COMBINATORICA 20 (1) (2000) 61-70

COMBINATORICA

Bolyai Society — Springer-Verlag

AN ALGEBRAIC MATCHING ALGORITHM

JAMES F. GEELEN

Received September 4, 1997

Tutte introduced a V' by V skew-symmetric matrix 7' = (¢;;), called the Tutte matriz,
associated with a simple graph G = (V, E). He associates an indeterminate z. with each
e € E/, then defines ¢;; = 2. when ij =e € E, and t;; = 0 otherwise. The rank of the
Tutte matrix is exactly twice the size of a maximum matching of G. Using linear algebra
and ideas from the Gallai-Edmonds decomposition, we describe a very simple yet efficient
algorithm that replaces the indeterminates with constants without losing rank. Hence,
by computing the rank of the resulting matrix, we can efficiently compute the size of a
maximum matching of a graph.

1. Introduction

Let G =(V,E) be a simple graph, and let (z. :e € E) be algebraically in-
dependent commuting indeterminates. We define a V' by V' skew-symmetric
matrix T'=(t;;), called the Tutte matriz of G, such that t;; =4z, if ij=e€ F,
and ¢;; =0 otherwise. Tutte observed that 7" is nonsingular (that is, its deter-
minant is not identically zero) if and only if G admits a perfect matching. In
fact, the rank of T is exactly twice the size of a maximum cardinality match-
able set in G. (A subset X of V is called matchable if G[X], the subgraph
induced by X, admits a perfect matching.) By applying elementary linear
algebra to the Tutte matrix, Tutte proved his famous matching theorem [12].

It is not immediately clear how to obtain an efficient matching algorithm
from the Tutte matrix. The determinant of 7" is a polynomial that may
have exponentially many terms, so it cannot be computed efficiently. We
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circumvent this problem by substituting constants in place of the indetermi-
nates. In doing so the rank of T does not increase. This idea was originally
proposed by Lovasz [7] who gave an efficient randomized algorithm for find-
ing the size of the largest matching of a graph. Here, using ideas from the
Gallai-Edmonds structure theorem and from linear algebra, we describe an
efficient deterministic algorithm for choosing the constants so that the rank
of T" does not decrease.

Let T be the Tutte matrix of G. An evaluation of T is a matrix T/ =
(téj) obtained by replacing the indeterminates in 7" by integers in {1,...,n},
where n = |V|. For an edge ij of G, we construct a matrix 7"(a;ij) from
T' by replacing tj; and t7; by a and —a respectively. T'[X] denotes the
principal submatrix of 77 whose rows and columns are indexed by the set
X, and 7"\ X denotes T"[V \ X|. Let D(T") be the set of all x € V' such
that rank 7"\ z =rank 7”. We refer to the elements of D(T”) as the deficient
elements of T”. For evaluations 7] and T3 of T', we write

T, XT3 if either rank Ty >rank T or rank Ty =rankT] and D(T])C D(T3).
T| =T, if rankT{ =rank Ty and D(T])=D(T3). And
T, XT3 it T{ <T5 but T #£Ts.

Obviously, for any evaluation 7" of T', we have T <T. Our main theorem is
the following.

Theorem 1.1. Let T be the Tutte matrix of a simple graph G = (V| E),
and let T' be an evaluation of T. Then either T' ~T or there exists ij € E
and a€{1,...,n} such that T'(a;ij) =T".

An obvious consequence of the theorem is that we can efficiently deter-
mine the size of the largest matching in G. Indeed, take any evaluation 7" of
T and apply Theorem 1.1. We will either find a € {1,...,n} and ij € E such
that T7"(a;ij) =T" (in which case we replace T" by T"(a;ij) and then repeat
the above procedure), or we conclude that 7"~T (in which case the largest
matchable set has size rank7”). Hence, in at most n? iterations we will know
the size of the largest matchable set. Our algorithm is not computationally
competitive with Edmonds’ augmenting path algorithm [5] for the matching
problem. However, there are a number of important combinatorial problems
that can be formulated in terms of matrices of indeterminates (for example,
path-matching [3], exact matching [10], and linear matroid parity [7]). The
results in this paper provide some hope of finding similar solutions to these
more general problems.

