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Abstract

We prove that, if M is a weakly 4-connected matroid with |E(M)| � 7 and neither M nor M∗ is isomor-
phic to the cycle matroid of a ladder, then M has a proper minor M ′ such that M ′ is weakly 4-connected
and |E(M ′)| � |E(M)| − 2 unless M is some 12-element matroid with a special structure.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A matroid M is said to be 4-connected up to separators of size l if M is 3-connected and,
for each 3-separation (X,Y ) of M , either |X| � l or |Y | � l. Thus a matroid M is internally
4-connected if it is 4-connected up to separators of size 3. A matroid M is weakly 4-connected
if M is 4-connected up to separators of size 4.

Theorem 1.1 (Main theorem). Let M be a weakly 4-connected matroid with |E(M)| � 7. Then
either

• there exists e ∈ E(M) such that M \ e or M/e is weakly 4-connected,
• M has a 4-element 3-separating set A with elements c, d ∈ A such that M \ d/c is weakly

4-connected,
• M or M∗ is isomorphic to the cycle matroid of a ladder, or
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Fig. 1. A planar ladder and a Möbius ladder.

• |E(M)| = 12 and M is a trident.

We postpone the definition of “tridents” until Section 4 (see Definition 4.4).
There are two types of ladders, namely, planar ladders and Möbius ladders; see Fig. 1. A pla-

nar ladder is obtained from two disjoint circuits (u1, u2, . . . , un,u1) and (v1, v2, . . . , vn, v1) by
adding the matching {u1v1, . . . , unvn}. A Möbius ladder is obtained from a circuit (u1, u2, . . . ,

un, v1, v2, . . . , vn, u1) by adding the matching {u1v1, . . . , unvn}.
Theorem 1.1 is analogous to Tutte’s Wheels and Whirls theorem [8]:

Theorem 1.2 (Wheels and Whirls theorem). Let M be a 3-connected matroid with at least one
element. If M is neither a wheel nor a whirl, then M has a element e such that either M \ e or
M/e is 3-connected.

The Wheels and Whirls theorem is stated here in a “top–down” way, however, it is perhaps
more natural to think of it as a way of constructing 3-connected matroids: any 3-connected ma-
troid with at least 4 elements can be built from a wheel or a whirl by a sequence of single
element extensions and coextensions so that each of the intermediate matroids is 3-connected.
Similarly, Theorem 1.1 can be viewed as an inductive construction of weakly 4-connected ma-
troids. Such constructions have also been found for other variations of 4-connectivity. Geelen
and Whittle [2] construct “sequentially 4-connected” matroids, and Hall [4] constructs matroids
that are 4-connected up to separators of size 5. For binary matroids, internal 4-connectivity is
certainly the most natural variant of 4-connectivity, and it would be particularly useful to have
an inductive construction for this class. Unfortunately, even for internally 4-connected graphs, it
is not possible to obtain a simple inductive construction; see Johnson and Thomas [5].

Seymour’s decomposition theorem for regular matroids [7] is equivalent to the assertion that:
every weakly 4-connected regular matroid is either graphic, cographic, or is isomorphic to R10.
Theorem 1.1 suggests a reasonably natural line of proof for the decomposition theorem. (We
are not suggesting that this will be any easier than Seymour’s approach.) However, similar ideas
could be used in proving new decomposition results; for example, one could consider the class
of binary matroids with no AG(3,2)-minor.
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We assume the reader is familiar with matroid theory. Our notation and terminology will
follow Oxley [6] with one exception: We use si(M) (respectively co(M)) to denote the simplifi-
cation (respectively cosimplification) of a matroid M .

2. Preliminaries

In this section, we present some basic lemmas on separations that will be used in later sections.
Let M = (E, r) be a matroid where r is the rank function. For A ⊆ E, we let λM(A) =

r(A)+ r(E \A)− r(M). We refer to λM as the connectivity function of M . Tutte [8] proved that
the connectivity function is submodular; that is, if X,Y ⊆ E(M), then

λM(X) + λM(Y ) � λM(X ∩ Y) + λM(X ∪ Y).

For sets X,Y ⊆ E(M), we let �M(X,Y ) = rM(X) + rM(Y ) − rM(X ∪ Y). If �M(X,Y ) = 0
then we say that X and Y are skew. The next three identities follow directly from the definitions.

Lemma 2.1. Let M be a matroid and let (A,B,C) be a partition of E(M). Then

λM(A) = �M(A,B) + �M∗(A,C).

Lemma 2.2. Let M be a matroid and let A and B be disjoint subsets of E(M). Then

λM(A ∪ B) = λM(A) + λM(B) − �M(A,B) − �M∗(A,B).

Lemma 2.3. Let M be a matroid and let A and B be disjoint subsets of E(M). Then

λM/B(A) = λM(A) − �M(A,B).

A set A ⊆ E is said to be k-separating if λM(A) � k − 1; when equality holds we say that A

is exactly k-separating. Thus a partition (X,Y ) of E is a k-separation if X is k-separating and
|X|, |Y | � k. The next lemma is an easy consequence of submodularity.

Lemma 2.4. Let X and Y be k-separating sets of a matroid M . If X∩Y is not (k −1)-separating
in M , then X ∪ Y is k-separating in M .

A 3-separation (X,Y ) of a matroid M is called a meaty 3-separation if |X|, |Y | � 5. Thus M

is weakly 4-connected if and only if M is 3-connected and has no meaty 3-separations. A se-
quence e1, e2, . . . , ei of distinct elements in E(M) is called a fan if {e1, e2, e3}, {e2, e3, e4}, . . . ,
{ei−2, ei−1, ei} are alternately triangles and triads.

The coclosure of a set X ⊆ E(M) is the closure of X in M∗. Clearly, an element x ∈ E(M)\X

belongs to the coclosure of X if and only if x does not belong to the closure of E(M)\ (X ∪{x}).
A set X ⊆ E(M) is coclosed if the coclosure of X is the set X itself. We say X is fully closed if
X is both closed and coclosed.

Let (A,B) be a k-separation of the matroid M . An element x ∈ E(M) is in the guts of (A,B)

if x belongs to the closure of both A and B . Dually, x is in the coguts of (A,B) if x belongs to
the coclosure of both A and B . The next lemma follows easily from definitions.

Lemma 2.5. Let (A,B) be an exact k-separation of matroid M and let x ∈ B . Then

• A ∪ {x} is exactly k-separating if x belongs to either the guts or the coguts of (A,B), but
not both.
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• A ∪ {x} is exactly (k − 1)-separating if x belongs to both the guts and the coguts of (A,B).
• A∪{x} is exactly (k+1)-separating if x belongs to neither the guts nor the coguts of (A,B).

Let x be an element of the matroid M and let (A,B) be a k-separation of M \ x. Then x

blocks (A,B) if neither (A ∪ {x},B) nor (A,B ∪ {x}) is a k-separation of M . Now let (A,B)

be a k-separation of M/x. Then x coblocks (A,B) if neither (A ∪ {x},B) nor (A,B ∪ {x}) is a
k-separation of M . The following lemma also follows easily from definitions.

Lemma 2.6. Let M be a matroid and let {A,B, {x}} be a partition of E(M). Then

• if (A,B) is an exact k-separation of M \ x, then x blocks (A,B) if and only if x is not a
coloop of M , x /∈ clM(A), and x /∈ clM(B),

• if (A,B) is an exact k-separation of M/x, then x coblocks (A,B) if and only if x is not a
loop, x ∈ clM(A), and x ∈ clM(B).

For sets X1, X2, Y1, and Y2, the pairs (X1, Y1) and (X2, Y2) are said to cross if all the four sets
X1 ∩ X2, X1 ∩ Y2, Y1 ∩ X2, and Y1 ∩ Y2 are non-empty. The next lemma is due to Coullard [1],
see also [6, Lemma 8.4.7].

Lemma 2.7. Let e be an element of a 3-connected matroid M . Now, let (Xd,Yd) be a 3-
separation of M \ e that is blocked by e, and let (Xc,Yc) be a 3-separation of M/e that is
coblocked by e. Then (Xd,Yd) and (Xc,Yc) cross. Moreover,

• one of Xd ∩ Xc and Yd ∩ Yc is 3-separating in M , and
• one of Xd ∩ Yc and Yd ∩ Xc is 3-separating in M .

The next lemma is due to Geelen and Whittle [2, Lemma 4.2]; it is an easy consequence of
Lemma 2.7.

Lemma 2.8. Let M be a 4-connected matroid and x be an element of M . Then at least one of
M \ x and M/x is weakly 4-connected.

The next lemma can be found in Geelen and Zhou [3, Lemma 3.6].

Lemma 2.9. Let (A,B) be a 3-separation of a 3-connected matroid M where A is coclosed and
|A| � 4. If e ∈ A is in the guts of the separation (A,B), then M \ e is 3-connected.

