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1. Introduction

Group-labelled graphs are a generalization of signed graphs. For a group I', a I'-labelled graph is
an oriented graph with edges labelled by elements of I". Here we are primarily interested in abelian
groups, so we will use additive notation. A minor of a group-labelled graph G is any group-labelled
graph obtained from G by any sequence of the following operations: vertex deletion, edge deletion,
contracting zero-labelled edges, and shifting at a vertex, which, for a given vertex v and group ele-
ment y, amounts to adding y to the label of each edge entering v and subtracting y from the label
of each edge leaving v.

We hope that the main results of the Graph Minors Project of Robertson and Seymour will extend
to group-labelled graphs over any fixed finite abelian group. In particular, the following two conjec-
tures, if true, would generalize the two main results of the Graph Minors Project; see [5] and [7].

Conjecture 1.1. For any finite abelian group I' and any infinite sequence G1, G2, ... of I"-labelled graphs,
there exist integers i < j such that G; is isomorphic to a minor of G ;.
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Conjecture 1.2. For any finite abelian group I" and any I"-labelled graph H, there is a polynomial-time algo-
rithm to determine whether or not a I'-labelled graph G contains an H-minor.

To avoid algorithmic complications in Conjecture 1.2, we assume that the group I" is given by its
addition table. In the above conjectures the finiteness of the group I' is certainly necessary, however,
there may be extensions to non-abelian groups.

Group-labelled graphs (also known as gain graphs) are closely related with several interesting
classes of matroids; see Zaslavsky [8,9]. Proving Conjecture 1.1 would prove that two interesting
classes of matroids are well-quasi-ordered with respect to taking minors and would go a long way
towards well-quasi-ordering binary matroids.

The workhorse of the Graph Minors Project is the Graph Minors Structure Theorem [6], and the
main result of this paper is an extension of that result to group-labelled graphs over finite abelian
groups. The complete I'-labelled graph on n vertices and 2|F\(g) edges is denoted K(/7,n) (a precise
definition is given at the end of Section 2). For a subgroup I’ of an abelian group I", we say that G
is I'’-balanced if it is shifting-equivalent to a I"’-labelled graph. The following theorem is the main
result of this paper.

Theorem 1.3. Let I" be a finite abelian group, let I’ be a subgroup of I', letn € N, and let t = 8n|I"|2. If G is
a I"-labelled graph and H is a minor of G isomorphic to K(I"/, 4t), then either

o thereis a set X C V(G) with |X| < t such that the unique block of G — X that contains most of E(H) is
I''-balanced, or

o there is a subgroup I'” of I properly containing I’ and a minor H' of G with E(H') C E(H) such that
H’ is isomorphic to K(I"”, n).

The specialization of Theorem 1.3 to signed graphs is implicit in [3] and the proof of Theorem 1.3
is a routine extension of the proof given in that paper. The proof of Theorem 1.3 is constructive;
considering n as a constant, in 0(|V (G)|®) time we can find either the set X or the minor H’.

We also prove the following easy result that is complementary to Theorem 1.3. The graph that is
obtained from a group-labelled graph G by ignoring the orientation and the group-labels is denoted G.

Theorem 14. Let I" be a finite group and let n € N. Then there exists | € N such that if G is a I -labelled graph
such that G has a K;-minor, then G has a K ({0}, n)-minor.

Theorems 1.3 and 1.4 are particularly useful when applied in conjunction with “tangles,” For the
rest of the introduction we assume that the reader is familiar with the definitions in Graph mi-
nors, X [4].

Suppose that 7 is a tangle of order k in a graph (or group-labelled graph) G. If X C V(G) with
|X| < k — 2, then it is straightforward to show that there is a unique block B of G — X such that
V(B) U X is not contained in the 7 -small side of any separation of order < k; we call B the 7 -large
block of G — X.

Let I" be a finite abelian group and let n € N. Theorems 1.3 and 1.4 imply that there exist [,t € N
such that if G is a I'-labelled graph and 7 is a tangle in G of order >t + 2, then either:

(1) 7 does not control a K;-minor in G,

(2) there exists X € V(G) with |X| <t such that the 7 -large block of G — X is I"'’-balanced for some
proper subgroup I’ of I', or

(3) 7 controls a K(I",n)-minor in G.

