rate theorem. The
second of these was already known; see Kung [3].

Corollary 1.5. Let q be a power of a prime p and let M be a minor-closed class of GF(q)-representable ma-
troids. If M does not contain all GF(p)-representable matroids, then there exists a constant c ∈ R such that
h(M,k) � ck2 for all k.

Corollary 1.6. Let M be a minor-closed class of R-representable matroids. If M does not contain all simple
rank-2 matroids, then there exists a constant c ∈ R such that h(M,k) � ck2 for all k.

2. Excluding a line

Kung [4] proved the following theorem.

Theorem 2.1. For any integer l � 2, if M is a matroid with no U2,l+2-minor, then ε(M) � lr(M)−1
l−1 .

Let U (l) denote the set of all matroids with no U2,l+2-minor. Thus h(U (l),k) � lk−1
l−1 . Note that, when

l is a prime-power, this bound is tight since L(l) ⊆ U (l). However, when l is not a prime-power, the
growth rate theorem gives an asymptotically tighter bound of cqk , where q is the largest prime-power
less than or equal to l.

We remark that Kung [4] has made a stronger conjecture.
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Conjecture 2.2. If l � 2 is an integer and q is the largest prime-power less than or equal to l, then h(U (l),k) =
qk−1
q−1 for all sufficiently large k.

Conjecture 2.2 is the case of Conjecture 4.9(a) in [4] when the set of excluded minors is empty.
The general form of Conjecture 4.9(a) can be restated as follows. Let M be a minor-closed class not
containing all rank-2 simple matroids. If L(q) ⊆ M for some prime power q and q is maximum with

this property, then h(M,k) = qk−1
q−1 for sufficiently large k. This conjecture is too good to be true. We

construct a counterexample M (using q-lifts or q-cones). Let q be a prime-power, let n � 2 be an
integer, and let F be the set of all pairs (M, e) consisting of a GF(qn)-representable matroid M and
an element e ∈ E(M) such that M/e is GF(q)-representable. Now let M be the set of all matroids
M \ e where (M, e) ∈ F . It is straightforward to verify that every extremal rank-k matroid M ′ ∈ M
contains a hyperplane H and an element e′ /∈ H such that M ′|H ∼= PG(k − 2,q) and, for each f ∈ H ,
the pair (e′, f ) spans a (qn +1)-point line in M ′ . By adding an element e in parallel with e′ , we obtain
associated pair (M, e) ∈ F . Therefore,

h(M,k) = qn qk−1 − 1

q − 1
+ 1.

Our proof of the growth rate theorem requires a bound on the number of hyperplanes in a rank-k
matroid in U (l). If M is GF(q)-representable, then, by considering PG(r − 1,q), we see that M has at

most qk−1
q−1 hyperplanes. On the other hand, when M ∈ U (l), we cannot prove a comparable bound, so

we settle for the following crude upper bound from [2]; we include the short proof for completeness.

Lemma 2.3. Let k � 1 and l � 2 be integers and let M ∈ U (l) be a simple rank-k matroid. Then, M has at most
lk(k−1) hyperplanes.

Proof. Let n = |E(M)|; thus n � lk−1
l−1 � lk . Each hyperplane is spanned by a set of k − 1 points, so the

number of hyperplanes is at most
( n

k−1

)
� nk−1 � lk(k−1) . �

3. Local connectivity

Let M be a matroid and let A, B ⊆ E(M). We define �M(A, B) = rM(A) + rM(B) − rM(A ∪ B); this
is the local connectivity between A and B . This definition is motivated by geometry. Suppose that M
is a restriction of PG(k,q) and let F A and F B be the flats of PG(k,q) that are spanned by A and B ,
respectively. Then F A ∩ F B has rank �M(A, B).

The following properties are intuitively obvious for representable matroids, and follow by elemen-
tary rank calculations for arbitrary matroids.

(1) If A, B ⊆ E(M) and A′ ⊆ A, then �M(A′, B) � �M(A, B).
(2) If A and C are disjoint subsets of E(M), then rM/C (A) = rM(A) − �M(A, C).
(3) If A, B , and C are disjoint subsets of E(M), then �M/C (A, B) = �M(A, B) − �M(A, C).