Lemma 2.10. If e is an element of an internally 4-connected matroid M with |E(M)| � 7, then
either M \ e or M/e is 3-connected.

Proof. Since M is internally 4-connected, si(M/e) and co(M \ e) are both 3-connected. More-
over e cannot be in both a triangle and a triad, and hence one of M \ e and M/e is 3-
connected. �
Lemma 2.11. Let M be an internally 4-connected matroid and let T1 and T2 be two disjoint
triangles of M . If �M(T1, T2) = 1, then M \ e is internally 4-connected for every e ∈ T1 ∪ T2.
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Fig. 2. Duals of ladders.

Proof. By symmetry assume e ∈ T1. Let (X,Y ) be a 3-separation of M \ e with |X| � 4 and
|Y | � 4. Then e /∈ clM(X) and e /∈ clM(Y ). Therefore |X ∩ T1| = |Y ∩ T1| = 1. Either X or Y

contains at least two elements of T2. By symmetry, we may assume |X ∩T2| � 2. So e ∈ clM(X),
a contradiction. �
Lemma 2.12. Let M be an internally 4-connected matroid and let T be a triangle and T ∗ be a
triad of M . If �M(T ,T ∗) 	= 0, then M \ e is weakly 4-connected for every e ∈ T .

Proof. Let e ∈ T and let (X,Y ) be a meaty 3-separation of M \ e with |X ∩ T ∗| � 2. Let X′ :=
X ∪T ∗ and Y ′ := Y −T ∗. Then (X′, Y ′) is a 3-separation in M \ e and |X′|, |Y ′| � 4. Since M is
internally 4-connected, e /∈ clM(X′) and e /∈ clM(Y ′). Since e /∈ clM(Y ′), there exists an element
f ∈ T ∩X′. Since M is internally 4-connected, f /∈ clM(T ∗) and, since �M(T ,T ∗) 	= 0, we have
T ⊆ clM(T ∗ ∪ {f }), contrary to the fact the e /∈ clM(X′). �
3. Internally 4-connected matroids

In this section we prove Theorem 1.1 for internally 4-connected matroids. By Lemma 2.8, me
may assume that M is not 4-connected, so, by duality, we may assume that M has a triangle T .
In this section we prove the following theorem.

Theorem 3.1. Let M be an internally 4-connected matroid with |E(M)| � 7. If M has a triangle,
then either

• there exists e ∈ E(M) such that M \ e is weakly 4-connected,
• M∗ is isomorphic to the cycle matroid of a ladder, or
• |E(M)| � 13 and there exists e ∈ E(M) such that M/e is weakly 4-connected.

The duals of cycle matroids of ladders have a nice geometric structure; see Fig. 2. (Note that
each “rung” of a ladder is in two traids; so the rungs correspond to the elements in Fig. 2 that are
in two triangles.)

The key result of this section describes the local obstruction to deleting an element of T . The
obstruction is a “rotor,” which is defined formally below; see Fig. 3.

Theorem 3.2. Let T be a triangle of an internally 4-connected matroid M . Then either

• there is an element e ∈ T such that M \ e is weakly 4-connected,
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Fig. 3. A rotor with central triangle {a, b, c}.

• T is the central triangle of a rotor,
• |E(M)| � 15 and there is an element x ∈ E(M) such that M \ x is weakly 4-connected,
• |E(M)| � 13, r(M∗) < r(M), and either M has a triad or there is an element e ∈ E(M)

such that M/e is weakly 4-connected.

Definition 3.3. We say that (a, b, c, d, e, Ta, Tc,A,C) is a rotor of M if a, b, c, d , and e are
distinct elements of M , Ta , Tc, and {a, b, c} are disjoint triangles of M with d ∈ Ta and e ∈ Tc,
and (A,C) is a proper partition of E(M) − (Ta ∪ Tc ∪ {a, b, c}) such that

• Ta ∪ {b, e} is 3-separating in M \ a, Ta ∪ {a} ∪ A is 3-separating in M \ b, and Tc ∪ {b, d} is
3-separating in M \ c; and

• Ta is 2-separating in M \ a, b and Tc is 2-separating in M \ b, c.

We call {a, b, c} the central triangle of the rotor.

Lemma 3.4. Let T = {a, b, c} be a triangle in an internally 4-connected matroid. If (A,B) is a
meaty 3-separation of M \ c with a ∈ A, then b ∈ B . Moreover, neither a nor b is in the guts or
coguts of (A,B).

Proof. Since M is internally 4-connected, c blocks (A,B). Therefore c /∈ clM(A), and hence
b ∈ B . If b were in the guts or coguts (A,B), then (A ∪ {b},B \ {b}) is a 3-separation of M \ c,
and hence (A∪{b, c},B \{b}) is a 3-separation of M , contradicting the fact M is internally 4-con-
nected. Therefore b is not in the guts or coguts of (A,B) and, by symmetry, neither is a. �

We will now work toward a proof of Theorem 3.2. Note that, if |E(M)| � 10, then The-
orem 3.2 is an immediate consequence of Lemma 2.10. The results below are subject to the
following hypothesis.

Hypothesis 3.5. Let M be an internally 4-connected matroid with at least 11 elements, let T =
{a, b, c} be a triangle in M , and let (Ab,Ac), (Ba,Bc), and (Ca,Cb) be meaty 3-separations of
M \ a, M \ b, and M \ c, respectively, where a is in Ba and Ca , b is in Ab and Cb , and c is in
Ac and Bc .



544 J. Geelen, X. Zhou / Journal of Combinatorial Theory, Series B 98 (2008) 538–557
We begin by considering interactions between the 3-separations (Ab,Ac) in M \ a and
(Ba,Bc) in M \ b. Evidently similar results hold for any two of a, b, and c.

3.5.1. λM(Ab ∩ Bc) = λM\a,b(Ab ∩ Bc).

Proof. By Lemma 3.4, a is not in the coguts of (Ba,Bc) in M \b and, hence, a ∈ clM(Ba −{a}).
Therefore λM\b(Ab ∩ Bc) = λM\a,b(Ab ∩ Bc). Then, since b ∈ clM({a, c}), we have λM(Ab ∩
Bc) = λM\b(Ab ∩ Bc). Hence λM(Ab ∩ Bc) = λM\a,b(Ab ∩ Bc). �

A similar argument proves the following result.

3.5.2. λM(Ac ∩ Bc) = λM\a,b(Ac ∩ Bc).

3.5.3. If |Ab ∩ Bc| � 2, then Ac ∩ Ba is 3-separating in M and |Ac ∩ Ba| � 3.

Proof. If |Ab ∩Bc| � 2, then, by 3.5.1, λM\a,b(Ab ∩Bc) = λM(Ab ∩Bc) � 2. Then, by submod-
ularity, λM\a,b(Ac ∩ Ba) � 2. Now, by swapping the roles of a and b in 3.5.1, λM(Ac ∩ Ba) =
λM\a,b(Ac ∩ Ba) � 2. That is, Ac ∩ Ba is 3-separating in M , and, hence, |Ac ∩ Ba | � 3, as
required. �

The following two results are proved similarly.

3.5.4. If |Ac ∩ Bc| � 2, then Ab ∩ Ba is 3-separating in M \ a, b.

3.5.5. If Ab ∩ Ba is not 2-separating in M \ a, b, then Ac ∩ Bc is 3-separating in M , thus
|Ac ∩ Bc| � 3.

Note that M \ a, b need not be 3-connected (for example, in a rotor M \ a, b is not 3-
connected).

3.5.6. Suppose that Ab ∩ Ba is 2-separating in M \ a, b and that |Ab ∩ Ba| � 2. Then
|Ab ∩ Ba| � 3 and both of Ab ∩ Ba ∩ Ca and Ab ∩ Ba ∩ Cb are non-empty. Moreover, if
|Ab ∩ Ba | = 3 and |Ab ∩ Ba ∩ Cb| = 1, then Ab ∩ Ba is a triangle of M , |Cb| = 5, and
λM(Ba ∩ Cb) � min(3, |Ba ∩ Cb|).

Proof. Note that Ab ∩ Ba is 3-separating in M \ a, and, hence, also in M . Since M is internally
4-connected, |Ab ∩ Ba| � 3.

Suppose that Ab ∩ Ba ∩ Cb = ∅. Then Ab ∩ Ba ⊆ Ca . Note that b coblocks the 2-separation
of M \ a, b determined by Ab ∩ Ba . Hence b ∈ cl∗M\a(Ab ∩ Ba). This implies b ∈ cl∗M(Ca),
contradicting Lemma 3.4.

