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Let G=(V,E) be an oriented graph whose edges are labelled by the elements of a group
I and let ACV. An A-path is a path whose ends are both in A. The weight of a path
P in G is the sum of the group values on forward oriented arcs minus the sum of the
backward oriented arcs in P. (If I' is not abelian, we sum the labels in their order along
the path.) We are interested in the maximum number of vertex-disjoint A-paths each
of non-zero weight. When A = V' this problem is equivalent to the maximum matching
problem. The general case also includes Mader’s S-paths problem. We prove that for any
positive integer k, either there are k vertex-disjoint A-paths each of non-zero weight, or
there is a set of at most 2k — 2 vertices that meets each of the non-zero A-paths. This
result is obtained as a consequence of an exact min-max theorem.

1. Introduction

Let I" be a group, let G=(V,E) be an oriented graph where each edge e of
G is assigned a weight 7. €', and let ACV. (We will use additive notation
for groups, although they need not be abelian.) An A-path is a path (with
at least one edge) in the underlying graph whose ends are both in A. Let
e be an edge of G oriented with tail w and head v. We let v(e,u) = —7.
and y(e,v) =7.. Now, if P=(vg,e1,v1,€2,02,...,€k,Vk) is a path in G, then
the weight of P, denoted (P), is defined to be Zle ~v(ei,v;). Note that,
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reversing the orientation on an edge e and replacing v, with —v, does not
change the weight of any path.

We are interested in the maximum number of vertex-disjoint A-paths
each of non-zero weight. We prove the following result.

Theorem 1.1. Let I' be a group, let G=(V,E) be an oriented graph with
edge-labels from I', and let ACV. Then, for any integer k, either

(1) there are k vertex-disjoint A-paths each of non-zero weight, or
(2) there is a set of at most 2k—2 vertices that meets each non-zero A-path.

Let v(G,A,v) denote the the maximum number of vertex-disjoint A-
paths each of non-zero weight. We prove Theorem 1.1 as a corollary to an
exact min-max theorem for v(G,A,v). In fact we will give two different
versions of the min-max theorem; the first provides a more intuitive upper-
bound while the second is cleaner. Let E(A,~) denote the set of all edges
e € F whose ends are both in A and that have -, =0; note that deleting such
edges does not affect v. Let comp(G) denote the set of components of G.
Finally, let X, A’ CV such that A—X CA'CV—X and let G'=G-X—-FE(A’,7).
Then

V(G7Aa7) S |X’+V(G_X7A_Xa7)
< |X’+V(G_X7A/77)
= [X|+v(G", A7)
=X+ > v(HANV(H)")

Hecomp(G')
A'NV(H
Hecomp(G')

We will see that after an appropriate change of edge-weights we can find X
and A’ such that the above inequalities hold with equality.
Let x€V and let 6 € I'. For each edge e of G with tail v and head v we
define
Ve + 5, fv=ua
V=1 =047, ifu=ux
Ye, otherwise.

We say that +/ is obtained by shifting v by 0 at x. Note that, if z & A
then this shift does not change the weight of any A-path (even when I" is
non-abelian). The main theorem is:

Theorem 1.2. Let I' be a group, let G=(V,E) be an oriented graph with
edge labels (v, : e€ E) from I', and let AC X. Then there exist edge-labels
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(7. : e € E) obtained by shifting v at vertices in V — A and there exist sets
X,A'CV such that A—- X CA'CV —X and

v(G,A,y) =|X]|+ Z {

Hecomp(G')

ANV (H)|
alt
where G'=G—X —E(A',).

We now turn to an alternative min-max theorem. A set of edges FC F
is A-balanced if F' contains no non-zero A-path and no non-zero circuit. We
let V(F') denote the set of all vertices in G that are incident with an edge
in F. It is straightforward to prove that F'C E is A-balanced if and only if
there exist edge-labels (7. : e€ E) obtained by shifting v at vertices in V—A
such that 7} =0 for all f€ F. With this in mind, the next result is an easy
consequence of Theorem 1.2.