One drawback of the algorithm is that it does not actually identify a
maximum matching. Suppose we have found an evaluation 7" of T' such
that 7"~ T, how then do we find a maximum cardinality matching? The
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most obvious solution is to run the algorithm | E| times (throwing out edges if
doing so does not decrease the rank of T'). With more sophisticated methods
from linear algebra, a maximum matching can be extracted from 7" in O(n?).
This is a moot point, since a maximum matching can be found in O(n??)
using augmenting path algorithms [9].

Consider a naive implementation of our algorithm. We need to apply
Theorem 1.1 O(n?) times. Each time we apply Theorem 1.1, we may have
to compute D(T"(a;ij)) for each ij € E and each a € {1,...,n}. Computing
D(T'(a;ij)) requires O(n) matrix inversions. So, in total, we require O(n°)
matrix inversions. There are a number of ways to improve this bound. For
example, Cheriyan [2] shows how to compute D(T”(a;4j)) in approximately
the same time as it takes to perform one matrix inversion. Furthermore,
following the proof of Theorem 1.1, we do not need to check all edges; we need
only check O(n) edges. However, the algorithm remains computationally
unattractive.

2. Skew-symmetric matrices

AV by V matrix T' = (t};) is skew-symmetric if —T" is equal to T'" (that
is, the transpose of T”). Suppose that 7" is skew-symmetric. Define F(7")=
{X CV:rankT'[X]|=|X]|}. Note that,

det(T[X]) = det(T'[X]T) = det(—T"[X]) = (=1)X| det(T"[X]).

Thus, if | X is odd then 7”[X] is singular. Hence, | X| is even for all X € F(T").
The set-system (V,F(T")) is an example of an “even delta-matroid” (see
Bouchet [1]). Then, by a result obtained independently by Duchamp [4] and
Wenzel [13], F(T") satisfies the following axiom:

Simultaneous exchange axiom. Given X,Y € F(T’) and z € XAY,
there exists y€ X AY such that X A{z,y},Y A{x,y} e F(T').

We denote by F*(T") the set of maximum cardinality members of F(7").

Lemma 2.1. Let T’ be a V' by V skew-symmetric matrix, and let X be a
subset of V. Then X € F*(T") if and only if X indexes a maximal set of
linearly independent columns of T".

Proof. It is clear that, for X € F(T"), the columns of 7" indexed by X are
linearly independent. Therefore, it suffices to prove, for a maximal set X of
linearly independent columns of 7", that 7’[X] is nonsingular.

Since T” is skew-symmetric, X also indexes a maximal set of linearly in-
dependent rows of T”. Note that deleting dependent rows does not affect
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column dependencies. Thus X is a maximal set indexing linearly indepen-
dent columns of T'[X,V]. Therefore, T"[X] is nonsingular. |

Note that the previous lemma implies that the rank of 7" is equal to the
size of a largest nonsingular principal submatrix of 7”. In particular, the
rank of a skew-symmetric matrix is always even. The previous result also
implies that F*(7”) is the family of bases of a representable matroid. We
use some elementary matroid theory in the proof of the following lemma,;
see Oxley [11] for a good introduction to matroid theory.

Lemma 2.2. Let T’ beaV by V skew-symmetric matrix. Then there exists
a partition D(T") of D(T"), such that, for distinct elements i,j in D(T"), i,j
are in the same part of the partition if and only if rank T"\{i,j} =rank T'—2.

Proof. Given z,y € D(T"), rankT’\ {z,y} is either rank7T” or rankT”’ — 2.
Let M be the matroid (V,F*(T")). The coloops of M are the elements of
V\D(T"). For x,y € D(T"), {x,y} is coindependent in M if and only if
rank 7’ \ {z,y} =rankT’. Let (D,...,Dy) be the series-classes in M. Then
D=(D,...,Dy) is a partition of D(T"), and, for distinct i,j€ D(T"), i,j are
in a common part of the partition if and only if {4,;} is codependent in M. I

A structure theorem

Let A(T") be the set of all ve V\ D(T") such that D(T7"\v)=D(T"). Then
define C(T") =V \ (A(T")uD(T")), and define odd(7”) to be the number of
sets in D(T”) having odd cardinality.

