# **COMBINATORICA**Bolyai Society – Springer-Verlag

### AN ALGEBRAIC MATCHING ALGORITHM

## JAMES F. GEELEN

Received September 4, 1997

Tutte introduced a V by V skew-symmetric matrix  $T=(t_{ij})$ , called the  $Tutte\ matrix$ , associated with a simple graph G=(V,E). He associates an indeterminate  $z_e$  with each  $e\in E$ , then defines  $t_{ij}=\pm z_e$  when  $ij=e\in E$ , and  $t_{ij}=0$  otherwise. The rank of the Tutte matrix is exactly twice the size of a maximum matching of G. Using linear algebra and ideas from the Gallai–Edmonds decomposition, we describe a very simple yet efficient algorithm that replaces the indeterminates with constants without losing rank. Hence, by computing the rank of the resulting matrix, we can efficiently compute the size of a maximum matching of a graph.

### 1. Introduction

Let G = (V, E) be a simple graph, and let  $(z_e : e \in E)$  be algebraically independent commuting indeterminates. We define a V by V skew-symmetric matrix  $T = (t_{ij})$ , called the *Tutte matrix* of G, such that  $t_{ij} = \pm z_e$  if  $ij = e \in E$ , and  $t_{ij} = 0$  otherwise. Tutte observed that T is nonsingular (that is, its determinant is not identically zero) if and only if G admits a perfect matching. In fact, the rank of T is exactly twice the size of a maximum cardinality matchable set in G. (A subset X of V is called M applying elementary linear algebra to the Tutte matrix, Tutte proved his famous matching theorem [12].

It is not immediately clear how to obtain an efficient matching algorithm from the Tutte matrix. The determinant of T is a polynomial that may have exponentially many terms, so it cannot be computed efficiently. We

Mathematics Subject Classification (1991): 05C70

circumvent this problem by substituting constants in place of the indeterminates. In doing so the rank of T does not increase. This idea was originally proposed by Lovász [7] who gave an efficient randomized algorithm for finding the size of the largest matching of a graph. Here, using ideas from the Gallai–Edmonds structure theorem and from linear algebra, we describe an efficient deterministic algorithm for choosing the constants so that the rank of T does not decrease.

Let T be the Tutte matrix of G. An evaluation of T is a matrix  $T' = (t'_{ij})$  obtained by replacing the indeterminates in T by integers in  $\{1, \ldots, n\}$ , where n = |V|. For an edge ij of G, we construct a matrix T'(a;ij) from T' by replacing  $t'_{ij}$  and  $t'_{ji}$  by a and -a respectively. T'[X] denotes the principal submatrix of T' whose rows and columns are indexed by the set X, and  $T' \setminus X$  denotes  $T'[V \setminus X]$ . Let D(T') be the set of all  $x \in V$  such that  $\operatorname{rank} T' \setminus x = \operatorname{rank} T'$ . We refer to the elements of D(T') as the deficient elements of T'. For evaluations  $T'_1$  and  $T'_2$  of T, we write

```
\begin{array}{l} \boldsymbol{T_1'} \preceq \boldsymbol{T_2'} \text{ if either } \operatorname{rank} T_2' > \operatorname{rank} T_1' \text{ or } \operatorname{rank} T_2' = \operatorname{rank} T_1' \text{ and } D(T_1') \subseteq D(T_2'). \\ \boldsymbol{T_1'} \approx \boldsymbol{T_2'} \text{ if } \operatorname{rank} T_1' = \operatorname{rank} T_2' \text{ and } D(T_1') = D(T_2'). \text{ And } \\ \boldsymbol{T_1'} \prec \boldsymbol{T_2'} \text{ if } T_1' \preceq T_2' \text{ but } T_1' \not\approx T_2'. \end{array}
```

Obviously, for any evaluation T' of T, we have  $T' \preceq T$ . Our main theorem is the following.