Now suppose that |Ab ∩ Ba | = 3 and that Ab ∩ Ba ∩ Cb = {p}. Note that Ab ∩ Ba is
3-separating in M , therefore it is either a triangle or a triad of M . Now if Ab ∩ Ba is a triad,
we would have b ∈ cl∗M((Ab ∩ Ba) ∪ {a}) = cl∗M((Ab ∩ Ba ∩ Ca) ∪ {a}). Then b is in the coguts
of (Ca,Cb), contrary to Lemma 3.4, and, hence, Ab ∩ Ba is a triangle. Now p is in the guts of
(Ca,Cb) and b is in the coguts of (Ca ∪ {p},Cb \ {p}), so Cb \ {b,p} is 3-separating in M and,
hence, |Cb| � 5. Finally suppose that Ba ∩Cb is 3-separating in M and that |Ba ∩Cb| = 3. Since
p ∈ Ba ∩Cb is in a triangle and M is internally 4-connected, p is not in a triad. Therefore Ba ∩Cb
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is a triangle Note that there exists a cocircuit C∗ of M with a, b ∈ C∗ ⊆ (Ab ∩Ba)∪{a, b}. How-
ever, (Ba ∩ Cb) ∩ ((Ab ∩ Ba) ∪ {a, b}) = {p}. Since a circuit and a cocircuit cannot meet in a
singleton, p /∈ C∗. But then C∗ ∩ Cb = {b}, contrary to Lemma 3.4. �
3.5.7. |Ab ∩ Ba|, |Ab ∩ Bc|, |Ac ∩ Ba | � 1 and |Ac ∩ Bc| � 2.

Proof. Suppose that Ab ∩ Ba = ∅. Since |Ab| � 5 and |Ba | � 5, |Ab ∩ Bc|, |Ba ∩ Ac| � 4,
contrary to 3.5.3. Similarly if Ac ∩ Bc = {c}, then |Ab ∩ Bc|, |Ba ∩ Ac| � 4, contradicting 3.5.3.

Now suppose that Ab ∩ Bc = ∅. Then |Ab ∩ Ba |, |Ac ∩ Bc| � 4. By Lemma 3.5.6, Ab ∩ Ba

is not 2-separating in M \ a, b and this gives a contradiction to 3.5.5. Thus Ab ∩ Bc 	= ∅ and, by
symmetry, Ac ∩ Ba 	= ∅. �
3.5.8. If |Ab ∩ Bc| = 1 or |Ac ∩ Ba| = 1, then Ab ∩ Ba is a triangle of M and is 2-separating in
M \ a, b.

Proof. By symmetry we may assume that |Ab ∩ Bc| = 1. Since |Ab|, |Bc| � 5, we have |Ab ∩
Ba| � 3 and |Ac ∩ Bc| � 4. Then, by 3.5.4, Ab ∩ Ba is 2-separating in M \ a, b. Now the result
follows from 3.5.6. �
3.5.9. If Ac ∩ Bc is 3-separating in M and has size 3, then |Ac ∩ Bc ∩ Ca| = 1 and |Ac ∩
Bc ∩ Cb| = 1.

Proof. Since c is in the triangle {a, b, c} and Ac ∩Bc is 3-separating, Ac ∩Bc is a triangle of M .
If |Ac ∩ Bc ∩ Ca| = 2, then c ∈ clM(Ca), thus c does not block (Ca,Cb), a contradiction. �

In order to keep track of symmetries we introduce the following notation.

S0 := Ab ∩ Bc ∩ Ca, S1 := Ac ∩ Ba ∩ Cb,

S0
a := Ab ∩ Ba ∩ Ca, S1

a := Ac ∩ Ba ∩ Ca,

S0
b := Ab ∩ Bc ∩ Cb, S1

b := Ab ∩ Ba ∩ Cb,

S0
c := Ac ∩ Bc ∩ Ca, S1

c := Ac ∩ Bc ∩ Cb.

The above eight sets together with the set {a, b, c} partition E(M). Figure 4 reveals the various
symmetries induced by permutations of {a, b, c}.

The results below are subject to the following hypotheses.

Hypothesis 3.6. In addition to Hypothesis 3.5 we assume that T is not the central triangle in a
rotor and that if |E(M)| � 15 then M \ e is not weakly 4-connected for any e ∈ E(M).

3.6.1. |S0
a | � 1 or |S1

c | � 1.

Proof. Suppose that |S0
a |, |S1

c | � 2. By 3.5.9, λM(Ac ∩ Bc) � 3. Then, by 3.5.5 and 3.5.6,
Ab ∩ Ba is a triangle and is 2-separating in M \ a, b. Thus |S0

a | = 2 and |S1
b | = 1. By sym-

metry, |S1
c | = 2 and |S0

b | = 1. Moreover, by 3.5.6, |Cb| = 5 and, hence, S1 is empty. However
|Ba | � 5, so |S1

a | > 0. By symmetry, Bc ∩ Cb is a triangle, λM\b,c(Bc ∩ Cb) = 1, S0 = ∅, and
S0

c 	= ∅. Therefore we get a rotor (a, b, c, d, e,Ab ∩Ba,Bc ∩Cb,S
1
a , S0

c ) where d ∈ S1
b and e ∈ S0

b ,
contrary to Hypothesis 3.6. �
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Fig. 4. Three crossing separations.

3.6.2. There exists α ∈ {a, b, c} such that |S0
α| � 1.

Proof. Suppose that |S0
α| � 2 for each α ∈ {a, b, c}. By 3.5.9, λM(Ac ∩ Bc) � 3. Let T ′

a = Bc ∩
Cb , T ′

b = Ac ∩Ca , and T ′
c = Ab ∩Ba . Then, by 3.5.5 and 3.5.6, T ′

c is a triangle and is 2-separating
in M \ a, b. By symmetry, T ′

b and T ′
a are also triangles and λM\a,c(T

′
b) = λM\b,c(T

′
a) = 1.

From 3.5.6 we also see that |S0
a | = 2, |S1

b | = 1, and |Cb| = 5. By symmetry, |S0
α| = 2 and |S1

α| = 1
for each α ∈ {a, b, c}. Since |Cb| = 5, the set S1 is empty. Let ea ∈ S1

a , eb ∈ S1
b , and ec ∈ S1

c .
Since M is internally 4-connected and |E(M)| > 9, M \ T is connected. Moreover each of

T ′
a , T ′

b , and T ′
c is 2-separating in M \ T . Moreover, by Lemma 2.11, the triangles T ′

a , T ′
b and T ′

c

are pair-wise skew. It follows that rM(T ′
a ∪ T ′

b ∪ T ′
c ) ∈ {5,6}.

If T ′
a ∩ clM(T ′

c ∪ {b}) 	= ∅, then we obtain a rotor (a, b, c, eb, d, T ′
c , T

′
a, {ea}, S0 ∪ S0

c ) where
d ∈ T ′

a ∩clM(T ′
c ∪{b}). Therefore we may assume that T ′

a ∩clM(T ′
c ∪{b}) is empty. By symmetry

we may also assume that T ′
b ∩ clM(T ′

a ∪ {c}) and T ′
c ∩ clM(T ′

b ∪ {a}) are empty.
Suppose that rM(T ′

a ∪ T ′
b ∪ T ′

c ) = 6. Since a is not in the coguts of the 3-separation (Ba,Bc)

in M \ b, we see that a ∈ clM(T ′
c ∪ {ea}). Similarly b ∈ clM(T ′

a ∪ {eb}) and c ∈ clM(T ′
b ∪ {ec}).

Therefore b, c ∈ clM(T ′
b ∪ T ′

a ∪ {eb}) and, hence, a ∈ clM(T ′
b ∪ T ′

a ∪ {eb}). Note that the flats
clM(T ′

c ∪ {ea}) and clM(T ′
b ∪ T ′

a ∪ {eb}) are modular, so {a, ea, eb} is a triangle. However, this is
contrary to the fact that T ′

c ∩ clM(T ′
b ∪ {a}) is empty. Therefore rM(T ′

a ∪ T ′
b ∪ T ′

c ) = 5. Now S0

is 3-separating in M \ T and, hence, also in M . So |S0| � 3 and 12 � |E(M)| � 15.
Finally we will show that there exists e ∈ T ′

c such that M \ e is weakly 4-connected. Since
a ∈ cl∗M\b(T ′

c ) and M is internally 4-connected, there exists e ∈ T ′
c such that {a, b} ∪ (T ′

c \ {e}) is
a cocircuit of M \ e. Let (X,Y ) be a meaty 3-separation of M \ e with a ∈ X. Note that X and
Y each contain one element of T ′

c ; let f ∈ X ∩ T ′
c and g ∈ Y ∩ T ′

c . By Lemma 3.4, g is not in
the coguts of the 3-separation (X,Y ) in M \ e. However {a, b,f, g} is a cocircuit of M \ e and
a,f ∈ X, so b ∈ Y . Since T ′

c ∩clM(T ′
b ∪{a}) = ∅, for each x ∈ T ′

c , we have T ′
c ⊆ clM(T ′

b ∪{a, x}).
In particular, e ⊆ clM(T ′

b ∪ {a, x}). Then, since a,f ∈ X and e /∈ clM(X), we have |T ′
b ∩ Y | � 2.