We say that two sets A, B ⊆ E(M) are skew if �M(A, B) = 0. More generally, the sets A1, . . . , Al ⊆
E(M) are skew if rM(A1) + · · · + rM(Ak) = rM(A1 ∪ · · · ∪ Ak).

4. Books and dense minors

A line is long if it has at least 3 points. For sets A and B we let A × B denote {(a,b): a ∈ A, b ∈ B}.
We use the following lemma to identify a dense minor.

Lemma 4.1. Let k � 1 be an integer and let n = k2k. Let F1 and F2 be skew flats in a matroid M such that
M|F1 is isomorphic to M(Kn), r(F2) = k, and each pair of points in F1 × F2 spans a long line. Then M has a
rank-k minor N with ε(N) � 2k − 1.
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Proof. We may assume that M is simple and that r(M) = rM(F1 ∪ F2). We may also assume that F2
is a k-element independent set in M and that M|F1 = M(G), where G is isomorphic to Kn . Let C
denote the set of all subsets of F2 with at least two elements. Since n � k|C|, there exists a collection
(P X : X ∈ C) of vertex-disjoint paths in G where each path P X has length |X |. For each X ∈ C , let e X
be the edge of G that connects the ends of P X , and let φX : X → E(P X ) be an arbitrary bijection. For
each x ∈ X , let fx ∈ E(M) − (F1 ∪ F2) be an element spanned by {x, φX (x)}, and let S X = { fx: x ∈ X}.
Finally, let S denote the union of the sets (S X : X ∈ C) and let N be the restriction of M/S to the
flat spanned by F2. Note that the sets F2 and (P X : X ∈ C) are skew and, for each X ∈ C , the set S X
is contained in the flat of M that is spanned by F2 ∪ P X . Moreover, F2 is independent in N and, for
each X ∈ C and each x ∈ X , the elements x and φX (x) are in parallel in N . Therefore, for each X ∈ C ,
the set X ∪ {e X } is a circuit of N . Hence ε(N) � |F2| + |C| = 2k − 1, as required. �

We call a matroid M round if each cocircuit of M is spanning. Equivalently, M is round if and only
if E(M) cannot be written as the union of two proper flats. The following properties are straightfor-
ward to check:

1. If M is a round matroid and e ∈ E(M) then M/e is round.
2. If N is a spanning minor of M and N is round, then M is round.

Let M be a matroid. A flat F of M is called round if the restriction of M to F is round. Each
rank-one flat is round. Moreover, a line is round if and only if it is long. A sequence (F0, F1, . . . , Ft)

is called a k-book if F0 is a rank-k flat of M and F1, . . . , Ft are distinct round rank-(k + 1) flats of M
each containing F0.

The following lemma is the main result of the section.

Lemma 4.2. There exists a function f1 : Z
2 → Z such that, for integers l,k � 2, if (F0, F1, . . . , Ft) is a (k +1)-

book in a matroid M ∈ U (l) and t � f1(l,k)r(M), then M has a rank-k minor N with ε(N) = 2k − 1.

Proof. By Ramsey’s Theorem, there exists a function R : Z
2 → Z such that, for integers n, c � 1, if we

colour the edges of a clique on R(n, c) vertices with c colours, then there is a monochromatic clique
on n vertices. By Theorem 1.2, there exists a function λ : Z

2 → Z such that, for integers l,n � 2, if
M ∈ U (l) is a matroid with ε(M) > λ(l,n)r(M), then M has an M(Kn)-minor.

Let l,k � 2 be integers. Now let n3 = k2k , n′
2 = n3 + 3, n2 = R(n′

2, l2k + 1) + 1, and n1 = l2k +
R(n2,

( l2k

k+1

)
). Finally we let f1(l,k) = λ(l,n1).

Now consider a matroid M ∈ U (l) containing a (k + 1)-book (F0, F1, . . . , Ft) with t � f1(l,k)r(M).
By way of contradiction, we assume that, for each rank-k minor N of M , we have ε(N) < 2k − 1. If
follows easily that, for each rank-(k + 1) minor N of M , we have ε(N) < l(2k − 1) + 1 � l2k .

4.2.1. There is a minor M1 of M and a set X1 ⊆ E(M1) such that

(1) F0 ⊆ E(M1) and rM1 (F0) = k + 1,
(2) (M1/F0)|X1 ∼= M(Kn1 ), and
(3) for each e ∈ X1 , the flat of M1 that is spanned by F0 ∪ {e} is round.