Corollary 1.3. Let I' be a group, let G=(V, E) be an oriented graph with
edge labels (7. : e€ E) from I', and let AC X. Then

v(G,A,v) =min [ | X|+ Z
Hecomp(G—X—F)

9

VMUVWDWWHW

where the minimum is taken over all A-balanced sets ' C E and all sets

XCV.

Note that, v(G,V,v) is the size of the largest matching in G — E(V,7).
When A=V it is easy to see that Theorem 1.2 is equivalent to the Tutte—
Berge Formula (Theorem 3.1) for the size of a maximum matching. Our
proof of Theorem 1.2 is modelled on an easy proof of the Tutte—Berge For-
mula that we give in Section 3. The referee found a remarkably short of
Theorem 1.2 based on Schrijver’s short proof [5] of Mader’s S-paths theo-
rem. These short proofs rely on Gallai’s A-path theorem [2], whereas our
proof is self-contained.

2. Some special cases

In this section we mention some path-packing problems that can be modeled
via non-zero A-paths. In each of the applications we are given an undirected
graph G = (V,FE) and a set A C V. Then, we are interested in finding a
maximum collection of “feasible” A-paths; where feasibility depends on the
application. We then determine a group, a labelling of the edges, and an
orientation of GG so that the non-zero A-paths and feasible A-paths coincide.
Unless explicitly defined, we assume that an arbitrary orientation of G has
been prescribed.
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A-paths. Here we consider any A-path to be feasible. We assign labels 7,
to edges e€ FE and let I" be the free group generated by {7, : e€ E}. Thus,
any non-trivial path has non-zero weight. Gallai [2] reduced this case to the
maximum cardinality matching problem and proved the specialization of
Theorem 1.1.

Odd A-paths. Here only the A-paths of odd length are feasible. We let
I' =75 and assign to each edge the label 1. Thus the non-zero paths are
exactly those of odd length. The problem of finding a maximum collection
of disjoint odd A-paths can be reduced to the maximum matching problem;
see [1].

(The main result in [1] gives a structural characterization of signed-graphs
with no odd-K,, minor. Signed-graphs can be considered as binary coexten-
sions of graphic matroids. Theorem 1.1 allows us to extend those results to
coextensions of graphic matroids over other finite fields.)

(S,T)-paths. Let (S,7) be a partition of A; an (S,7")-path is a path with
one end in S and the other end in T'. Let I"'=7Z5. The edges with exactly one
end in S are assigned a label of 1 and all other edges are labelled 0. Then,
an A-path is an (S,7T)-path if and only if it is non-zero. Now, v(G,A,7) is
just the maximum number of vertex disjoint (S, T")-paths. It is an interesting
exercise to deduce Menger’s theorem from Theorem 1.2.

Composition of feasible sets. Suppose that we have groups I} and 5
and two edge-labellings (a. : e € E) from I and (B : e € E) from I». We
can define I'=17 x I'; and define new edge-labels v, = (., 5.). Now, a path
P is non-zero with respect to v if and only if P is non-zero with respect to
either a or .

Mader’s S-paths. Let S be a partition of A and let [ = |S|. A path is
an S-path if its ends are in different parts of S. Thus, an A-path is an S-
path if and only if it is an (S, A —S)-path for some set S € S. Then, by
composition, we can define a group I’ :ZZQ and an edge-labelling ~ from I’
such that the S-paths are precisely the non-zero A-paths. (There is a more
direct formulation in which I'=7;.) Mader [3] proved a min-max theorem
for the maximum number of disjoint S-paths; see Schrijver [5] for a shorter
proof. Mader’s Theorem is a direct specialization of Corollary 1.3.

(The problem of finding a maximum collection of vertex-disjoint S-paths
is equivalent to the problem of finding a maximum collection of internally
vertex-disjoint A-paths. It is natural then to consider the problem of finding
a maximum collection of internally vertex-disjoint non-zero A-paths. This
contains the problem of finding a maximum collection of internally vertex-
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disjoint odd paths between a given pair of vertices; we suspect that this
latter problem is N P-hard.)