Theorem 2.2. Let T'=(t};) beaV by V skew-symmetric matrix satisfying
(a) For each i€ D(1") and j€C(T"), t;;=0, and
(b) For each i,j€ D(T") in different parts of D(T'[D(1")]), t;;=0.
Then T’ satisfies the following conditions,

(i) T"|C(T")] is nonsingular,

(ii) For each X e D(T'[D(T")]) and xz € X, T'|X — x| is nonsingular,
(iii) rankT'=|V|— (odd(T'[D(T")]) — A(T")), and
(iv) For each i€ A(T") there exists j € D(T") such that t};#0.

We require the following lemma.

Lemma 2.3. For A'C A(T"), we have

(i) rankT"\ A’ =rank T’ —2|A’|, and
(i) D(T"\A")=D(T").



AN ALGEBRAIC MATCHING ALGORITHM 65

Proof of Lemma 2.3. We prove the lemma by induction on |A’|. By
definition, the result holds for |A’| < 1. Choose any a € A’; then we may
suppose that the result holds for A’ —a. In particular rank7”\ (A’ —a) =
rank7’ —2|A’—a| and D(T'\ (A" —a)) = D(T"). Since a € A(T"), a is not
a member of D(T”), and hence it is also not in D(7"\ (A’ —a)). Therefore,
rank 7"\ A’ <rank 7"\ (A’—a). However, since skew-symmetric matrices have
even rank, rank7”\ A’ =rankT"\ (A’ —a) —2=rank T’ — 2| A’|. Hence, (i) is
satisfied.

It is straightforward that D(T"\ (A’ —a)) C D(T"\ A’). Suppose that
D(T"\ A’) # D(T"). Then there exists y € D(T"\ A’)\ D(T"). Choose sets
XeF(T') and Y € F*(T'\ A’) such that y¢Y. Since aZ D(T"), a€ X. Now
a€ X \Y, so, by the simultaneous exchange axiom, there exists b € XAY
such that X A{a,b} and Y A{a,b} are both contained in F(T"). If be Y\ X,
then X A{a,b} € F*(T"), contradicting that a¢ D(T"). Hence, be X \Y. Note
that X'\ {a,b} € F*(T"\ a), so be D(T"\ a) = D(T"). Therefore, b #y. Now
Y U{a,b} e F*(T'\ (A’ —a)), and y €Y U{a,b}. Hence, y€ D(T"\ (A" —a)).
This contradiction completes the proof. ]

Proof of Theorem 2.2. For simplicity, we denote D(T"), A(T"), and C(T")
by D, A and C respectively. Let A’ be the set of all i€ V'\ D for which there
exists j € D such that t;;#0. Then define C'=V\ (A'UD). By (a), A'C A.
Suppose that D(T'[D])) = (X1,...,Xk). Then T"[V'\ A’] is a block diagonal
matrix with blocks T7[X1],...,T'[Xy],T'[C']. By Lemma 2.3, D(T"[X;]) =X;
for i=1,...,k, and D(T’[C"]) is the empty set. Hence T'[C"] is nonsingular.
However, for a € C'\ C, D(T"\ (A’Ua)) = D, so D(T'[C" —a]) is empty.
This is a contradiction, since |C" —a| is odd so T'[C" —a] is singular. Hence
C’"=C and A’ = A. This proves (i) and (iv). By the definition of D(T"),
each Y € F*(T'[X;]) has size |X;| — 1. Hence rankT'[X;] = |X;| — 1, which
proves (ii). However rank 7'[X;] is even, so |X;| is odd for i=1,...k. Hence

rank 7"\ A(T")=|V\ A(T")| —odd(T'[D(T")]). Then, by Lemma 2.3,

rank 7’ = rank 7" \ A(T") + 2 ‘A(T/)’
= |V \ A(T")| — odd(T"[D(T")]) + 2 |A(T")|
— V]~ (odd(T'[D(T')]) — A(T"))