In the first case, we can use the Graph Minors Structure Theorem to describe the structure of G.
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2. Group-labelled graphs

Let I" be an abelian group. A I"-labelled graph is an oriented graph with edges labelled by elements
of I'. More formally, if G is a I"-labelled graph, then G has a vertex set V(G) and an edge set E(G),
and each edge e € E(G) is assigned a head, denoted headg(e), in V(G), a tail, denoted tailg(e), in
V(G), and a group-label, denoted y¢(e), in I". The head and tail of an edge are referred to as its ends.

Let G be a I'-labelled graph. The graph obtained from G by ignoring the orientation and the
group labels is denoted by G. By a walk in G, we mean a walk in G. If e € E(G) and v is an end
of e, then we let ys(e,v) = yc(e) if v =headg(e) and yg(e,v) = —yc(e) if v =tailg(e). Let W =
(vo,e1,Vv1,€2,Va,..., ek, Vi) be a walk of G. We let yc(W) = yc(e1, v1) +- -+ vc(ek, vi). The length
of W is k; the ends of W are vg and vi; W is closed if vo = vi; W is a path if vg,vq,..., vy are
distinct vertices; and W is a circuit if vg, ..., vg_q are distinct, eq, ..., e, are distinct, and vg = vy.
We let E(W) ={eq,...,ex} and V(W) ={vo, ..., vk}

2.1. Shifting

Let v € V(G) and let § € I". We obtain a new I"-labelled graph G’ from G by adding § to the label
of each edge with head v and subtracting § from the label of each edge with tail v. We say that G’
is obtained from G by shifting at v. Any I'-labelled graph that is obtained from G by a sequence of
shifting operations is said to be shifting-equivalent to G. Note that, if G’ is shifting-equivalent to G
and W is a closed walk of G, then yg/ (W) = yc(W).

We omit the elementary proof of the following result.

Lemma 2.1. If G is a I"-labelled graph, for some abelian group I", and T is a spanning tree of G, then G is
switching-equivalent to some I"-labelled graph G’ with y¢/(e) = 0 for each e € E(T).

2.2. Balanced labellings

Let I’ be a subgroup of I". We say that G is I"’-balanced if y(C) € I"’ for each circuit C of G.
Note that, if I" is abelian and C; and C; are circuits of G with E(C1) = E(C3), then y¢(C1) = £y6(C2).

Lemma 2.2. Let I" be an abelian group and let G be a I'-labelled graph. If G is I"’-balanced for some sub-
group I'" of I, then G is switching-equivalent to a I"’-labelled graph.

Proof. By treating each component separately, we may assume that G is connected; let T be a span-
ning tree of G. By Lemma 2.1, G is switching-equivalent to some I"-labelled graph G’ with y¢/(e) =0
for each e € E(T). Since I' is abelian, G’ is I'’-balanced. Consider e € E(G') — E(T) and a circuit C
with E(C) € E(T) U {e}. We have yg (e) = £y (C) € I'". Hence G’ is I'’-labelled. O

Lemma 2.3. Let I" be an abelian group and let G be a I'-labelled graph. If G is I"’-balanced for some sub-
group I’ of I, then for any closed walk W of G we have yc(W) € I'".

Proof. By Lemma 2.2, G is switching-equivalent to a I'’-labelled graph G’. Now, for any closed
walk W, we have yo(W)=yc(W)eI’. O

We call G balanced if it is {O}-balanced. A set F C E(G) is balanced if the subgraph of G with
edge-set F is balanced; that is, y(C) =0 for each circuit C of G with E(C) C F.

2.3. Minors

A I-labelled graph H is a minor of G if it can be obtained from G via any sequence of the fol-
lowing operations: edge deletion, contraction of a zero-labelled edge, shifting at a vertex, and vertex
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deletion. It is straightforward to see that if F is the set of edges that are contracted in obtaining a mi-
nor H of G, then F is balanced in G. Conversely, if F’ € E(G) is balanced, then, by Lemma 2.2, we
can shift so that each edge in F’ is zero-labelled and then contract these edges. For any set A of zero-
labelled edges of G we let G/A denote the minor of G obtained by contracting A. For a set S C V(G),
we let G[S] denote the I"-labelled subgraph of G induced by S and let G — S = G[V (G) — S].

The following result, whose easy proof we omit, provides a more tangible way to exhibit a minor
in a signed graph.