**Theorem 1.1.** Let T be the Tutte matrix of a simple graph G = (V, E), and let T' be an evaluation of T. Then either  $T' \approx T$  or there exists  $ij \in E$  and  $a \in \{1, ..., n\}$  such that  $T'(a; ij) \succ T'$ .

An obvious consequence of the theorem is that we can efficiently determine the size of the largest matching in G. Indeed, take any evaluation T' of T and apply Theorem 1.1. We will either find  $a \in \{1, ..., n\}$  and  $ij \in E$  such that  $T'(a;ij) \succ T'$  (in which case we replace T' by T'(a;ij) and then repeat the above procedure), or we conclude that  $T' \approx T$  (in which case the largest matchable set has size rank T'). Hence, in at most  $n^2$  iterations we will know the size of the largest matchable set. Our algorithm is not computationally competitive with Edmonds' augmenting path algorithm [5] for the matching problem. However, there are a number of important combinatorial problems that can be formulated in terms of matrices of indeterminates (for example, path-matching [3], exact matching [10], and linear matroid parity [7]). The results in this paper provide some hope of finding similar solutions to these more general problems.

One drawback of the algorithm is that it does not actually identify a maximum matching. Suppose we have found an evaluation T' of T such that  $T' \approx T$ , how then do we find a maximum cardinality matching? The

most obvious solution is to run the algorithm |E| times (throwing out edges if doing so does not decrease the rank of T). With more sophisticated methods from linear algebra, a maximum matching can be extracted from T' in  $O(n^3)$ . This is a moot point, since a maximum matching can be found in  $O(n^{2.5})$  using augmenting path algorithms [9].

Consider a naive implementation of our algorithm. We need to apply Theorem 1.1  $O(n^2)$  times. Each time we apply Theorem 1.1, we may have to compute D(T'(a;ij)) for each  $ij \in E$  and each  $a \in \{1,...,n\}$ . Computing D(T'(a;ij)) requires O(n) matrix inversions. So, in total, we require  $O(n^6)$  matrix inversions. There are a number of ways to improve this bound. For example, Cheriyan [2] shows how to compute D(T'(a;ij)) in approximately the same time as it takes to perform one matrix inversion. Furthermore, following the proof of Theorem 1.1, we do not need to check all edges; we need only check O(n) edges. However, the algorithm remains computationally unattractive.

# 2. Skew-symmetric matrices

A V by V matrix  $T' = (t'_{ij})$  is skew-symmetric if -T' is equal to  $T'^T$  (that is, the transpose of T'). Suppose that T' is skew-symmetric. Define  $\mathcal{F}(T') = \{X \subseteq V : \operatorname{rank} T'[X] = |X|\}$ . Note that,

$$\det(T'[X]) = \det(T'[X]^T) = \det(-T'[X]) = (-1)^{|X|} \det(T'[X]).$$

Thus, if |X| is odd then T'[X] is singular. Hence, |X| is even for all  $X \in \mathcal{F}(T')$ . The set-system  $(V, \mathcal{F}(T'))$  is an example of an "even delta-matroid" (see Bouchet [1]). Then, by a result obtained independently by Duchamp [4] and Wenzel [13],  $\mathcal{F}(T')$  satisfies the following axiom:

Simultaneous exchange axiom. Given  $X,Y \in \mathcal{F}(T')$  and  $x \in X\Delta Y$ , there exists  $y \in X\Delta Y$  such that  $X\Delta \{x,y\}, Y\Delta \{x,y\} \in \mathcal{F}(T')$ .

We denote by  $\mathcal{F}^*(T')$  the set of maximum cardinality members of  $\mathcal{F}(T')$ .

**Lemma 2.1.** Let T' be a V by V skew-symmetric matrix, and let X be a subset of V. Then  $X \in \mathcal{F}^*(T')$  if and only if X indexes a maximal set of linearly independent columns of T'.