Now, since e ∈ clM(T ′
b ∪ {a,g}) but e /∈ clM(Y ), we see that a /∈ clM(Y ). However b ∈ Y , so

we have c ∈ X. Now b ∈ clM(X), g ∈ cl∗M\e(X ∪ {b}), and e ∈ clM(X ∪ {b,g}), so Y − {b,g}
is 3-separating in M and, hence, |Y | � 5. Similarly f ∈ clM\e(Y ∪ {c}) ∩ cl∗M\e(Y ∪ {c}), so
Y ∪ {c, f } is 3-separating in M \ e. Moreover, e ∈ clM(Y ∪ {c, f }) so X − {c, f } is 3-separating
in M and, hence, |X| � 5; contrary to the fact that |E(M)| � 12. �
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3.6.3. |Ac ∩ Ba | � 2.

Proof. By 3.5.7, we have |Ac ∩ Ba| � 1; suppose that |Ac ∩ Ba| = 1. Since |Ac| � 5 and
|Ba | � 5, we have |Ab ∩ Ba| � 3 and |Ac ∩ Bc| � 4. Then, by 3.5.5 and 3.5.6, Ab ∩ Ba is a
triangle in M and is 2-separating in M \ a, b, and |S0

a |, |S1
b | � 1. We consider the following two

cases separately.

Case 1. |S0
a | = 1 and |S1

b | = 2.

Since |Ca| � 5 and |S1
a | � |Ac ∩ Ba | = 1, we have |Bc ∩ Ca| � 2. Then, by 3.5.3 and sym-

metry, Ba ∩ Cb is 3-separating. However S1
b is a 2-element set that is in the triangle Ab ∩ Ba ,

so, since M is internally 4-connected, we have |S1| = 0. Then, since |Ac ∩ Ba| = 1, we have
|S1

a | = 1. By 3.6.1 and symmetry, we may assume that |S0
c | � 1. Since |Ca| � 5, we have S0 	= ∅.

Claim. Ba ∩ Ca is a triangle of M .

Proof. Suppose that Ba ∩ Ca is not a triangle. Since Ab ∩ Ba is a triangle, Ba ∩ Ca is not a triad
and, hence, λM(Ba ∩ Ca) � 3. Then, by 3.5.5 and symmetry, λM\b,c(Bc ∩ Cb) = 1. Now since
|Ac| � 5, we have |S1

c | � 2. Then, by 3.5.6 and symmetry, |S0
b | = 1 and |Ab| = 5, which is not

possible. �
By 3.5.6, we have |Ca| = 5 and, hence, |S0|+|S0

c | = 2. This gives the following two subcases.

Case 1.1. |S0| = 2 and |S0
c | = 0.

Since |Ac| � 5, we have |S1
c | � 3. By 3.5.3 and symmetry, Ab ∩ Ca is 3-separating in M ,

hence is a triangle of M . Now, by 3.5.6, the triangle Ab ∩Ba is 2-separating in M \a, b. However,
since Ab ∩ Ca is a triangle, S1

b is 2-separating in M \ a, b. Then, since Ba ∩ Ca and {a, b, c} are
triangles, S1

b is 2-separating in M , contradicting the fact that M is 3-connected.

Case 1.2. |S0| = |S0
c | = 1.

Let w, x, y, and z denote the elements in S0
a , S1

a , S0
c , and S0 respectively. Note that, if {x, y, z}

is a triangle, then we have a rotor (b, a, c,w, z,Ab ∩ Ba, {x, y, z}, S0
b , S1

c ). Therefore we may
assume that {x, y, z} is not a triangle.

By 3.5.9 and symmetry, Ab ∩Cb is not 3-separating in M . Then, by 3.5.5, 3.5.6, and symmetry,
{x, y} is 2-separating in M \ a, c. Thus {x, y, a} is a triad in M \ c. Then, since Ba ∩ Ca =
{w,a, x} is a triangle, the sets {a, x, y}, {a,w,x, y} and Ca = {a,w,x, y, z} are all 3-separating
in M \ c. Thus z is in the guts or the coguts of the 3-separation (Ca,Cb) in M \ c.

First suppose that z is in the coguts of (Ca,Cb) in M \c. Therefore there is a cocircuit C∗ ⊆ Ca

containing z. Since Ab ∩ Ba is a circuit, w /∈ C∗. Now {x, y} is 2-separating in M \ a, c, and z ∈
cl∗M\a,c({x, y}). Therefore {x, y, z} is 2-separating in M \a, c and, hence, {x, y, z} is 3-separating
in M . Since x is in a triangle and M is internally 4-connected, {x, y, z} is a triangle, contrary
to our assumption above. Therefore z is in the guts of (Ca,Cb). So z ∈ clM({a,w,x, y}) and,
since {w,a, x} is a triangle, z ∈ clM({a, x, y}). However {x, y, z} is not a triangle, so there is a
circuit C ⊆ {a, x, y, z} of M containing a and z. Recall that Ab ∩ Ba is 2-separating in M \ a, b.
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Then, since C and T are circuits, Ab ∩ Ba is 2-separating in M , contrary to the fact that M is
3-connected.

Case 2. |S0
a | = 2 and |S1

b | = 1.

By 3.6.1, we may assume that |S1
c | � 1. Therefore, since |Ac ∩ Bc| � 4, we have |S0

c | � 2.
Then, by 3.6.2, we may assume that |S0

b | � 1. However |Cb| � 5, so we have |S0
b | = 1, |S1

c | = 1,
and |S1| = 1. Since |Ac ∩ Ba | = 1, we have |S1

a | = 0. Note that |Ac ∩ Cb| = 2, so, by 3.5.3 and
symmetry, Ab ∩ Ca is 3-separating. However S0

a is a 2-element set that is in a triangle Ab ∩ Ba ,
so, since M is internally 4-connected, we have |S0| = 0. Thus |Ab ∩Bc| = 1 and, up to symmetry,
we are back in Case 1. �
3.6.4. |S0| = |S1| = 1, |Si

α| ∈ {1,2} for each i ∈ {0,1} and α ∈ {a, b, c}, and |Si
a| + |Si

b| +
|Si

c| � 4 for i ∈ {0,1}.

Proof. Consider the following claims.

Claim 1. For each i ∈ {0,1} and α ∈ {a, b, c} the set Si ∪ Si
α is 3-separating and 2 � |Si | +

|Si
α| � 3.

Proof. By 3.5.7, 3.6.3 and symmetry, α ∈ {a, b, c} we have |Si |+ |Si
α| � 2. So the claim follows

from 3.5.3 and symmetry. �
Claim 2. For each i ∈ {0,1}, no two of the sets Si

a , Si
b, and Si

c can have size equal to 2.

Proof. Up to symmetry we may assume that |S0
a | = |S0

b | = 2. By 3.6.2, |S0
c | � 1 and, hence, by

Claim 1, |S0| = 1 and |S0
c | = 1. Now, by 3.5.9 and 3.5.6, S0

b ∪ S1
c is a triangle and |S1

c | = 1.
However S0 and S1

c are now in clM(S0
b) ∪ cl∗M(S0

b), contradicting the fact that M is internally
4-connected. �
Claim 3. |S0| = |S1| = 1.

Proof. By 3.6.2, Claim 1, and symmetry neither S0 nor S1 is empty. Up to symmetry we may
assume that |S0| � 2. Then, by Claim 1, each of S0

a , S0
b , and S0

c is contained in clM(S0)∪cl∗M(S0).
Then, since M is internally 4-connected, |S0| + |S0

a | + |S0
b | + |S0

c | � 3. However |E(M)| � 11
so |S1| + |S1

a | + |S1
b | + |S1

c | � 5. By symmetry this means that |S1| = 1. Then, by Claims 1 and 2
and symmetry, we may assume that |S1

a | = 2, |S1
b | = 1, and |S1

c | = 1. By 3.6.1 and the fact that
|Cb| � 5, we have |S0

b | = 1. Then, since |S0| + |S0
a | + |S0

b | + |S0
c | � 3 and |S0| � 2, we have

|S0| = 2, |S0
a | = 0, and |S0

c | = 0.
Let x, y, and z be the elements in S0

b , S1
b , and S1

c respectively. Since |S1
a | = 2, |S0

a | = 0, and
|S0

c | = 0, by 3.5.5, 3.5.6, and 3.5.9, we see that {x, b, y} is a triangle and that {x, z} is 2-separating
in M \b, c. Thus {x, z} is a series-pair in M \b, c. However, since {x, b, y} is a triangle and M is
internally 4-connected, S0 ∪{x} is also a triangle, contradicting the fact that {x, z} is a series-pair
in M \ b, c. �

The result follows by Claims 1, 2, and 3. �
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By 3.6.4, 11 � |E(M)| � 13. Therefore the proof of Theorem 3.2 is reduced to a finite case
analysis. Let e0 ∈ S0, e1 ∈ S1, and αi ∈ Si

α for α ∈ {a, b, c} and i ∈ {0,1}. Now let Ta := Ba ∩Ca ,
Tb := Ab ∩ Cb , Tc := Ac ∩ Bc , C∗

a := (Bc ∩ Cb) ∪ {b, c}, C∗
b := (Ac ∩ Ca) ∪ {a, c}, and C∗

c :=
(Ab ∩ Ba) ∪ {a, b}.