Proof of 4.2.1. For each i ∈ {1, . . . , t}, choose xi ∈ Fi − F0. Now let X = {x1, . . . , xt} and let N =
(M/F0)|X . Note that ε(N) � λ(l,n1)r(N). Therefore there is a minor, say N \ D/C , of N that is isomor-
phic to M(Kn1 ). The claim follows by taking M1 := M/C and X1 := E(N \ D/C). �
4.2.2. There is a minor M2 of M1 , a set X2 ⊆ E(M2), and a (k + 1)-element independent set Y2 of M2 such
that

(1) (M2/Y2)|X2 ∼= M(Kn2 ), and
(2) each pair of elements in X2 × Y2 spans a long line in M2 .
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Proof of 4.2.2. Let n′ = R(n2,
( l2k

k+1

)
), thus n1 = l2k + n′ . Note that F0 has rank-(k + 1) and, hence, it

spans at most l2k points. We begin by repeatedly contracting elements from X1 if doing so increases
the number of points spanned by F0; the number of points that we contract will be at most l2k .
Therefore, there is a minor M2 of M1 and a set X ′ ⊆ X1 such that:

(1) F0 ⊆ E(M2) and rM2 (F0) = k + 1,
(2) (M2/F0)|X ′ ∼= M(Kn′ ),
(3) for each e ∈ X ′ , the flat of M2 that is spanned by F0 ∪ {e} is round, and
(4) for each element a ∈ X ′ and each element b ∈ clM2 (F0 ∪ {a}) − clM2 (F0) that is not in parallel

with a, there is an element c ∈ clM2 (F0) such that {a,b, c} is a circuit of M2.

Let F ′ = clM2 (F0). We may assume, for notational convenience, that M2 is simple. Thus |F ′| � l2k .
For each element a ∈ X ′ , let Ba be a basis of the flat spanned by {a} ∪ F ′ with {a} ⊆ Ba and with
Ba ∩ F ′ = ∅ (such a basis exists since the flat is round). By the last property of M2 above, there is a
basis B ′

a of F ′ such that, for each b ∈ Ba −{a}, there is an element c ∈ F ′ such that {a,b, c} is a circuit.

Note that B ′
a is a (k + 1)-element subset of F ′ and the number of such subsets is at most

( l2k

k+1

)
.

Therefore, by Ramsey’s Theorem, there is a basis Y2 of F ′ and a set X2 ⊆ X ′ such that (M2/F0)|X2 ∼=
M(Kn2 ) and, for each e ∈ X2, we have B ′

e = Y2. Thus M2, X2, and Y2 satisfy the claim. �
4.2.3. There is a set X ′

2 ⊆ X2 such that

(1) (M2/Y2)|X ′
2
∼= M(Kn′

2
), and

(2) �M2 (X ′
2, Y2) � 1.

Proof of 4.2.3. Recall that (M2/Y2)|X2 = M(G) where G is a graph that is isomorphic to Kn2 . Let
v ∈ V (G) and let C be the set of edges of G that are incident with v . Note that Y2 ∪ C spans X2
in M2. Define a partition (S0, S1, . . . , Sm) of X2 such that S0 = clM2 (C) ∩ X2 and (S1, . . . , Sm) are the
parallel classes of (M2|X2)/S0. The flat spanned by Y2 in M2/C has rank k + 1 and at least m points,
so m � l2k . By definition, n2 = R(n′

2, l2k +1)+1. So, by Ramsey’s Theorem, there is a set X ′
2 ⊆ E(G − v)

and an element j ∈ {0, . . . ,m} such that (M2/Y2)|X ′
2
∼= M(Kn′

2
) and X ′

2 ⊆ S j . Applying identities from
the previous section, we get

�M2

(
X ′

2, Y2
)
� �M2 (S j ∪ C, Y2)

� �M2/C (S j, Y2) + �M2 (C, Y2)

= �M2/C (S j, Y2)

� rM2/C (S j)

� 1,

as required. �
4.2.4. There is a minor M3 of M2 , a set X3 ⊆ E(M3), and a k-element independent set Y3 of M3 such that

(1) M3|X3 ∼= M(Kn3 ),
(2) each pair of elements in X3 × Y3 spans a long line in M3 , and
(3) X3 and Y3 are skew in M3 .