Lemma 2.4. Let G be a I"-labelled graph, for some abelian group I", and let H be a minor of G. Then there is a
I"-labelled graph G’ that is switching-equivalent to G and there exist vertex-disjoint trees (T (v): v € V (H))
in G such that:

e ycr(e)=0foreachv e V(H)ande € E(T(v)),
e yc(e) =yul(e) foreach e € E(H), and
e headg/(e) € V(T (heady(e))) and tailg (e) € V(T (taily (e))) for each e € E(H).

2.4. A-paths

Let A C V(G). An A-path in G is a path of length at least one whose ends are both in A. The
following result was proved by Chudnovsky et al. [2].

Theorem 2.5. Let I" be an abelian group, let G be a I"-labelled graph, and let A C V (G). Then for any k € N
either

e there exist vertex-disjoint A-paths Pq, ..., Py with yg(P;) # 0 foreachi e {1,...,k}, or
e there exists X C V(G) with | X| < 2(k — 1) such that y¢ (P) = 0 for each A-path P in G disjoint from X.

For constant k, in O(]V (G)|®) time we can find either the paths P, ..., Py or the set X guaranteed
by Theorem 2.5; see Chudnovsky et al. [1].
We require the following elementary corollary.

Corollary 2.6. Let I’ be a subgroup of an abelian group I', let G be a I"-labelled graph, and let A C V(G).
Then for any k € N either

o there exist vertex-disjoint A-paths P1, ..., Py with yg(P;) ¢ I’ foreachie {1,...,k}, or
o there exists X C V(G) with |X| < 2(k — 1) such that yc(P) € I'’ for each A-path P in G disjoint from X.

Proof. Apply Theorem 2.5 to the quotient group I'/I"’. O

2.5. Blocks

A separation of G is a pair (G1, G2) of subgraphs of G such that E(G) = E(G1) UE(G>) and V(G) =
V(G1) U V(Gy); the order of the separation is |V (G1) N V(G3)|. We say that G is 2-connected if G
is connected and for each separation (G, G2) of G of order 1 either E(G1) =@ or E(G,) = (. Note
that if G is 2-connected and |V (G)| > 2, then G has no loops. A block of G is a maximal 2-connected
subgraph of G.

Lemma 2.7. Let G be a 2-connected I -labelled graph, for some abelian group I", and let I’ be a subgroup of I".
If u and v are distinct vertices of G such that yg(P) € I'’ for each (u, v)-path P in G, then G is I''-balanced.

Proof. Let C be a circuit of G. Since G is 2-connected, there exist two vertex-disjoint paths P and P’
from {u, v} to V(C). We may assume that P connects u to a € V(C) and P’ connects v to b € V(C).
Furthermore, we may assume that P and P’ each only meet C in one vertex. Let C’ be a circuit of G
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starting at a with E(C’) = E(C). Let Q be the (u, v)-path obtained by following P from u to a then
following C’ to b, and then following P’ backward to v. Now let Q' be the (v, u)-path obtained by
following P’ from v to b then following C’ to a, and then following P backward to u. Note that

Y6(0) =£y6(C) = £(ye(Q) +ys(Q)) e I'.

Hence G is I'’-balanced. O

2.6. Complete graphs

The complete I'-labelled graph on n vertices, denoted K(I",n), has vertex set {1,...,n} and edge
set {e(i,j,0): i,j€ V(K(I',n)), i# j, o € I'} where each edge e(i, j,o) has tail i, head j, and
label o.

We can now prove Theorem 1.4, which we restate here for convenience.

Theorem 2.8. Let I" be a finite abelian group and letn € N. Then there exists | € N such that if G is a I"-labelled
graph such that G has a K;-minor, then G has a K ({0}, n)-minor.