3.6.5. For each α ∈ {a, b, c}, either Tα is a triangle or C∗
α is a 4-element cocircuit of M .

Proof. This is an immediate consequence of 3.6.4, 3.5.4 and 3.5.5. �
3.6.6. At most one of Ta , Tb, and Tc is a triangle.

Proof. We start with two easy claims.

Claim 1. If Ta and Tc are both triangles of M , then rM(Ca) = 3 and rM(Ac) = 3.

Proof. By 3.5.9, each of S0
a , S1

a , S0
c and S1

c has size 1. Suppose that rM(Ca) > 3. Then c0 is
in the coguts of the 3-separation (Ca,Cb) in M \ c. However {c, c0, c1} is a triangle, which is
contrary to Lemma 3.4. Thus rM(Ca) = 3 and, by symmetry, rM(Ac) = 3. �
Claim 2. Ta , Tb, and Tc cannot all be triangles.

Proof. Suppose that Ta , Tb , and Tc are all triangles. Now consider any partition (X,Y ) of
E(M) − {e0}. By symmetry we may assume that Ta and Tc are both contained in clM(X). Then,
by Claim 1, e0 ∈ clM(X). It follows that M \ e0 is internally 4-connected, contrary to Hypothe-
sis 3.6. �

Suppose that Ta and Tc are triangles of M . By Claim 2, Tb is not a triangle and, by 3.6.5, C∗
b

is a 4-element cocircuit of M .

Claim 3. Either �M(Ta,Ba ∩ Cb) 	= 0 or �M(Tc,Ab ∩ Bc) 	= 0.

Proof. Suppose that �M(Ta,Ba ∩ Cb) = 0 and �M(Tc,Ab ∩ Bc) = 0. Then

λM\b(Ta ∪ Tc) � rM(Ta) + rM(Tc) + rM(Ba ∩ Cb) + rM(Ab ∩ Bc) − r(M)

= rM
(
Ta ∪ (Ba ∩ Cb)

) + rM
(
Tc ∪ (Ab ∩ Bc)

) − r(M)

= λM\b(Ba)

= 2.

However b ∈ clM(Ta ∪ Tc), so Ta ∪ Tc ∪ {b} is 3-separating in M , contradicting the fact that M

is internally 4-connected. �
By symmetry we may assume that �M(Tc,Ab ∩ Bc) 	= 0. Then, by Lemmas 2.11 and 2.12,

Ab ∩ Bc is not a triangle or a triad, so, by 3.5.3, |S0
b | = 1. Since �M(Tc, {e0, b0}) 	= 0 and C∗

b is
a cocircuit, {e0, b0, c1} is a triangle. Since Ta , Tc, and {a, b, c} are triangles, a0, c1, b ∈ clM(C∗

b ).
Moreover, by Claim 1, e0, e1 ∈ clM(C∗) and, since {e0, b0, c1} is a triangle, b0 ∈ clM(C∗

b ). Thus
E(M) − S1

b ⊆ clM(C∗
b ). However |S1

b | � 2 and M is 3-connected, so E(M) ⊆ clM(C∗
b ). There-

fore r(M) = 4 and rM(E(M) − C∗) = 3. Now b /∈ clM(Ba) and, hence, rM(Ba − C∗) � 2. It
b b
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follows that |S1
b | = 1 and that {a0, b1, e1} is a triangle. However the triangles {a0, b1, e1} and

{e0, b0, c1} are not skew, contrary to Lemma 2.11. �
3.6.7. If one of Ta , Tb , and Tc is a triangle, then r(M∗) < r(M) and either M has a triad or there
exists e ∈ E(M) such that M/e is internally 4-connected.

Proof. Suppose that Tb is a triangle. By 3.6.6, Ta and Tc are not triangles and hence, by 3.6.5,
C∗

a and C∗
c are both 4-element cocircuits. Now since Tb and {a, b, c} are circuits and C∗

a and C∗
c

are cocircuits, {a, b0, b1, c} is a circuit.

Claim 1. If {a0, b1, e0} is not a triangle, then λM\a,a0,e0(Tb) = 0.

Proof. Note that rM(Tb ∪ {a0, e0}) ∈ {3,4}. If rM(Tb ∪ {a0, e0}) = 3, then, since C∗
a is a cocir-

cuit, {a0, b1, e0} is a triangle. Henceforth we may assume that rM(Tb ∪ {a0, e0}) = 4. Note that
Tb ∪ {a0} and Tb ∪ {a0, e0} are both 3-separating in M \ a. Then, since rM(Tb ∪ {a0, e0}) = 4,
we have e0 ∈ cl∗M\a(Tb ∪ {a0}). Since C∗

c is a cocircuit, a0 ∈ cl∗M\a(Tb) and, hence, a0, e0 ∈
cl∗M\a(Tb). Moreover, since a is not in a triad, {a0, e0} is not a series-pair in M \ a and, hence,
λM\a,a0,e0(Tb) = 0. �
Claim 2. Neither {a0, b1, e0} nor {b0, c1, e1} is a triangle.

Proof. Note that {a0, b1, e0} and {b0, c1, e1} cannot both be triangles since, otherwise {a, b, c}
would be in a rotor (where {a0, b1, e0} and {b0, c1, e1} play the roles of Ta and Tb in Defini-
tion 3.3), contradicting Hypothesis 3.6. By symmetry we may assume that {a0, b1, e0} is not a
triangle. Then, by Claim 1, λM\a,a0,e0(Tb) = 0 and, hence, {b0, c1, e1} is not a triangle either. �
Claim 3. If |S0

c | = 2, then Bc ∩ Ca is a triad.

Proof. By 3.5.3, Bc ∩ Ca is either a triangle or a triad. However, by Claims 1 and 2, e0 ∈
cl∗M\a(Tb) and, hence, Bc ∩ Ca cannot be a triangle. �
Claim 4. r(M∗) < r(M).

Proof. Suppose that r(M∗) � r(M). Since |E(M)| � 13, r(M) � 6. By Claims 1 and 2,
λM\a,a0,e0(Tb) = 0. Then a0, e0 ∈ cl∗M(Tb ∪ {a}). By symmetry, c1, e1 ∈ cl∗M(Tb ∪ {c}). There-
fore a0, c1, e0, e1 ∈ cl∗M(Tb ∪ {a, c}). Let Z = Ac ∩ Ca . Now r(M \ Z) � 6, so there ex-
ists f ∈ {a0, c1, e0, e1} such that f is not a coloop of M \ Z. Since λM(Tb ∪ {a, c}) = 3
and a0, c1, e0, e1 ∈ cl∗M(Tb ∪ {a, c}), we have λM(Z ∪ {f }) � 3. Moreover f is spanned
by (Tb ∪ {a0, c1, e0, e1}) − {f } in both M and M∗, so λM(Z) � 2 and λM(Z ∪ {f }) = 3.
Since λM(Z ∪ {f }) = λM(Tb ∪ {a, c}) and {a0, c1, e0, e1} − {f } ⊆ cl∗M(Tb ∪ {a, c}), the set
{a0, c1, e0, e1} − {f } contains co-loops of M \ (Z ∪ {f }) and, hence, r(M) = 6. Then, since
r(M) � r(M∗), |E(M)| � 12 and, hence, |Z| � 3. However λM(Z) = 2, so Z is either a triangle
or a triad of M . By symmetry we may assume that |S0

c | = 2. Then, by Claim 3, Bc ∩Ca is a triad,
contradicting the fact that M is internally 4-connected. �

By Claim 4, we may assume that M has no triads. Then, by Claim 3 and symmetry, |S0
c | =

|S1| = 1 and, hence, |E(M)| = 11. Let W = E(M) − (Tb ∪ {a, c}). Since λM(Tb ∪ {a, c}) = 3,
a
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we have rM(W) = r(M) � 6. Thus W is an independent set in M . Since M has no triads, for
any 3-element subset W ′ of W , we have W ⊆ cl∗M(W ′). It follows easily that M/w is internally
4-connected for any w ∈ W . �
3.6.8. If none of Ta , Tb , and Tc is a triangle, then r(M∗) > r(M) and either M has a triad or
there exists e ∈ E(M) such that M/e is weakly 4-connected.