Proof of 4.2.4. Recall that (M2/Y2)|X ′
2 = M(G) where G is a graph that is isomorphic to Kn′

2
. More-

over, �M2 (X ′
2, Y2) � 1. We may assume that �M2 (X ′

2, Y2) = 1 otherwise the claim holds. It follows
that rM2 (X ′

2) = rM2/Y2(X ′
2) + 1. Now it is routine to show that there is a triangle T of G that is in-

dependent in M2. Let a,b, c ∈ V (G) be the three vertices in G that are incident with edges in T , let
X3 := E(G − {a,b, c}), and let M3 = M2/T . Now λM2 (T , Y2) = rM2 (T ) − rM2/Y2(T ) = 1 and, hence,
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�M3 (X3, Y2) � �M2/T
(

X ′
2 − T , Y2

)

= �M2

(
X ′

2, Y2
) − �M2 (T , Y2)

= 0.

Therefore X3 is skew to Y2 in M3. Moreover, Y2 has rank k in M3; let Y3 ⊂ Y2 be a maximal inde-
pendent set in M3. Then M3, X3, and Y3 satisfy the claim. �

The result now follows by Lemma 4.1. �
5. Building a book

In order to build an appropriate book, we use the methods of [2]; in fact, this section is taken
almost verbatim from that paper.

Lemma 5.1. For integers α � 1 and l � 2, if M ∈ U (l) is a matroid with ε(M) > α
(r(M)+1

2

)
, then there is a

minor N of M that contains > α
(l+1)2 r(N)ε(N) long lines.

Proof. We may assume that M is simple. For each v ∈ E , let Nv = M/v . Inductively, we may assume
that ε(Nv) � α

(r(Nv )
2

)
for each v ∈ E . Note that, r(Nv) = r(M) − 1 and

(r(M)+1
2

) = (r(M)
2

) + r(M). So
ε(M) − ε(Nv) � αr(M) + 1. Since M ∈ U (l), each long line in M has at most l + 1 points; so when we
contract an element the parallel classes contain at most l elements. Thus v is on at least αr(M)

l long

lines. So the number of long lines is at least αr(M)
l(l+1)

ε(M). �
The following lemma is proved in [2].

Lemma 5.2. Let M be a matroid, let F1 and F2 be round flats of M such that rM(F1) = rM(F2) = k and
rM(F1 ∪ F2) = k + 1, and let F be the flat of M spanned by F1 ∪ F2 . If F �= F1 ∪ F2 then F is round.

Let F be a set of round flats in a matroid M . A rank-k flat F is called F -constructed if there exist
two rank-(k −1) flats F1, F2 ∈ F such that F = clM(F1 ∪ F2) and F �= F1 ∪ F2. Thus, the F -constructed
flats are round. We let F + denote the set of F -constructed flats.

Most of the remaining work is in the proof of the following technical lemma.

Lemma 5.3. There exists an integer-valued function f2(k,α, l) such that, for all integers k � 2, α � 1, and
l � 2, if M ∈ U (l) is a matroid with ε(M) > f2(k,α, l)

(r(M)+1
2

)
, then there exists a minor N of M and a set F

of round rank-(k − 1) flats of N such that |F +| > αr(N)|F |.

Proof. Let f2(2,α, l) = α(l + 1)2, and, for k � 2, we recursively define

f2(k + 1,α, l) = f2
(
k, l(k+1)2

α + lk, l
)
.

The proof is by induction on k. Consider the case that k = 2. Now, let M ∈ U (l) be a simple matroid
with |E(M)| > f2(2,α, l)

(r(M)+1
2

)
. By Lemma 5.1, there exists a simple minor N of M with more than

αr(N)ε(N) long lines. Now, if F is the set of points of N , then F + is the set of long lines of N and
|F +| > αr(N)|F |, as required.

Suppose that the result holds for k = n and consider the case that k = n + 1. Now let M ∈ U (l)
be a simple matroid with ε(M) > β(n + 1,α, l)

(r(M)+1
2

)
. We let α′ = l(n+1)2

α + ln . By the induction
hypothesis there exists a minor N of M and a set F of round rank-(n − 1) flats of N such that
|F +| > α′r(N)|F |. We may assume that no proper minor of N contains such a collection of flats. We
may also assume that N is simple. We will prove that |(F +)+| � αr(N)|F +|.