Paths on surfaces. Suppose that G = (V,F) is an oriented graph em-
bedded on a surface S and that A CV all lie on a common face F' in the
embedding, where F' is a closed disk. We fix a basepoint x in F'; then, we as-
sociate to each A-path P a simple closed curve C'(P) on S that is contained
in PUF and that has = as its basepoint. Now, we can designate an A-path
P to be feasible, in different ways, according to the homotopy class of C'(P).

Example 1. P is feasible if C'(P) is non-contractible.

Example 2. P is feasible if C'(P) is non-separating.

Example 3. P is feasible if C'(P) is orientation reversing (that is, the neigh-
bourhood of the curve C(P) is a Mobius band).

Let I' = w(S,z) be the fundamental group of S with respect to the base-
point z; see Munkres [4]. Recall that the elements of I" are the equivalence
classes of (z,x)-curves on S with respect to homotopy; thus, the identity
of I' consists of the set of contractible (z,z)-curves. Readers familiar with
topology will see that:

Lemma 2.1. G can be assigned edge-labels (. : e € E) from I' such that,
for any A-path P, v(P) is the homotopy class of C'(P).

Thus, given the edge-labelling v from Lemma 2.1, an A-path P is non-
zero if and only if C'(P) is non-contractible. This gives us a formulation for
the first example. In each of the other two examples, the homotopy classes
corresponding to non-feasible A-paths determine a normal subgroup of I'.
Therefore, formulations for these examples can be obtained, via Lemma 2.1,
by applying appropriate homomorphisms to I'.

3. Matching

Let G = (V,E) be a graph. The matching number of G, denoted v(G), is
the size of a maximum matching, and the deficiency of G is defined by
def(G) :=|V|—-2v(G). We let odd(G) denote the number of components of
G that have an odd number of vertices. Note that, for any X CV, we have

def(G) > def(G — X) — | X| > 0odd(G — X) — |X|;
the following theorem shows that equality can be attained.
Theorem 3.1 (Tutte—Berge Formula). For any graph G,
def(G) = max(odd(G — X) — |X]| : X C V).
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A set S CV is matchable if there is a matching of G that covers every
vertex in S (matchable sets need not have even cardinality). It is well-known
that the matchable sets of G form the independent sets of a matroid on V/;
this is the matching matroid of G.

We require some elementary matroid theory. Let M be a matroid with
ground set V and let u,v€ V. Then, u is a coloop of M if u is in every basis
of M. The elements u and v are in series if neither u nor v are coloops, but
there is no basis that avoids both w and v. It is easy to show that series
pairs are transitive. That is, if u is in series with v and v is in series with w
(u#w), then w is in series with w.

Lemma 3.2 (Gallai’s Lemma). If G = (V,E) is a connected graph and
v(G—v)=v(QG) for each vertex veV, then def(G)=1 and |V] is odd.

Proof. The matching matroid M of G has no coloops since v(G—v)=v(G)
for each vertex v € V. For each edge uv of G, we have v(G —u—v) <v(G);
that is, u is in series with v. Then, since G is connected, each pair of vertices
is in series. Thus, no basis of M can avoid two or more vertices. Therefore,

def(G)=1 and, hence, |V] is odd. |

Proof of the Tutte-Berge Formula. We have already seen that def(G) >
odd(G — X) — | X]| for any set X CV, thus it suffices to prove that equality
can be attained.

Choose X CV maximal such that v(G)=v(G— X)+|X]|. By our choice
of X we have v((G—X)—v)=v(G—X) for each veV — X. Then, applying
Gallai’s Lemma to each component H of G — X, we see that def(H) =1
and |V (H)| is odd. Thus, def(G — X) = odd(G — X). Therefore, def(G) =
V]~ 20(G) = [V| — 201(G — X) +|X]) = (IV — X| - 20(G — X)) — |X] =
def(G—X) —|X|=0dd(G— X)—|X]|; as required. 1

4. A matroid from non-zero A-paths

Throughout this section we let I" be a group, G = (V,E) be an oriented
graph with edge-labels (7. : e€ F) from I', and ACV. We let def (G, A,~):=
|A|—2v(G, A, 7).