**Proof.** It is clear that, for  $X \in \mathcal{F}(T')$ , the columns of T' indexed by X are linearly independent. Therefore, it suffices to prove, for a maximal set X of linearly independent columns of T', that T'[X] is nonsingular.

Since T' is skew-symmetric, X also indexes a maximal set of linearly independent rows of T'. Note that deleting dependent rows does not affect

column dependencies. Thus X is a maximal set indexing linearly independent columns of T'[X,V]. Therefore, T'[X] is nonsingular.

Note that the previous lemma implies that the rank of T' is equal to the size of a largest nonsingular principal submatrix of T'. In particular, the rank of a skew-symmetric matrix is always even. The previous result also implies that  $\mathcal{F}^*(T')$  is the family of bases of a representable matroid. We use some elementary matroid theory in the proof of the following lemma; see Oxley [11] for a good introduction to matroid theory.

**Lemma 2.2.** Let T' be a V by V skew-symmetric matrix. Then there exists a partition  $\mathcal{D}(T')$  of D(T'), such that, for distinct elements i, j in D(T'), i, jare in the same part of the partition if and only if  $\operatorname{rank} T' \setminus \{i, j\} = \operatorname{rank} T' - 2$ .

**Proof.** Given  $x, y \in D(T')$ , rank  $T' \setminus \{x, y\}$  is either rank T' or rank T' - 2. Let M be the matroid  $(V, \mathcal{F}^*(T'))$ . The coloops of M are the elements of  $V \setminus D(T')$ . For  $x,y \in D(T')$ ,  $\{x,y\}$  is coindependent in M if and only if  $\operatorname{rank} T' \setminus \{x,y\} = \operatorname{rank} T'$ . Let  $(D_1,...,D_k)$  be the series-classes in M. Then  $\mathcal{D} = (D_1, \dots, D_k)$  is a partition of D(T'), and, for distinct  $i, j \in D(T')$ , i, j are in a common part of the partition if and only if  $\{i,j\}$  is codependent in M.

# A structure theorem

Let A(T') be the set of all  $v \in V \setminus D(T')$  such that  $D(T' \setminus v) = D(T')$ . Then define  $C(T') = V \setminus (A(T') \cup D(T'))$ , and define odd(T') to be the number of sets in  $\mathcal{D}(T')$  having odd cardinality.

**Theorem 2.2.** Let  $T' = (t'_{ij})$  be a V by V skew-symmetric matrix satisfying

- (a) For each  $i \in D(T')$  and  $j \in C(T')$ ,  $t'_{ij} = 0$ , and (b) For each  $i, j \in D(T')$  in different parts of  $\mathcal{D}(T'[D(T')])$ ,  $t'_{ij} = 0$ .

Then T' satisfies the following conditions,

- (i) T'[C(T')] is nonsingular,
- (ii) For each  $X \in \mathcal{D}(T'[D(T')])$  and  $x \in X$ , T'[X x] is nonsingular,
- (iii)  $\operatorname{rank} T' = |V| (\operatorname{odd}(T'[D(T')]) A(T'))$ , and
- (iv) For each  $i \in A(T')$  there exists  $j \in D(T')$  such that  $t'_{ij} \neq 0$ .

We require the following lemma.

**Lemma 2.3.** For  $A' \subseteq A(T')$ , we have

- (i)  $\operatorname{rank} T' \setminus A' = \operatorname{rank} T' 2|A'|$ , and
- (ii)  $D(T' \setminus A') = D(T')$ .

**Proof of Lemma 2.3.** We prove the lemma by induction on |A'|. By definition, the result holds for  $|A'| \leq 1$ . Choose any  $a \in A'$ ; then we may suppose that the result holds for A' - a. In particular  $\operatorname{rank} T' \setminus (A' - a) = \operatorname{rank} T' - 2|A' - a|$  and  $D(T' \setminus (A' - a)) = D(T')$ . Since  $a \in A(T')$ , a is not a member of D(T'), and hence it is also not in  $D(T' \setminus (A' - a))$ . Therefore,  $\operatorname{rank} T' \setminus A' < \operatorname{rank} T' \setminus (A' - a)$ . However, since skew-symmetric matrices have even  $\operatorname{rank} T \cap A' = \operatorname{rank} T' \setminus (A' - a) - 2 = \operatorname{rank} T' - 2|A'|$ . Hence, (i) is satisfied.