Proof. By 3.6.5, C∗
a , C∗

b , and C∗
c are all 4-element cocircuits. Thus, by 3.6.4, |Si

α| = 1 for all
α ∈ {a, b, c} and i ∈ {0,1} and, hence, |E(M)| = 11.

We will state the following claims for M \ a; analogous results hold for M \ b and M \ c.

Claim 1. rM(Ab) � 4 and, if rM(Ab) = 3, then {e0, a0, b1} is a triangle.

Proof. If rM(Ab) = 5, then, contrary to Lemma 3.4, b is in the coguts of the 3-separation
(Ab,Ac) in M \ a. Thus rM(Ab) � 4; suppose that rM(Ab) = 3. Then, since C∗

a is a cocircuit,
rM({e0, a0, b1}) = 2 and, hence, {e0, a0, b1} is a triangle. �
Claim 2. r(M) = 6 and rM(Ab) = rM(Ac) = 4.

Proof. Note that (Ab,Ac) is a 3-separation in M \ a and, by Claim 1 and symmetry,
rM(Ab), rM(Ac) � 4. Thus r(M) � 6 and r(M) = 6 if and only if rM(Ab) = rM(Ac) = 4. Sup-
pose that r(M) < 6. By symmetry we may assume that rM(Ab) = 3, so, by Claim 1, {e0, a0, b1}
is a triangle. Now {a0, b1, e1} cannot be a triangle, so, by Claim 1 and symmetry, rM(Ba) = 4.
Then rM(Bc) = 3 and, by Claim 1 and symmetry, {b0, c1, e0} is a triangle. Similarly, {a1, c0, e0}
is also a triangle. Since C∗

a , C∗
b , and C∗

c are all cocircuits, {a0, b1}, {b0, c1}, and {a1, c0} are all
series-pairs in M \ a, b, c and, hence, e1 is a co-loop of M \ a, b, c. However this implies that
{a, b, c, e1} is 3-separating in M , which is a contradiction. �

By Claim 2, r(M) > r(M∗) so we may assume that M has no triads.

Claim 3. Ab \ {b} and Ac \ {c} are both cocircuits.

Proof. By Claim 2, Ab \ {b} and Ac \ {c} both contain cocircuits. Then, since M has no triads,
Ab \ {b} and Ac \ {c} are cocircuits. �

We may assume that M/e0 is not weakly 4-connected and, hence, there is a meaty 3-separation
(X′, Y ′) of M/e0 with |X′ ∩ {a, b, c}| � 2. Let X = X′ ∪ {a, b, c} and Y = Y − {a, b, c}. Since
M is internally 4-connected, e0 /∈ cl∗M(X) and e0 /∈ cl∗M(Y ). Now, since Ca − {a}, Ab − {b},
and Bc − {c} are all cocircuits, X must have a non-empty intersection with at least two of the
pairs {a0, b1}, {b0, c1}, and {a1, c0}. By symmetry we may assume that X ∩ {a0, b1} 	= ∅ and
X ∩ {b0, c1} 	= ∅. Therefore, since C∗

c and C∗
a are cocircuits, a0, b1, b0, c1 ∈ cl∗M(X). However

Ab − {b} is a cocircuit, so e0 ∈ cl∗M(X), which is a contradiction. �
The results above prove Theorem 3.2. We will now use Theorem 3.2 to prove Theorem 3.1.

The following results are subject to the following hypothesis.

Hypothesis 3.7. Let M be an internally 4-connected matriod with a triangle such that

• there does not exist an element e ∈ E(M) such that M \ e is weakly 4-connected, and
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• if |E(M)| � 13, then there is no element e ∈ E(M) such that M/e is weakly 4-connected,
• if |E(M)| � 13 and r(M) > r(M∗), then M has no triads.

Suppose that M satisfies Hypothesis 3.7 and T is a triangle of M . By Lemma 2.10, M \ e

is 3-connected for each e ∈ T . Hence, |E(M)| � 11. Moreover, by Theorem 3.2, each triangle
of M is the central triangle of a rotor. The next three results show that rotors have additional
properties that are implicitly suggested by Fig. 3.

3.7.1. If (a, b, c, d, e, Ta, Tc,A,C) is a rotor in M , then {b, d, e} is a triangle and
λM(A ∪ C) � 3. Moreover, if |E(M)| � 13, then λM(A ∪ C) = 3.

Proof. By Lemma 2.11, Ta and Tc are skew. Now Ta ∪{b} and Ta ∪{b, e} are both 3-separating in
M \ a, so either e ∈ clM(Ta ∪ {b}) or e ∈ cl∗M\a(Ta ∪ {b}). Since e is in the triangle Tc, the latter
is not possible and, hence, e ∈ clM(Ta ∪ {b}). Therefore b ∈ clM(Ta ∪ {e}) and, by symmetry,
b ∈ clM(Tc ∪ {d}). Since rM(Ta ∪Tc) = 4, the flats clM(Ta ∪ {e}) and clM(Tc ∪ {d}) are modular
and, hence, {b, d, e} is a triangle.

Since {b, d, e} and {a, b, c} are circuits, {a, c, d, e} is a circuit. Now Ta ∪ {a} and Tc ∪ {c} are
both 3-separating in M \ b and, since {a, c, d, e} is a circuit, �M(Ta ∪ {a}, Tc ∪ {c}) � 1. Hence
λM(A∪C) = λM\b(Ta ∪Tc ∪{a, c}) � 3. If |E(M)| � 13, then |A∪C| � 4 and, hence, we must
have λM(A ∪ C) = 3. �
3.7.2. If (a, b, c, d, e, Ta, Tc,A,C) is a rotor in M , then there exists a cocircuit C∗ with a, b, d ∈
C∗ ⊆ Ta ∪ {a, b}.

Proof. Since Ta is 2-separating in M \ a, b, there exists a cocircuit C∗ ⊆ Ta ∪ {a, b} with
a, b ∈ C∗ and |C∗ ∩ Ta| � 2. Suppose that d /∈ C∗. Then (Ta − {d}) ∪ {a} is a triad in M \ b.
Therefore, since {b, d, e} is a triangle, (Ta − {d}) ∪ {a} is a triad in M . However Ta is a triangle,
which contradicts the fact that M is internally 4-connected. �
3.7.3. If (a, b, c, d, e, Ta, Tc,A,C) is a rotor in M , then rM(Ta ∪ Tc ∪ {a, b, c}) = 5.

Proof. By 3.7.1, rM(Ta ∪Tc ∪ {a, b, c}) � 5. By Lemma 2.11, Ta , Tc, and {a, b, c} are pair-wise
skew, and, hence, rM(Ta ∪ Tc ∪ {a, b, c}) � 4. Suppose that rM(Ta ∪ Tc ∪ {a, b, c}) = 4. Note
that Ta ∪ {a} and Tc ∪ {c} are both 3-separating in M \ b and �M(Ta ∪ {a}, Tc ∪ {c}) = 2, so
λM(A ∪ C) = 2. Hence |A ∪ C| � 3 and |E(M)| � 12. Let x ∈ A ∪ C. If rM(A ∪ C) = 2 then
we let N = M \ x, and if rM(A ∪ C) = 3 then we let N = M/x. Note that r(N) = 4 and any
two of Ta , Tc , and {a, b, c} span N . Therefore N is vertically 4-connected. (That is, N is 3-
connected and for each 3-separation (X,Y ) of N either rN(X) = 2 or rN(Y ) = 2.) However, by
Hypothesis 3.7, N is not internally 4-connected, so N = M/x and, hence, A ∪ C is a triad of M .
By Lemma 2.12, A∪C is skew to every triangle of M and, hence, M/x is internally 4-connected,
contradicting Hypothesis 3.7. �

A double-fan of length k consists of sequences (a0, . . . , ak), (b0, . . . , bk), and (c1, . . . , ck)

of distinct elements of M such that {ai−1, ci , ai} and {bi−1, ci, bi} are triangles for each i ∈
{1, . . . , k} and {ci, ai, bi, ci+1} is a cocircuit for each i ∈ {1, . . . , k − 1}; see Fig. 5.

Much of the difficulty in the remainder of the section stems from the case that |E(M)| = 12.
The root of the difficulty is the fact that the cube can be seen as a ladder in several different ways.
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Fig. 5. A double-fan of length 3.

3.7.4. If T is a triangle of M , then there exists a double-fan (a0, a1, a2, a3, b0, b1, b2, b3, c1,

c2, c3) of length 3 in M such that T = {b1, b2, c2}.