proving (iii). 1

Lemma 2.4. Let T' be a V by V skew-symmetric matrix, and suppose
x€C(T"). Then, D(T")C D(T"\{z}). Furthermore, for ve D(T"\{z})\D(T")
and for any X € F*(T"), X \{v,z} e F(T").
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Proof. Since x € C(T”) it is straightforward that D(7") C D(T'\{z}). Since
neither z nor v is deficient, z,v€ X. Choose Y € F*(T"\{z}) such that v €Y.
Then v € XAY. So, by the simultaneous exchange axiom, there exists y €
XAY such that X A{v,y},Y A{v,y} € F(T"). Suppose that y€Y \ X. Then
X A{v,y} € F*(T"). However, this contradicts that v ¢ D(T"). Therefore,
ye X\Y, so YA{v,y} € F*(T"). However, x ¢ D(T"), and therefore y = z.
Then X A{v,y} =X \{v,a} € F(T’), as required. |

Lemma 2.5. Let T’ be aV by V skew-symmetric matrix such that for each
i€ D(T") and j € C(T"), t;;=0. Furthermore, suppose that i,j € D(T") such
that i and j are in different parts of D(T'[D(T")]). Then either i and j are
in different parts of D(T"), or there exists a € A(T") such that i and j are in
different parts of D(T"\ a).

Proof. Note that 7"\ A(T”") is block diagonal with blocks T"[D(T")] and
T'[C(T")]. Then, by Lemma 2.3, D(T"\ A(T"))=D(T'[D(T")]). Therefore, i
and j are in different parts of D(T"\ A(T")). Let A’ be a minimal subset of
A(T") such that ¢ and j are in different parts of D(7"\ A’). We may assume
that |A’| > 2. Choose a € A’. By the definitions, there exists X € F*(T")
such that j ¢ X, and Y € F*(T"\ A’) such that i,j € X. Now a € X \Y.
So, by the simultaneous exchange axiom, there exists b € X AY such that
X Afa,b},Y A{a,b} € F(T'). Since a¢ D(T"), be X \Y . Note that X\{a,b} €
F*(T'\ a). Thus we may assume that i € X \ {a,b}, since otherwise ¢ and j
are in different parts of D(T7"\a). Therefore, b#i. Now note that YU{a,b} €
F*(T"\ (A’ —a)). Therefore, i and j are in different parts of D(T"\ (A’ —a)).

However, this contradicts the minimality of A’. |

Pfaffians and matriz perturbations

Pfaffians are a powerful tool for studying skew-symmetric matrices. We now
review some basic results about Pfaffians; see Godsil [6] for a more detailed
overview.

Let T'=(t};) be a V by V skew-symmetric matrix, where V' ={1,...,n}.
Let G(T") denote the graph (V,E’) where E' = {ij : t}; # 0}, and let M7
denote the set of perfect matchings of G(T"). A pair of edges ujvy, ugvy of
G(T"), where u; < vy and ug < vg, is said to cross if u; <wus <wvy < wy or
ug <uy <vg <wvi. The sign of a perfect matching M of G(T"), denoted oy,
is (—1)* where k is the number of pairs of crossing edges in M. The Pfaffian
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of T, denoted Pf(T"), is defined as follows:

(1) PET) = > om [] tue
MeMpy uveEM
u<v
Pfaffians satisfy the identity det(7") = Pf(T")?; and are often more conve-
nient to work with than determinants. Like determinants, Pfaffians can be
calculated by “row expansion” [6]:

n

(2) PE(T') = D (~1)*H5, PE(T"\ {1, k}).
k=2

Consider T, =T'(a,ij) for i,j € V and an indeterminate a. Note that,
by (1), Pf(7,[X]) is linear in a. Furthermore, by (2),

3) PE(T5[X]) = £ PE(T[X\ {i, j}])a + P£(Tp)

Lemma 2.6. Let ij € E. Then there exists a € {1,...,n}\ {t};} such that
T'(a;ij) =T