It is straightforward that  $D(T'\setminus (A'-a))\subseteq D(T'\setminus A')$ . Suppose that  $D(T'\setminus A')\neq D(T')$ . Then there exists  $y\in D(T'\setminus A')\setminus D(T')$ . Choose sets  $X\in\mathcal{F}^*(T')$  and  $Y\in\mathcal{F}^*(T'\setminus A')$  such that  $y\not\in Y$ . Since  $a\not\in D(T')$ ,  $a\in X$ . Now  $a\in X\setminus Y$ , so, by the simultaneous exchange axiom, there exists  $b\in X\Delta Y$  such that  $X\Delta\{a,b\}$  and  $Y\Delta\{a,b\}$  are both contained in  $\mathcal{F}(T')$ . If  $b\in Y\setminus X$ , then  $X\Delta\{a,b\}\in\mathcal{F}^*(T')$ , contradicting that  $a\not\in D(T')$ . Hence,  $b\in X\setminus Y$ . Note that  $X\setminus \{a,b\}\in\mathcal{F}^*(T'\setminus a)$ , so  $b\in D(T'\setminus a)=D(T')$ . Therefore,  $b\neq y$ . Now  $Y\cup \{a,b\}\in\mathcal{F}^*(T'\setminus (A'-a))$ , and  $y\not\in Y\cup \{a,b\}$ . Hence,  $y\in D(T'\setminus (A'-a))$ . This contradiction completes the proof.

**Proof of Theorem 2.2.** For simplicity, we denote D(T'), A(T'), and C(T') by D, A and C respectively. Let A' be the set of all  $i \in V \setminus D$  for which there exists  $j \in D$  such that  $t'_{ij} \neq 0$ . Then define  $C' = V \setminus (A' \cup D)$ . By (a),  $A' \subseteq A$ . Suppose that  $\mathcal{D}(T'[D])) = (X_1, \ldots, X_k)$ . Then  $T'[V \setminus A']$  is a block diagonal matrix with blocks  $T'[X_1], \ldots, T'[X_k], T'[C']$ . By Lemma 2.3,  $D(T'[X_i]) = X_i$  for  $i = 1, \ldots, k$ , and D(T'[C']) is the empty set. Hence T'[C'] is nonsingular. However, for  $a \in C' \setminus C$ ,  $D(T' \setminus (A' \cup a)) = D$ , so D(T'[C' - a]) is empty. This is a contradiction, since |C' - a| is odd so T'[C' - a] is singular. Hence C' = C and A' = A. This proves (i) and (iv). By the definition of  $\mathcal{D}(T')$ , each  $Y \in \mathcal{F}^*(T'[X_i])$  has size  $|X_i| - 1$ . Hence  $\operatorname{rank} T'[X_i] = |X_i| - 1$ , which proves (ii). However  $\operatorname{rank} T'[X_i]$  is even, so  $|X_i|$  is odd for  $i = 1, \ldots k$ . Hence  $\operatorname{rank} T' \setminus A(T') = |V \setminus A(T')| - \operatorname{odd}(T'[D(T')])$ . Then, by Lemma 2.3,

$$\operatorname{rank} T' = \operatorname{rank} T' \setminus A(T') + 2 |A(T')|$$
  
=  $|V \setminus A(T')| - \operatorname{odd}(T'[D(T')]) + 2 |A(T')|$   
=  $|V| - (\operatorname{odd}(T'[D(T')]) - A(T')),$ 

proving (iii).