Now, for each v ∈ E(N), let Nv = N/v . Let Fv denote the set of rank-(n−1) flats in Nv correspond-
ing to the set of flats in F in N . That is, if F ∈ F and v /∈ F , then clNv (F ) ∈ Fv . By our choice of N ,
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|F +| > α′r(N)|F |, and, by the minimality of N , |F +
v | � α′r(Nv)|Fv | � α′r(N)|Fv | for all v ∈ E(N).

Thus,
(∣∣F +∣∣ − ∣∣(Fv)+

∣∣) > α′r(N)
(|F | − |Fv |).

Let

Δ =
∑(|F | − |Fv | : v ∈ E(N)

)
and Δ+ =

∑(∣∣F +∣∣ − ∣∣(Fv)+
∣∣: v ∈ E(N)

)
.

This proves:

5.3.1. Δ+ > α′r(N)Δ.

Consider a flat F ∈ F + . By definition there exist flats F1, F2 ∈ F such that F = clN (F1 ∪ F2) and
there exists an element v ∈ F − (F1 ∪ F2). Now clNv (F1) = clNv (F2), so these two flats in F are
reduced to a single flat in Fv . This proves:

5.3.2. Δ � |F +|.

Now, for some v ∈ E(N), compare F + with (Fv )+ . There are two ways to lose constructed flats;
we can either contract an element in a flat or we contract two flats onto each other. Firstly, suppose
F ∈ F + and v ∈ F . Note that F − {v} only has rank n − 1 in N/v , so it will not determine a flat in
(Fv )+ . Now F has rank n and, by Theorem 2.1, a rank-n flat contains at most ln−1

l−1 < ln points; we
destroy F if we contract any one of these points. Secondly, consider two flats F1, F2 ∈ F + that are
contracted onto each other in Nv . Let F be the flat of N spanned by F1 ∪ F2 in N . Since F1 and F2 are
contracted onto a common rank-k flat in Nv , we see that F has rank k +1 and v ∈ F − (F1 ∪ F2). Thus,
F ∈ (F +)+ . Now, F has rank n + 1, so it has at most ln+1 points. Moreover, by Lemma 2.3, in a flat of
rank n + 1 there are at most l(n+1)n rank-n flats avoiding a given element. Thus, F − {v} contains at
most l(n+1)n flats of F ; these flats will be contracted to a single flat in (Fv)+ . This proves:

5.3.3. Δ+ � ln|F +| + l(n+1)2 |(F +)+|.

Now, combining 5.3.1–5.3.3, we get

l(n+1)2 ∣∣(F +)+∣∣ � Δ+ − ln
∣∣F +∣∣ > α′r(N)Δ − ln

∣∣F +∣∣

�
(
α′r(N) − ln

)∣∣F +∣∣ �
(
α′ − ln

)
r(N)

∣∣F +∣∣

= l(n+1)2
αr(N)

∣∣F +∣∣.

Therefore |(F +)+| > α|F +|; as required. �
We are now ready to prove Theorem 1.4, which we restate here in a more convenient form.

Theorem 5.4. For all integers l � 2 and k � 1, there is an integer c such that, if M ∈ U (l) is a matroid with
ε(M) > c

(r(M)+1
2

)
, then M has a rank-k minor N such that ε(N) = 2k − 1.

Proof. Let α = l(k+2)(k+1) f1(l,k) and let c = f2(k + 2,α, l). Now, let M ∈ U (l) be a matroid with
ε(M) > c

(r(M)+1
2

)
. By Lemma 5.3, there is a minor N of M and a collection F of round rank-(k + 1)

flats of N such that |F +| > αr(N)|F |. By Lemma 2.3, each flat in F + contains at most l(k+2)(k+1) flats
from F . Let t = f1(l,k)r(N). Therefore, there is a flat F0 ∈ F that is contained in t flats in F +; let
F1, . . . , Ft ∈ F + be flats containing F0. Then (F0, F1, . . . , Ft) is a (k +1)-book and, hence, the theorem
follows by Lemma 4.2. �
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