Proof. The triangle T is the central triangle of a rotor (a, b, c, d, e, Ta, Tc,A,C). By 3.7.1,
{b, d, e} is a triangle and, hence, {b, d, e} is the central triangle of a rotor (a′, b′, c′, d ′, e′, T ′

a′ ,
T ′

c′ ,A′,C′) with {b, d, e} = {a′, b′, c′}. By symmetry we may assume that b′ ∈ {b, d}.

Claim 1. There exists x ∈ Ta −{d} and y ∈ A∪C such that {a, x, y} is a triangle and {a, b, d, x}
is a cocircuit.

Proof. By 3.7.2, there is a cocircuit C1 with a, b, d ∈ C1 ⊆ Ta ∪ {a, b}. By 3.7.1, {b′, d ′, e′} is a
triangle. Now b′ ∈ {b, d} ⊆ C1 and, hence, there exists w ∈ {d ′, e′} ∩ C1. By symmetry we may
assume that w = d ′. Now d ′ ∈ T ′

a′ , b, d /∈ T ′
a′ , and d ′ ∈ C1. Therefore T ′

a′ = {a, x, y} for some
x ∈ Ta − {d} and y ∈ A ∪ C.

Note that λM\b(Ta ∪ {a}) = λM\b(Ta ∪ {a, y}) = 2. Therefore y ∈ clM((A ∪ C ∪ Tc ∪ {c}) −
{y}). However T ′

a′ is 2-separating in M \ b, d . So {a, x} is a series-pair in M \ b, d . Therefore,
since b and d are in triangles and M is internally 4-connected, {a, b, d, x} is a cocircuit of M . �

If b′ = b then, by the claim and symmetry, we obtain the required double-fan. Therefore we
may assume that b′ = d , a′ = b, c′ = e. By Claim 1, there exists x ∈ Ta − {d} and y ∈ A ∪ C

such that {a, x, y} is a triangle and {a, b, d, x} is a cocircuit. Let z ∈ Ta − {d, x}. Note that
T ′

a′ = {a, x, y}.

Claim 2. There exist distinct elements x′, z′ ∈ Tc and an element w ∈ A∪C such that {b, c, e, x′}
is a cocircuit, {d, e, z, z′} is a cocircuit, and {z,w, z′} is a triangle.

Proof. By 3.7.2 and symmetry, there is a cocircuit C∗ such that b′, c′ ∈ C∗ ⊆ T ′
c′ ∪ {b′, c′}. If

C∗ contains a triangle, then that triangle is T ′
c′ . Since Ta and Tc are triangles that intersect C∗

and neither of these triangles is T ′
c′ , |C∗ ∩ Ta| = 2 and |C∗ ∩ Tc| = 2. Since C∗ is disjoint from

T ′
a′ , we have C∗ ∩ Ta = {d, z}. Let z′ ∈ (C∗ ∩ Tc) − {c′} and let x′ ∈ Tc − {c′, z′}. Note that

T ′
c′ = clM({z, z′}); let w ∈ T ′

c′ − {z, z′}. Since rM(Ta ∪ Tc ∪ {a, c}) = 5, w ∈ A ∪ C. Now, since
z′ ∈ clM(z,w), the set {b, c, e, x′} is a cocircuit of M . Note that {a, b, d, x} and {b, c, e, x′} are
both 4-element cocircuits, and this would also be the case if {a, b, c} were in a double-fan of
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length 3. Then, by symmetry the same holds for any rotor. In particular, |C∗| = 4 and, hence,
C∗ = {d, e, z, z′}. �
Claim 3. |E(M)| = 12 and r(M) = 5.

Proof. Let Z = Ta ∪ Tc ∪ {a, b, c}. Then rM(Z) = 5 and, since {a, b, d, x}, {b, c, e, x′} and
{b, e, z, z′} are cocircuits, rM(A ∪ C) � r(M) − 3. Therefore λM(A ∪ C) � 2. So |A ∪ C| � 3
and, hence, |E(M)| � 12. Now rM(Ta ∪ {a, b, c, y}) = 4, so there is a cocircuit C∗ ⊆ {x′, z′} ∪
((A ∪ C) − {y}). Since |C∗| � 3, C∗ ∩ {x′, z′} is non-empty. However, x′ and z′ span a triangle,
so, since M is internally 4-connected, |C∗| = 4 and, hence, |E(M)| = 12. Moreover, since C∗ =
{x′, z′} ∪ ((A ∪ C) − {y}) is a cocircuit, so r(M) = 5. �
Claim 4. If v ∈ E(M) is in a triangle, then there is a triad {t1, t2, t3} in M \ v such that
clM({t1, t2}) and clM({t1, t3}) are both triangles.

Proof. This holds for each v ∈ {a, b, c} (whether or not {a, b, c} is in a double-fan of length 3).
Then, by symmetry, it holds for any triangle. �

Let y′ ∈ (A∪C)−{w,y}. We may assume that {c, x′, y′} is not a triangle since otherwise we
would have the required double-fan. Then, since {d, e, z, z′} is a cocircuit, y′ /∈ clM({e, c, x′}).
Therefore {x, z, y,w,y′} is a cocircuit of M . Now rM({w,y, y′, z, z′}) = 3 and {d, e, z, z′} is a
cocircuit, so {w,y, y′} is a triangle. By Claim 4, there is a triad T ∗ = {t1, t2, t3} is M \ y such
that clM({t1, t2}) and clM({t1, t3}) are both triangles. Note that {y, t1, t2, t3} is a cocircuit and,
hence, T ∗ ∩ {w,y′} and T ∗ ∩ {a, x} are both non-empty. No triangle in M intersects both {a, x}
and {w,y′} and, hence, we may assume that t2 ∈ {a, x} and t3 ∈ {w,y′}. Now there is a triangle
through each of {t1, t2} and {t1, t3}. It follows that t1 = z, t2 = x, and t3 = w. Then {x, y, z,w} is
a cocircuit, contradicting the fact that {w,x, y, y′, z} is a cocircuit. �
Proof of Theorem 3.1. Consider a double-fan of length k � 3. By 3.7.4, there is a double-fan of
length 3 centered around the triangle {ak−1, ck, ak}. Therefore there is an element ck+1 ∈ E(M)

such that {ck, ak, bk, ck+1} is a 4-element cocircuit and there exist triangles {ak, ck+1, ak+1} and
{bk, ck+1, bk+1}. Either this gives a longer double-fan, or we have {a0, b0} = {ak+1, bk+1}, in
which case M∗ is the cycle matroid of a ladder. �
4. Weakly 4-connected matroids

In this section we complete the proof of Theorem 1.1. It remains to consider a weakly 4-con-
nected matroid M containing a 4-element 3-separating set A.

Lemma 4.1. Let M be a weakly 4-connected matroid and let A be a 4-element 3-separating set
of M . If rM(A) = 2, then M \ x is weakly 4-connected for each x ∈ A.

Proof. Suppose that (X,Y ) is 3-separation of M \ x. By symmetry, we may assume that
|X ∩ A| � 2. So x ∈ clM(X) and, hence, (X ∪ {x}, Y ) is a 3-separation of M . Since M is weakly
4-connected, either |X| � 3 or |Y | � 4. Therefore M \ x is weakly 4-connected. �

By Lemma 4.1, we may assume that rM(A) � 3 and, dually, that r∗
M(A) � 3. However, since

λM(A) = 2 and λM(A) = rM(A) + r∗ (A) − |A|, we have rM(A) = r∗ (A) = 3.
M M
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Lemma 4.2. Let M be a weakly 4-connected matroid, let A be a 4-element 3-separating set
with rM(A) = 3, and let c ∈ A such that M/c is simple and c /∈ clM(E(M) − A). Then M/c is
4-connected up to separators of size 5. Moreover, if X is a 5-element 3-separating set of M/c,
then |X ∩ A| = 1.

Proof. Let T = A − {c}; note that T is a triangle in M/c. We start by proving that M/c is
3-connected. Consider a 2-separation (X,Y ) of M/c. Since M/c is simple, |X|, |Y | � 3. By
symmetry we may assume that |X∩A| � 2. Thus T ⊆ clM/c(X) and, hence X∪T is 2-separating
in M/c. However c ∈ cl∗M(T ), so X ∪ T ∪ {c} is 2-separating in M , contradicting the fact that M

is 3-connected. Thus M/c is in fact 3-connected.
Now consider a meaty 3-separation (U,V ) of M/c. By symmetry, we may assume that |U ∩

T | � 2. Then U ∪ T is 3-separating in M/c and, since c ∈ cl∗M(T ), U ∪ T ∪ {c} is 3-separating
in M . Therefore |V | = 5 and |V ∩ A| = 1. �

We are now ready to prove the main result of this section.