**Lemma 2.4.** Let T' be a V by V skew-symmetric matrix, and suppose  $x \in C(T')$ . Then,  $D(T') \subset D(T' \setminus \{x\})$ . Furthermore, for  $v \in D(T' \setminus \{x\}) \setminus D(T')$  and for any  $X \in \mathcal{F}^*(T')$ ,  $X \setminus \{v, x\} \in \mathcal{F}(T')$ .

**Proof.** Since  $x \in C(T')$  it is straightforward that  $D(T') \subseteq D(T' \setminus \{x\})$ . Since neither x nor v is deficient,  $x, v \in X$ . Choose  $Y \in \mathcal{F}^*(T' \setminus \{x\})$  such that  $v \notin Y$ . Then  $v \in X \Delta Y$ . So, by the simultaneous exchange axiom, there exists  $y \in X \Delta Y$  such that  $X \Delta \{v, y\}, Y \Delta \{v, y\} \in \mathcal{F}(T')$ . Suppose that  $y \in Y \setminus X$ . Then  $X \Delta \{v, y\} \in \mathcal{F}^*(T')$ . However, this contradicts that  $v \notin D(T')$ . Therefore,  $y \in X \setminus Y$ , so  $Y \Delta \{v, y\} \in \mathcal{F}^*(T')$ . However,  $x \notin D(T')$ , and therefore y = x. Then  $X \Delta \{v, y\} = X \setminus \{v, x\} \in \mathcal{F}(T')$ , as required.

**Lemma 2.5.** Let T' be a V by V skew-symmetric matrix such that for each  $i \in D(T')$  and  $j \in C(T')$ ,  $t'_{ij} = 0$ . Furthermore, suppose that  $i, j \in D(T')$  such that i and j are in different parts of  $\mathcal{D}(T'[D(T')])$ . Then either i and j are in different parts of  $\mathcal{D}(T')$ , or there exists  $a \in A(T')$  such that i and j are in different parts of  $\mathcal{D}(T' \setminus a)$ .

**Proof.** Note that  $T' \setminus A(T')$  is block diagonal with blocks T'[D(T')] and T'[C(T')]. Then, by Lemma 2.3,  $\mathcal{D}(T' \setminus A(T')) = \mathcal{D}(T'[D(T')])$ . Therefore, i and j are in different parts of  $\mathcal{D}(T' \setminus A(T'))$ . Let A' be a minimal subset of A(T') such that i and j are in different parts of  $\mathcal{D}(T' \setminus A')$ . We may assume that  $|A'| \geq 2$ . Choose  $a \in A'$ . By the definitions, there exists  $X \in \mathcal{F}^*(T')$  such that  $j \notin X$ , and  $Y \in \mathcal{F}^*(T' \setminus A')$  such that  $i, j \notin X$ . Now  $a \in X \setminus Y$ . So, by the simultaneous exchange axiom, there exists  $b \in X\Delta Y$  such that  $X\Delta\{a,b\}, Y\Delta\{a,b\} \in \mathcal{F}(T')$ . Since  $a \notin D(T'), b \in X \setminus Y$ . Note that  $X \setminus \{a,b\} \in \mathcal{F}^*(T' \setminus a)$ . Thus we may assume that  $i \in X \setminus \{a,b\}$ , since otherwise i and j are in different parts of  $\mathcal{D}(T' \setminus a)$ . Therefore,  $b \neq i$ . Now note that  $Y \cup \{a,b\} \in \mathcal{F}^*(T' \setminus (A'-a))$ . Therefore, i and j are in different parts of  $\mathcal{D}(T' \setminus (A'-a))$ . However, this contradicts the minimality of A'.

# Pfaffians and matrix perturbations

Pfaffians are a powerful tool for studying skew-symmetric matrices. We now review some basic results about Pfaffians; see Godsil [6] for a more detailed overview.