A path is a sequence P = (vg,e1,v1,€2,V2,...,€k, V) where vg,...,v; are
distinct vertices of G and e; has ends v;_1 and v; for each i€ {1,...,k}. Thus,
P is ordered in that it has distinguished start (vg) and end (vy). However,
P need not be “directed” in that an edge e; of P may have v;_1 or v; as
its head. The path (vy,ex,vp_1,...,v1,€1,v0) is denoted by P. Also, for any
i,j € {1,...,k} with ¢ < j, the path (vj,ei11,vi41,...,€5,v;) is denoted by
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Plv;,v;]. We allow paths consisting of a single vertex; we refer to such paths
as trivial.
An A-collection is a set P of vertex disjoint paths such that:

1. each vertex in A is either the start or the end of a path in P,
2. the start of each path P€P is in A, and
3. if P€P is non-trivial and has its end in A, then (P)#0.

A path P€P is loose if it is trivial or its end is not in A; thus each path in
P is either an A-path or it is loose (not both). An A-collection is optimal if
it contains v(G, A,~) A-paths; note that there are optimal A-collections.

Let I" = {y(P) : P apath of G} (when I' is finite we could just take
I'"=T). Now, let S={(v,0) :ve A}U{(v,y) :veV —A,vel'}. We will
define a matroid on the ground set S. Let P be an A-collection. We let B(P)
denote the set of pairs (v,7(P)) where v is the end of a loose path P € P.
Note that, B(P) CS. Now let B denote the set of all B(P) where P is an
optimal A-collection.

Note that |B|=def(G, A,v) for all B € B. Below we show that B is the
collection of bases of a matroid on S. (In the special case that our original
A-path problem was just matching, this matroid is isomorphic to the dual
of the matching matroid.)

Lemma 4.1. B is the set of bases of a matroid on S.

Proof. As noted above, B is nonempty and all sets in 5 have the same
cardinality. Suppose that B is not the collection of bases of a matroid. Thus,
there exist P, P’, and (u,«) satisfying:

Claim 4.2. P and P’ are optimal A-collections and (u,«) € B(P
such that for each (v,3) € B(P')—B(P) we have (B(P)—{(u,a)})U
B.

—_——
—~

\.Q?

@
N—
—

R

Now:

Claim 4.3. we choose P, P', and (u,«) satisfying 4.2 with |E(P)— E(P')|
as small as possible.

We use the following claim repeatedly.

Claim 4.4. There does not exist an optimal A-collection P” such that

B(P)=B(P")={(u,a)} and |E(P") = E(P')| <|E(P) - E(P')|.

Subproof. Suppose that there does exist such an A-collection P”. Since
|B(P")| = |B(P)| there is a unique element, say (v',a'), in B(P")— B(P).
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Moreover, by 4.2, (u/,’) & B(P'). However, |E(P")—E(P')|<|E(P)—E(P")|.
So, by 4.3, P, P', and (u',a’) do not satisfy 4.2. That is, there exists an
element (v,3) € B(P')— B(P") such that (B(P')—{(v/,a/)})U{(v,3)} € B.
However, (B(P) - {(10)}) U{(v,0)} = (B(P") — {(u/,a)}) U{(v.8)} € B,
contradicting 4.2. |

Let P = (vg,e1,v1,...,ex,v;) be the path in P ending at u; thus, u=uvy.
By possibly reversing the order, we may assume that there is a path P/ =
(vp,€},01,...,€},v)) in P’ that starts at vg. Suppose that P is not contained in
P’ and let e, be the first edge of P not in P’. Now let P” be the A-collection
obtained from P by replacing P with P[vg,vs—1]. Note that, P” is optimal.
Moreover, B(P)— B(P")={(u,a)} and |E(P")— E(P")| <|E(P)— E(P")|;
contradicting 4.4. Hence, P is contained in P’.