Proof. By Ramsey’s Theorem there exists an [ such that, if we colour the edges of a clique on I
vertices with 2|I"| colours, then there is a monochromatic subclique on 2n vertices. We may assume
that G is isomorphic to K; and that V(G) ={1,...,1}. We partition E(G) into 2|I"| sets according
to the label y;(e) of the edge e and to the sign of headg(e) — tailg(e). By our choice of I, there
exists a set X € {1,...,1} with |X| =2n, an element y € I', and a sign o € {—1, 1} such that for each
edge e of G[X] we have y;(e) = y and head¢(e) — tailg(e) = 0. By symmetry, we may assume that
X ={1,...,2n} and that o = 1. Let H be the subgraph of G[X] with all edges of G having tail in
{1,...,n} and head in {n+1,...,2n}. Now we obtain a K({0}, n)-minor of H by shifting at each of
{n+1,...,2n} so that all labels in H become zero, and then contracting a perfect matching. O

3. The main theorem
We need one more preliminary result.

Lemma 3.1. Let I" be a finite abelian group, let I'’ be a subgroup of I', letn € N, and let | =n|"|2. If G is a
I'-labelled graph and M is a matching of size | in G such that G — M is isomorphic to K(I"’, 2l) and for each
e € M we have y; (e) ¢ I'’, then there is a subgroup I'” of I" properly containing I"" and a minor H' of G with
E(H'") € E(G — M) such that H’ is isomorphic to K(I"”, n).

Proof. There exists M’ C M with |M’'| =n|I"| and an element o € I' — I"’ such that y¢(e) = o for
each e € M'. Let I'” be the subgroup of I" generated by I"’ and o and let g be the order of o.

By contracting some zero-labelled edges, we can find a minor with n vertex-disjoint directed paths
of length g such that each edge in these paths has label o. Then, by deleting edges, we obtain a minor
G’ of G with V(G) = {v;;: 1<i<n, 0<k< g} and with the following edges:

e For each ie{1,...,n} and ke {1,..., g}, we have an edge e € M’ with head v}, tail vi_,, and
label o.

e Foreachi,je{1,...,n} withi=#j, ke{l,...,g}, and y’ € I'’, we have an edge e € E(G) — M
with tail v}, head vi, and label .

Now we construct a minor H' of G’ by shifting each vertex vl by —ko (so that each e}, is zero-
labelled) and then contracting the edges {eL: 1<ig<n, 1<k< g} Itis straightforward to verify the

H’ is isomorphic to K(I"”,n) and that E(H") CE(H). O

We are now ready to prove the main result which we restate here for convenience.
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Theorem 3.2. Let I" be a finite abelian group, let I’ be a subgroup of I', let n € N, and let t = 8n|I"|2. Then if
G is a I"-labelled graph and H is a minor of G isomorphic to K (I"’, 4t), then either

o thereis aset X C V(G) with |X| < t such that the unique block of G — X that contains most of E(H) is
I'’-balanced, or

o there is a subgroup I'" of I properly containing I'" and a minor H' of G with E(H") € E(H) such that
H' is isomorphic to K(I'”, n).

Proof. Let | =n|I"|? and m = 4t.
We assume that:

3.2.1. There is no set X C V(G) with |X| < t such that the block of G — X that contains most of E(H) is
I'’'-balanced.

By possibly shifting we may assume that there exist vertex-disjoint trees (T(v): v € V(H)) in G
such that:

e yc(e) =0 for each v € V(H) and e € E(T(v)),
e yc(e) =yu(e) for each e € E(H), and
e headg(e) € V(T (heady(e))) and tailg(e) € V(T (taily (e))) for each e € E(H).

Consider any v € V(H). For each u € V(H) — {v} we choose an edge e € E(H) with u = taily(e)
and v = heady(e) and we let f,(u) =headg(e); thus f,(u) € V(T(v)). For each X C V(T (v)) we let
[T ={ueVH) —{v): fuw) € X).

We leave it to the reader to verify that we can choose a vertex a, € V(T (v)) satisfying:

3.2.2. For each edge e € E(T(v)) we have |f,71(X)| < mT—l where X is the vertex set of the component of
T(v) — e that does not contain a,.

Now we let A= {a,: v € V(H)}. For notational convenience, for X € V(H), we let T(X) denote
the subgraph of G with components (T (v): v € X). Our choice of A gives rise to the following result.

3.23.Let S € V(H) with |S| > "’T“ let L € S, let G’ is the I' -labelled subgraph of G induced by V (T (S)),
and let B be the block of G'/E(T (L)) that contains E(H[S]).Ifve S — L, thena, € V(B).