Let  $T' = (t'_{ij})$  be a V by V skew-symmetric matrix, where  $V = \{1, ..., n\}$ . Let G(T') denote the graph (V, E') where  $E' = \{ij : t'_{ij} \neq 0\}$ , and let  $\mathcal{M}_{T'}$  denote the set of perfect matchings of G(T'). A pair of edges  $u_1v_1$ ,  $u_2v_2$  of G(T'), where  $u_1 < v_1$  and  $u_2 < v_2$ , is said to cross if  $u_1 < u_2 < v_1 < v_2$  or  $u_2 < u_1 < v_2 < v_1$ . The sign of a perfect matching M of G(T'), denoted  $\sigma_M$ , is  $(-1)^k$  where k is the number of pairs of crossing edges in M. The Pfaffian of T', denoted Pf(T'), is defined as follows:

(1) 
$$\operatorname{Pf}(T') = \sum_{M \in \mathcal{M}_{T'}} \sigma_M \prod_{\substack{uv \in M \\ u < v}} t'_{uv}.$$

Pfaffians satisfy the identity  $det(T') = Pf(T')^2$ ; and are often more convenient to work with than determinants. Like determinants, Pfaffians can be calculated by "row expansion" [6]:

(2) 
$$\operatorname{Pf}(T') = \sum_{k=2}^{n} (-1)^{k+1} t'_{1k} \operatorname{Pf}(T' \setminus \{1, k\}).$$

Consider  $T'_a = T'(a, ij)$  for  $i, j \in V$  and an indeterminate a. Note that, by (1),  $Pf(\tilde{T}'_a[X])$  is linear in a. Furthermore, by (2),

(3) 
$$\operatorname{Pf}(T'_a[X]) = \pm \operatorname{Pf}(T'[X \setminus \{i, j\}])a + \operatorname{Pf}(T'_0)$$

**Lemma 2.6.** Let  $ij \in E$ . Then there exists  $a \in \{1,...,n\} \setminus \{t'_{ij}\}$  such that  $T'(a;ij) \succeq T'$ .

**Proof.** Let  $T'_a$  denote T'(a,ij), where a is yet to be determined. For each  $x \in D(T')$ , there exists  $X \in \mathcal{F}^*_{T'}$  with  $x \not\in X$ . There is at most one choice for a that makes  $T'_a[X]$  singular. For any other choice of a, we have  $\operatorname{rank} T'_a \geq \operatorname{rank} T'$ , and if  $\operatorname{rank} T'_a = \operatorname{rank} T'$  then  $x \in D(T'_a)$ . Note that if x is either i or j, then  $T'_a[X] = T'[X]$  which is nonsingular. Hence, for each  $x \in D(T') \setminus \{i,j\}$ , there is at most one forbidden choice for a. So the number of forbidden choices is at most  $|D(T) \setminus \{i,j\}| \leq n-2$ , but there are n-1 choices available for a.

**Lemma 2.7.** Let  $ij \in E$ , and let  $X \subseteq V \setminus \{i,j\}$  such that  $X \in \mathcal{F}(T')$  but  $X \cup \{i,j\} \notin \mathcal{F}(T')$ . Then, for any  $a' \neq t'_{ij}$ ,  $X \cup \{i,j\} \in \mathcal{F}(T'(a';ij))$ .

**Proof.** By (3),  $\operatorname{Pf}(T'_a[X \cup \{i,j\}])$  is linear in a and not identically zero. So there is at most one choice for a that makes  $\operatorname{Pf}(T'_a[X \cup \{i,j\}])$  zero, this choice is  $a = t_{ij}$ .

# Building good evaluations

We conclude this section by proving Theorem 1.1. We require some preliminary results.

**Theorem 2.3.** Let G = (V, E) be a graph, and let T' be an evaluation of its Tutte matrix. If ij is an edge with  $i \in D(T')$  and  $j \in C(T')$ , then there exists  $a \in \{1, ..., n\}$  such that  $T'(a, ij) \succ T'$ .