Proof. Let T/ denote T'(a,ij), where a is yet to be determined. For each
x € D(T'), there exists X € F}» with z ¢ X. There is at most one choice for
a that makes T/ [X] singular. For any other choice of a, we have rank T, >
rank7”, and if rank T/, =rankT” then x € D(T}). Note that if z is either 7 or
J, then T} [X]=T"[X] which is nonsingular. Hence, for each x € D(T")\{i,j},
there is at most one forbidden choice for a. So the number of forbidden
choices is at most |D(T)\ {7,/ }| <n—2, but there are n—1 choices available
for a. |

Lemma 2.7. Let ij € E, and let X C V' \{i,j} such that X € F(T") but
XU{4,j}¢F(T"). Then, for any o' #t}., X U{i,j} € F(T'(d';ij)).

177

Proof. By (3), PI(T.[X U{i,j}]) is linear in a and not identically zero. So
there is at most one choice for a that makes Pf(T,[X U{i,j}]) zero, this
choice is a=t;;. ]

Building good evaluations

We conclude this section by proving Theorem 1.1. We require some prelim-
inary results.
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Theorem 2.3. Let G = (V,FE) be a graph, and let T' be an evaluation of
its Tutte matrix. If ij is an edge with i € D(T") and j € C(T"), then there
exists a€{1,...,n} such that T'(a,ij) =T’ .

Proof. Take X € F*(T") such that i ¢ X, and y € D(T"\ j)\ D(T"). By
Lemma 2.4, X\{j,y} € F(T"). Now since y& D(T"), X\{y}U{i} ¢ F(T"). By
Lemma 2.6, there exists a € {1,...,n}\{t{;} such that T"(a;ij) = T". Then, by
Lemma 2.7, X\{y}U{i} € F(T'(a;ij)). Hence, either rankT"(a;ij) >rank T")
or y€ D(T(a;ij)). So T(a;ij)=T'. |

Theorem 2.4. Let G = (V,E) be a graph, and let T' be an evaluation of
its Tutte matrix, such that, for all z € D(T") and all y € C(T"), xy ¢ E. If
i,j € D(T") such that ij € FE and i and j are in different parts of D(T'[D(T")]),
then there exists a€{1,...,n} such that T'(a;ij)>=T".

Proof. Suppose that i and j are in different parts of D(T”). Then there
exists X € F*(1") such that 4,j ¢ X. Take any a € {1,...,n}\ {t;;}. Then,
by Lemma 2.7, X U{i,j} € F(T"(a;ij)). Hence T'(a;ij) = T', as required.
Therefore, by Lemma 2.5, we may assume that there exists x € A(T") such
that ¢ and j are in different parts of D(7”\z). Take X € F*(T"\x) such that
i,j¢X. Now since x ¢ D(T"), XU{i,j} ¢ F(T"). By Lemma 2.6, there exists
a€{l,...,n}\{t};} such that T'(a;ij) =T". Then, by Lemma 2.7, XU{i,j} €
F(T'(a;ij)). Hence, either rankT”(a;ij) > rankT” or x € D(T'(a;ij)). So
T(ayij)=T'. |

Proof of Theorem 1.1. Suppose that there does not exist 5 € E and a €
{1,...,n} such that T"(a;ij) = T". Then, by Theorems 2.3 and 2.4, T" satisfies
conditions (a) and (b) of Theorem 2.2. Then, by Theorem 2.2, rank7T’ =
[V'| = (odd(T"[D(T")]) — |A(T")|). Therefore it is routine to see that every
matchable set of G misses at least odd(T"[D(T")])—| A(T")| elements of D(T").
It follows that rank7” = rank7', and that each set in F*(T) avoids only
elements of D(T"). Hence T"~T as required. 1

3. The Gallai-Edmonds structure theorem

As previously mentioned, our proof of Theorem 1.1 is motivated by the
Gallai-Edmonds structure theorem. In this section we give a proof of this
theorem, using Theorem 2.2. For a more detailed discussion of the struc-
ture theorem, and for a comprehensive introduction to matching theory, see
Lovész and Plummer [8].
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We require the following definitions. Let G =(V, E') be a simple graph. We
denote by D(G) the set of vertices in G that are avoided by some maximum
cardinality matchable set. Let A(G) be the set of vertices in V'\ D(G) that
have a neighbour in D(G). Then define C(G) := V' \ (A(G) U D(G)). We
denote by odd(G) the number of connected components in G having an odd
number of vertices. If V' —v is a matchable set of G for every v€V then we
call G hypomatchable.