Suppose that P’ is disjoint from each path in P other than the path P,
and let P” be obtained from P by replacing P with P’. Since P is optimal,
P" is also optimal and P’ is loose. Note that, (v],(P’')) € B(P')—B(P) and
(B(P) —{(u,)}) U{(v],7(P"))} = B(P") € B, contradicting 4.2. Therefore,
there is some vertex that is both on P’ and on a path in P other than P;
let v} be the first such vertex on P’ and let Q = (uo, f1,u1,.-., fm,Um) be the
path of P containing v]. Suppose that u;=v]. We consider two cases.

Case 1: @ is a loose path.

Let P; be the A-path contained in P’UQ and let P, be the path in P'U
@ that starts at w and ends at wu,,. Since P is optimal, v(P;) = 0. Thus,
Y(P'vgy,vi]) = v(Q[uo,u;]) and, hence, v(P2) = v(Q). Now, let P” be the
A-collection obtained from P by replacing P and ) with P, and the trivial
path (up). Note that, B(P)— B(P"”) = {(u,«)}. Moreover, since y(P;) =
0, P; # P'. Thus, there is an edge of Q[ug,u;] that is not in E(P’). So,
|E(P")—E(P")|<|E(P)— E(P')|; contradicting 4.4.

Case 2: () is an A-path.

Let Py and P, be the A-paths in P'UQ that both start at u and that end with
ug and u,, respectively. Note that v(Py)+~(Q)+v(P) =0 and v(Q) # 0,
so either y(P1) # 0 or v(P,) # 0. Moreover, either P’ is loose (and hence
different from P; and P») or v(P’) #0. Thus, either v(P;) #0 and P, # P’
or v(P) #0 and P; # P'. By possibly swapping P; and P, and reversing
@, we may assume that v(P)#0 and P; # P’. Let P” be the A-collection
obtained from P by replacing P and ) with P, and the trivial path (ug).
Note that, B(P)— B(P") = {(u,«a)}. Moreover, since P; # P’ there is an
edge of Qlug,u;] that is not in E(P”) U E(P’). Thus, |[E(P") — E(P')| <
|E(P) — E(P')|; contradicting 4.4. This final contradiction completes the
proof. |
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5. Proofs of the main results

Let I" be a group, G=(V, E) be an oriented graph with edge-labels (v, : e€
E) from I', and ACV. The triple (G, A,~) is critical if

(i) G is connected,

(i) v(G—{v}, A—{v},v)=v(G,A,~) for each veV,

(iii) for each v € V — A and for any edge-labelling 7" obtained from ~ by
shifting at v we have v(G,AU{v},7") >v(G, A,7), and

(iv) E(A,y)=0.

In Section 3 we defined “coloops” and “series pairs”; in this section we
require the dual notions, “loops” and “parallel pairs”. Let M be a matroid
with ground set S and let uw,v € S. Then, u is a loop of M if u is not in
any basis of M. The elements v and v are parallel if neither u nor v are
loops, but there is no basis that contains both w and v. Parallel pairs are
transitive; that is, if u is parallel with v and v is parallel with w (u#w),
then w is parallel with w.

Lemma 5.1. Let I' be a group, let G =(V,E) be an oriented graph with
edge labels (7. : e€ E) from I', and let AC X. If (G, A,~) is critical, then
def(G,A,v)=1 and, hence, |A| is odd.

Proof. Suppose that (G, A,7) is critical, and let M =(S,B) be the matroid
obtained from (G, A,v) via Lemma 4.1. Let S’ denote the set of all non-loop
elements of M.

Claim 5.2. Let e be and edge of G with tail w and head v, and let
(u,),(v,8)€ S’ If a+~.—[B#0, then (u,«) and (v,[3) are parallel.

Subproof. If (u,a) and (v,3) are not parallel, then there is a basis of M
that contains them both. That is, there is an optimal A-collection P with
(u,a),(v,B)€ B(P). Now, let P, and P, be the paths in P containing v and
v respectively. Note that, P=(P,,e, P,) is an A-path with v(P)=a+~.— 3.
Then, since P is optimal, we have a4, — =0, as required. |

Claim 5.3. For each ve A, we have (v,0)€S".