**Proof.** Take  $X \in \mathcal{F}^*(T')$  such that  $i \notin X$ , and  $y \in D(T' \setminus j) \setminus D(T')$ . By Lemma 2.4,  $X \setminus \{j,y\} \in \mathcal{F}(T')$ . Now since  $y \notin D(T')$ ,  $X \setminus \{y\} \cup \{i\} \notin \mathcal{F}(T')$ . By Lemma 2.6, there exists  $a \in \{1, ..., n\} \setminus \{t'_{ij}\}$  such that  $T'(a; ij) \succeq T'$ . Then, by Lemma 2.7,  $X \setminus \{y\} \cup \{i\} \in \mathcal{F}(T'(a; ij))$ . Hence, either rank T'(a; ij) > rank T') or  $y \in D(T'(a; ij))$ . So T(a; ij) > T'.

**Theorem 2.4.** Let G = (V, E) be a graph, and let T' be an evaluation of its Tutte matrix, such that, for all  $x \in D(T')$  and all  $y \in C(T')$ ,  $xy \notin E$ . If  $i, j \in D(T')$  such that  $ij \in E$  and i and j are in different parts of  $\mathcal{D}(T'[D(T')])$ , then there exists  $a \in \{1, ..., n\}$  such that  $T'(a; ij) \succ T'$ .

**Proof.** Suppose that i and j are in different parts of  $\mathcal{D}(T')$ . Then there exists  $X \in \mathcal{F}^*(T')$  such that  $i, j \notin X$ . Take any  $a \in \{1, ..., n\} \setminus \{t'_{ij}\}$ . Then, by Lemma 2.7,  $X \cup \{i, j\} \in \mathcal{F}(T'(a; ij))$ . Hence  $T'(a; ij) \succ T'$ , as required. Therefore, by Lemma 2.5, we may assume that there exists  $x \in A(T')$  such that i and j are in different parts of  $\mathcal{D}(T' \setminus x)$ . Take  $X \in \mathcal{F}^*(T' \setminus x)$  such that  $i, j \notin X$ . Now since  $x \notin \mathcal{D}(T')$ ,  $X \cup \{i, j\} \notin \mathcal{F}(T')$ . By Lemma 2.6, there exists  $a \in \{1, ..., n\} \setminus \{t'_{ij}\}$  such that  $T'(a; ij) \succeq T'$ . Then, by Lemma 2.7,  $X \cup \{i, j\} \in \mathcal{F}(T'(a; ij))$ . Hence, either rank  $T'(a; ij) > \operatorname{rank} T'$  or  $x \in \mathcal{D}(T'(a; ij))$ . So  $T(a; ij) \succ T'$ .

**Proof of Theorem 1.1.** Suppose that there does not exist  $ij \in E$  and  $a \in \{1, ..., n\}$  such that  $T'(a; ij) \succ T'$ . Then, by Theorems 2.3 and 2.4, T' satisfies conditions (a) and (b) of Theorem 2.2. Then, by Theorem 2.2,  $\operatorname{rank} T' = |V'| - (\operatorname{odd}(T'[D(T')]) - |A(T')|)$ . Therefore it is routine to see that every matchable set of G misses at least  $\operatorname{odd}(T'[D(T')]) - |A(T')|$  elements of D(T'). It follows that  $\operatorname{rank} T' = \operatorname{rank} T$ , and that each set in  $\mathcal{F}^*(T)$  avoids only elements of D(T'). Hence  $T' \approx T$  as required.

### 3. The Gallai–Edmonds structure theorem

As previously mentioned, our proof of Theorem 1.1 is motivated by the Gallai–Edmonds structure theorem. In this section we give a proof of this theorem, using Theorem 2.2. For a more detailed discussion of the structure theorem, and for a comprehensive introduction to matching theory, see Lovász and Plummer [8].