Theorem 3.5 (Gallai-Edmonds Structure Theorem). For a graph
G=(V,E), we have

(i) C(G) is a matchable set of G,
(ii) every connected component of G|D(G)] is hypomatchable,
(iii) the size of the largest matchable set of G is |V|— (odd(G[D(G)]) —
[A(G)]).

Proof. Let T be the Tutte matrix of G. Note that D(G)= D(T). Further-
more, it is clear that there is no edge ij of G such that 7 and j are in different
parts of D(T[D(T)]). Suppose that there exists an edge ij of G such that
ieD(T) and je C(T). Let X be a maximum cardinality matchable set of
G that does not contain i, and let y€ D(T'\ j)\ D(T). Then, by Lemma 2.4,
X\{J,y} is a matchable set. But, as ij is an edge, X \{y}U{i} is a maximum
cardinality matchable set. This contradicts that y & D(T'). Therefore there
are no edges between D(T") and C(T') in G. Hence we can apply Theorem 2.2
to T'. By Theorem 2.2 (iv), A(G)=A(T) and hence C(G)=C(T). So (i), (ii)

and (iii) are immediate consequences of their counterparts in Theorem 2.2. i

Acknowledgements. I thank Bill Cunningham and Joseph Cheriyan for
helpful comments.

References

[1] A. BOUCHET: Representability and A-matroids, Collogquia Societatis Jdnos Bolyai,
52 (1988), 162-182.

[2] J. CHERIYAN: Randomized O(M(|V])) algorithms for problems in matching theory,
to appear in SIAM J. Computing.

[3] W. H. CunNINGHAM and J. F. GEELEN: The optimal path-matching problem, Pro-
ceedings of the 37th Annual Symposium on Foundations of Computer Science (1996),
78-85.

[4] A. DucHAMP: A strong symmetric exchange axiom for delta-matroids, (1995).

[5] J. EDMONDS: Paths, trees and flowers, Canad. J. Math., 17 (1965), 449-467.

[6] C. D. GobsiL: Algebraic Combinatorics, Chapman and Hall, 1993.

[7] L. LovAsz: On determinants, matchings, and random algorithms, in Fundamentals

of Computing Theory (L. Budach, Ed.), Akademia-Verlag, Berlin, 1979.



70 JAMES F. GEELEN: AN ALGEBRAIC MATCHING ALGORITHM

[8] L. LovAsz and M. D. PLUMMER: Matching Theory, North-Holland, Amsterdam,
1986.

[9] S. MicaLl and V. V. VAzIRANI: An O(VY/2E) algorithm for finding a maximum
matching in general graphs, 21st Annual Symposium on Foundations of Computer
Science (Syracuse, 1980), IEEE Computer Society Press, New York, 1980, 17-27.

[10] K. MULMULEY, U. V. VAZIRANI and V. V. VAZIRANI: Matching is as easy as matrix
inversion, Combinatorica, 7 (1987) 105-113.

[11] J. G. OXLEY: Matroid Theory, Oxford Science Publications, 1992.

[12] W. T. TUTTE: The factorization of linear graphs, J. London Math. Soc., 22 (1947),
107-111.

[13] W. WENZEL: A-matroids with the strong exchange conditions, Appl. Math. Lett., 6
(1993) 67-70.

James F. Geelen

Department of Combinatorics
and Optimization

University of Waterloo
Waterloo, Ontario,

Canada, N2L 3G1

jfgeelen@math.uwaterloo.ca


mailto:jfgeelen@math.uwaterloo.ca

	Heading
	1. Introduction
	2. Skew-symmetric matrices
	A structure theorem
	Pfaffians and matrix perturbations
	Building good evaluations

	3. The Gallai--Edmonds structure theorem
	References