Subproof. Since (G, A4,7) is critical, v(G —v,A—v,7) =v(G,A,v). Thus,
there exists a set P of v(G,A,7) non-zero A-paths each disjoint from wv.
Now, adding trivial A-paths to P we obtain an optimal A-collection P’ with
(v,0)€ B(P'). Thus, (v,0)€S’, as required. 1

Claim 5.4. For each v € V — A, there exist two distinct elements

(v,),(v,B8)€S".
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Subproof. Consider any element 6 € I', and let 4/ be the edge la-
bels obtained from ~ by shifting at v by d. Since (G,A,v) is critical,
v(G,AU{v},v) = v(G,A,vy)+ 1. Let P be an optimal AU {v}-collection
with respect to 7. Since v(G, AU{v},7") >v (G, A,7), v is the start or end of
an AU{v}-path P in P; by possibly reversing P we may assume that v is the
end. Then, P is an optimal A-path collection in G and /(P)=~(P)+3#0.
Now, (v,y(P))€S" and v(P)# —4¢. Since § is any element of I", there must
exist two distinct elements (v,«), (v,3) € S’. 1

Claim 5.5. Let e be an edge with tail v and head v. Then, there exist
(u,), (v, ) €S’ that are parallel in M.

Subproof. First suppose that u,v € A. Let a,, = o, = 0. Since (G, A,7) is
critical, 0% v =, + e — . Then, by 5.2, (u,a,) and (v,«a,) are parallel.
Now we may assume that u& A or v¢ A; by symmetry we may assume that
v A. Now, by 5.3 and 5.4, there exists a, € I" such that (u,a,) € 5’, and,
by 5.4, there exists a,, € I' such that (v,a,) € 5" and @, # @y +7.. Then,
by 5.2, (u,c,) and (v,a) are parallel. 1

For each v € V, let S, = {(u,a) € S’ : u = v}. Consider an opti-
mal A-collection P. Since there is at most one path in P that ends at v,
|B(P)NS,|<1. Thus, any two elements of S!, are in parallel. Then, by 5.5
and since G is connected, each pair of elements in S’ are parallel. Thus, if
P is an optimal A-collection, then |B(P)| =1 and, hence, def(G,A,v) =1,
as required. |

Proof of Theorem 1.2. Choose X CV maximal such that v(G— X, A—
X,v)=v(G,A,7)—|X|. Now among all sets A’CV —X with A—X C A" and
edge-labellings 7/ obtained from + by shifting on the vertices in A’ — A such
that v(G—X,A’,v")=v(G—X, A—X,~) we choose the pair (A’,7") with A’ as
large as possible. Now let Hq,..., H; be the components of G—X — E(A’,7/)
and let A, denote A'NV (H;). Note that,

V(G A,Y) |X\+Z (H;, AL~

By our choice of X and A’, it is easy to check that each of the triples
(H;, AL,~) is critical. Then, by Lemma 5.1, v(H;, A}, ~') = U’g’w. So,

|4
V(G AA) =X+ 3 {TJ ,
=1

as required. |
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Proof of Theorem 1.1. By Theorem 1.2 there exist edge-labels (v, : e€ E)
obtained by shifting v at vertices in V — A and there exist sets X, A’ CV
such that A— X CA'CV —X and

l
_ V(Hi) N A'|
i=1
where Hy,...,H; are the components of G— X — E(A’,7'). Let i€ {1,...,l}
and let A, denote V(H;)NA'. Now, let X; C A} with |X;|=|A}|—1, and let
X*=XUX;U---UX;. Note that, v(H;—X;, A, — X;,7") =0 since |A,—X;|=1.
Now,

v(G— X" A—- X" ~)

I
2N

G- X" A—X*~)
G—-X*" A —-X*"°)
G_X* —E(A/,’}//),A/ —X*,’}//)

IN

=5

MN

V(Hl - Xia A; - Xi,’)/)
1

I
=k

Thus, X* meets every non-zero A-path in G. Suppose that v(G,A,v) < k.
Then,

2k —2>2v(G,A,x)
!
_ |Ail
= 2|X]| +i§_12 { 5

l
> X[+ ) (|4l - 1)
=1
l
= X[+ > _1Xi]
=1
= |X*’7

as required. 1
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