Subproof. Note that, since the edges of H[S] form a clique in G/E(T(V(H))), there is a block of
G'/E(T(L)) that contains E(H[S]). Let G” = G'/E(T(L)). If a, ¢ V(B), then there is a separation
(G1,G3) of G” of order 1 with E(B) C E(G3) and ay € V(G1) — V(G3). Let w be the vertex in
V(G1)NV(Gy). Since E(H[S]) € E(B) € E(G2) and since some edge in E(H[S]) has an end in V(T (v)),
we have w € V(T (v)). Let e be the edge on the (a,, w)-path in T(v) that is incident with w and let
X be the vertex set of the component of T(v) —e that contains w. Note that, for each u € S — {v}, we
have fy(u) € X. Thus |f‘71(X)| >1S|—-1> mT‘l contradicting our choice of a,. O

3.2.4. There exist vertex-disjoint A-paths P1, ..., P4 such that yc(P;) ¢ I'' foreachi e {1, ..., 4l}.

Subproof. Suppose otherwise; then, by Corollary 2.6, there is a set X C V(G) with |X]| < 8 such that
yc(P) € I'’" for each A-path P in G that is disjoint from X. Let S ={v € V(H): V(T(v)) N X = @}
and let H' = H[S]. Now let B be the block of G — X that contains E(H’) and let x and y be distinct
vertices in {a,: v € S}. Note that |S| > mzj By applying 3.2.3 with L =, we have x, y € V(B), and,
by our choice of X, yg(P) € I’ for each (x, y)-path P in B. Then, by Lemma 2.7, B is I"’-balanced.
However |S| > %|V(H)| so |[E(H)| > %|E(H)| and, hence, B is the unique block of G — X that contains
most of E(H), which contradicts 3.2.1. O
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Let F = E(T(V(H))). We choose vertex-disjoint A-paths P1,..., Py

e minimizing |E(P1) — F|+---+ |E(Py) — F|,
e subject to y(P;) ¢ I'’ for each i e {1,...,4l}.

Let Ap C A be the set of ends of the paths Pq,..., Py, let W ={v € V(H): AgNV(T(v)) # @}, and
let Ay =V(H)—W.

3.2.5.Foreachv e Ajandie {1,...,4l}, we have V(T (v)) NV (P;) =0.

Subproof. Suppose that T(v) meets one or more of Pq,..., P4. Then, for some path P; and w ¢
V(P;) N V(T(v)), the (ay,, w)-path Q in T(v) is internally disjoint from each of Pq,..., P4. Sup-
pose that P; is an (ay, ay)-path. Let Qx denote the (ay, ay)-path with E(Qx) € E(Q) U E(P;) and let
Qy denote the (ay,ay)-path with E(Qy,) € E(Q) U E(P;). Note that y¢(P;) — ¥6(Qy) + ¥6(Qx) = 0.
Then, since yg(P;) ¢ I'’, either y(Qx) ¢ I'” or ¥6(Qy) ¢ I'". Moreover, |E(Qx) — F| < |E(P) — F| and
|E(Qy) — F| < |[E(P) — F|; this contradicts our choice of Py,..., Pg. O

Let G; = G/E(T(A1)). We may assume that the vertices of G; are labelled so that H[A{] is a
subgraph of G; thus G1[A1] is isomorphic to K(I"/, 16]).

3.2.6.If X C V(Gy) and yc(P) € I'’ for each Aq-path P in Gy — X, then |X| > 2L.

Subproof. Suppose that |X| <2l Forie{l,...,4l} let W; =V (T(x)) UV (T(y)) where T(x) and T(y)
are the trees that contain the ends of P;. Since |X| < 2I, there is a path P; such that X N (V(P;) U
W) =@. Suppose that W; = V(T (x)) U V(T(y)) and that P; is an (ax,ay)-path. There is an (ay, ax)-
path P’ in Gy such that E(P") € E(T(x)) U E(T(y)) U E(H); thus yg,(P’) € I'". Let B be the block of
G1 — X that contains G1[(A1 U {x, y}) — X]. By Lemma 2.7, B is I'’-balanced. By 3.2.3, B contains ay
and ay. Hence, P; and P’ are both contained in B. Let W' be the closed walk obtained by appending
P’ to P;. Thus yg(W) = yg(P') + yg(P;) ¢ I'’, contradicting Lemma 2.3. O

By the above claim and Corollary 2.6, there exist vertex-disjoint Ai-paths Q1,..., Q; in Gy such
that y¢,(Q;) ¢ I'’ for each i € {1, ...,1}. Now the result follows immediately from Lemma 3.1. O
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