We require the following definitions. Let G = (V, E) be a simple graph. We denote by D(G) the set of vertices in G that are avoided by some maximum cardinality matchable set. Let A(G) be the set of vertices in  $V \setminus D(G)$  that have a neighbour in D(G). Then define  $C(G) := V \setminus (A(G) \cup D(G))$ . We denote by  $\mathrm{odd}(G)$  the number of connected components in G having an odd number of vertices. If V - v is a matchable set of G for every  $v \in V$  then we call G hypomatchable.

Theorem 3.5 (Gallai–Edmonds Structure Theorem). For a graph G = (V, E), we have

- (i) C(G) is a matchable set of G,
- (ii) every connected component of G[D(G)] is hypomatchable,
- (iii) the size of the largest matchable set of G is |V| (odd(G[D(G)]) |A(G)|).

**Proof.** Let T be the Tutte matrix of G. Note that D(G) = D(T). Furthermore, it is clear that there is no edge ij of G such that i and j are in different parts of  $\mathcal{D}(T[D(T)])$ . Suppose that there exists an edge ij of G such that  $i \in D(T)$  and  $j \in C(T)$ . Let X be a maximum cardinality matchable set of G that does not contain i, and let  $y \in D(T \setminus j) \setminus D(T)$ . Then, by Lemma 2.4,  $X \setminus \{j,y\}$  is a matchable set. But, as ij is an edge,  $X \setminus \{y\} \cup \{i\}$  is a maximum cardinality matchable set. This contradicts that  $y \notin D(T)$ . Therefore there are no edges between D(T) and C(T) in G. Hence we can apply Theorem 2.2 to T. By Theorem 2.2 (iv), A(G) = A(T) and hence C(G) = C(T). So (i), (ii) and (iii) are immediate consequences of their counterparts in Theorem 2.2.

**Acknowledgements.** I thank Bill Cunningham and Joseph Cheriyan for helpful comments.

### References

- A. BOUCHET: Representability and Δ-matroids, Colloquia Societatis János Bolyai, 52 (1988), 162–182.
- [2] J. Cheriyan: Randomized  $\tilde{O}(M(|V|))$  algorithms for problems in matching theory, to appear in SIAM J. Computing.
- W. H. Cunningham and J. F. Geelen: The optimal path-matching problem, Proceedings of the 37th Annual Symposium on Foundations of Computer Science (1996), 78–85.
- [4] A. Duchamp: A strong symmetric exchange axiom for delta-matroids, (1995).
- [5] J. Edmonds: Paths, trees and flowers, Canad. J. Math., 17 (1965), 449–467.
- [6] C. D. Godsil: Algebraic Combinatorics, Chapman and Hall, 1993.
- [7] L. LOVÁSZ: On determinants, matchings, and random algorithms, in *Fundamentals of Computing Theory* (L. Budach, Ed.), Akademia-Verlag, Berlin, 1979.

- [8] L. Lovász and M. D. Plummer: *Matching Theory*, North-Holland, Amsterdam, 1986.
- [9] S. MICALI and V. V. VAZIRANI: An  $O(V^{1/2}E)$  algorithm for finding a maximum matching in general graphs, 21st Annual Symposium on Foundations of Computer Science (Syracuse, 1980), IEEE Computer Society Press, New York, 1980, 17–27.
- [10] K. MULMULEY, U. V. VAZIRANI and V. V. VAZIRANI: Matching is as easy as matrix inversion, Combinatorica, 7 (1987) 105–113.
- [11] J. G. Oxley: Matroid Theory, Oxford Science Publications, 1992.
- [12] W. T. Tutte: The factorization of linear graphs, J. London Math. Soc., 22 (1947), 107–111.
- [13] W. Wenzel: Δ-matroids with the strong exchange conditions, Appl. Math. Lett., 6 (1993) 67–70.

### James F. Geelen

Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, Canada, N2L 3G1 jfgeelen@math.uwaterloo.ca