Theorem 4.3. Let M is a weakly 4-connected matroid and let A be a 4-element 3-separating set.
Then either

• there exists e ∈ A such that M \ e or M/e is weakly 4-connected,
• there exist e, f ∈ A such that M/e \ f is weakly 4-connected, or
• |E(M)| = 12 and there is a partition of E(M) into three 4-element 3-separating sets.

Proof. By Lemma 4.1, we may assume that rM(A) = 3. Since A is closed, it is straightforward
to see that there exists an element c ∈ A such that M/c is simple and c /∈ clM(E(M) − A).
Dually, there exists an element d ∈ A such that M \ d is cosimple and d /∈ cl∗M(E(M) − A). Let
T = A − {c}; note that T is a triangle in M/c.

Since M is weakly 4-connected, A is co-closed in M and, hence, T is co-closed in M/c. Then,
by Tutte’s Triangle Lemma (see Oxley [6, Lemma 8.4.9]), there exists e ∈ T such that M/c \ e is
3-connected. We may assume that M/c \ e is not weakly 4-connected and, hence, |E(M)| � 12.

4.3.1. Let B ⊆ E(M) − A be a 3-separating set in M with at most 4 elements. If �M(B,A) +
�M∗(B,A) � 2, then |E(M)| = 12 and there exists a partition of E(M) into three 4-element
3-separating sets.

Proof. If �M(B,A) + �M∗(B,A) � 2, then, by Lemma 2.2, λM(A ∪ B) � λM(A) + λM(B) −
2 � 2. Thus, A ∪ B is 3-separating. However, since |E(M)| � 12 and M is weakly 4-connected,
we conclude that |E(M)| = 12 and that both B and E(M) − (A ∪ B) are 4-element 3-separating
sets in M . �

Henceforth we may assume that:

4.3.2. For each 3-separating set B ⊆ E(M) − A with at most 4 elements, we have

�M(B,A) + �M∗(B,A) � 1.

4.3.3. Let P,P ∗ ⊆ E(M)−A be 3-separating sets of M with 3 or 4 elements. If �M(P,A) = 1
and �M∗(P ∗,A) = 1, then |P ∩ P ∗| � 1 and �M(P − P ∗,A) = 1.



556 J. Geelen, X. Zhou / Journal of Combinatorial Theory, Series B 98 (2008) 538–557
Proof. First suppose that |P ∩ P ∗| � 2. Then P ∪ P ∗ is 3-separating. Since M is weakly
4-connected, |P ∪ P ∗| � 4. However, �M(P ∪ P ∗,A) + �M∗(P ∪ P ∗,A) � �M(P,A) +
�M∗(P ∗,A) = 2; contrary to 4.3.2. Hence |P ∩ P ∗| � 1.

Since �M(P,A) = 1, there is a circuit C ⊆ A ∪ P such that C ∩ P 	= ∅ and C ∩ A 	= ∅. If
C ∩ P ∗ = ∅, then �M(P − P ∗,A) = 1, as required. Thus, we may assume that there exists an
element e ∈ C ∩ P ∗; note that P ∩ P ∗ = {e}. Since e ∈ C, we see that e is in the guts of the 3-
separation (P ∗,E(M)−P ∗). Then, since M is 3-connected, e ∈ clM(P ∗ − {e}). It follows that e

is in the guts of (P,E(M)−P) and, hence, that e ∈ clM(P −{e}). Therefore �M(P −P ∗,A) =
�M(P,A) = 1. �

We may assume that neither M/c nor M \ d is weakly 4-connected. Then, by Lemma 4.2 and
duality, there exist two 4-element 3-separating sets Q,Q∗ ⊆ E(M) − A and elements f,f ∗ ∈ A

such that f ∈ clM/c(Q) and f ∗ ∈ cl∗M\d(Q∗).

4.3.4. Let P ⊆ E(M) − A be a 3-separating set of M with 3 or 4 elements. If �M(P,A) = 1,
then T ∩ clM/c(P ) = {f }.

Proof. Let N = M \ Q∗/c. By the dual of Lemma 2.3, A is 2-separating in M \ Q∗, so T

is 2-separating in N . By 4.3.3, �M(Q − Q∗,A) = 1 and �M(P − Q∗,A) = 1. Then, since
c /∈ clM(E(M) − A), �N(Q − Q∗, T ) = 1 and �N(P − Q∗, T ) = 1. Since �M/c(Q, {f }) =
�M/c(Q,T ), we see that �M/c,f (Q,T −{f }) = 0 and, hence, that �N/f (Q−Q∗, T −{f }) = 0.
Then, since �N(Q − Q∗, T ) = 1, we see that f ∈ clN(Q − Q∗). Thus f is in the guts
of the 2-separation (T ,E(N) − T ) in N . Then, since �N(P − Q∗, T ) = 1, we see that
T ∩ clN(P − Q∗) = {f }. Thus, T ∩ clM/c(P − Q∗) = {f }. Then, since �M(P,A) = 1, we have
T ∩ clM/c(P ) = {f }. �

By Lemmas 4.2 and 4.3, each 5-element 3-separating set in M/c contains f . In the remainder
of the proof we will show that M/c \ f is weakly 4-connected.

Suppose that M/c \ f is not 3-connected. Then f is in the coguts of a 3-separation (X,Y ) in
M/c. Since f /∈ clM/c(X − {f }) and f /∈ clM/c(Y − {f }), X − {f } and Y − {f } each contain
one element of T . Now note that X − T and Y − T are both 3-separating in M/c. However,
c ∈ cl∗M(T ), so X−T and Y −T are both 3-separating in M . Since M is weakly 4-connected and
|E(M)| � 12, |X − T | = 4 and |Y − T | = 4. Thus we may assume that M/c \ f is 3-connected.

Finally, we suppose that M/c \ f is not weakly 4-connected; let (X,Y ) be a meaty 3-
separation in M/c\f . By symmetry we may assume that |Y ∩Q| � 2. Note that this 3-separation
is blocked by f in M/c. Therefore, X and Y must each contain one element of T . Sup-
pose that X ∩ T = {x}. Since |Y ∩ Q| � 2, we see that X − Q is 3-separating in M/c \ f .
However f ∈ clM/c(Q), so X − Q is 3-separating in M/c. Now T ∩ (X − Q) = {x}, so
(X − Q) − {x} is 3-separating in M/c. Since c ∈ cl∗M(T ), (X − Q) − {x} is 3-separating in M .
Since |X| � 5 and |Q ∩ Y | � 2, we have |(X − Q) − {x}| � 2. However, x is in the guts
of the 3-separation (X − Q,Y ∪ Q) in M/c. So, by 4.3.3, |(X − Q) − {x}| = 2. Therefore,
|X| = 5 and |X ∩ Q| = |Y ∩ Q| = 2. Now, by the symmetry between X and Y , |Y | = 5 and,
hence, |E(M)| = 12. Now consider the 3-separating set Q∗. By 4.3.3, |Q ∩ Q∗| � 1. There-
fore Q∗ meets either X − Q or Y − Q in two elements; by symmetry we may assume that
|(X − Q) ∩ Q∗| = 2. But then �M/c(Q

∗, T ) � 1 and, hence, �M∗(Q∗,A) + �M(Q∗,A) � 2.
Then, by 4.3.1, M has the required structure. �
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Fig. 6. Tridents.

Definition 4.4 (Tridents). A trident is a weakly 4-connected rank-6 matroid M on 12 elements
such that E(M) can be partitioned into three 4-element rank-3 3-separating sets.

Figure 6 shows two tridents M with the property that they do not contain a weakly 4-
connected minor on 10 or 11 elements. Not all tridents have this property, however, there are
4 non-isomorphic binary tridents and each of these does have the property.

Proof of Theorem 1.1. By Theorems 3.1 and 4.3, we may assume that |E(M)| = 12 and that
there is a partition (A,B,C) of E(M) into three 4-element 3-separating sets. By Lemma 4.1, we
may assume that each of A, B , and C has rank 3. Up to duality, we may assume that r(M) � 6.
Moreover, we may assume that M is not a trident and, hence, that r(M) � 5. Since A, B , and
C are rank-3 3-separating sets, r(M) = 5. Therefore rM(A ∪ B) = 4 and, hence, �M(A,B) = 2.
Similarly, �M(A,C) = 2. Then, by Lemma 2.2, �M∗(A,B) = 0 and �M∗(A,C) = 0.

Consider any 4-element 3-separating set Q. Up to symmetry, we may assume that |Q∩C| � 2.
Then Q ∪ C is 3-separating. However, M is weakly 4-connected, so Q = C. Thus A, B , and C

are the only 4-element 3-separating sets in M . Therefore, there is no 4-element 3-separating set
Q ⊆ E(M) − A such that �M∗(A,Q) � 1. Then it follows easily from the dual of Lemma 4.2,
that there exists d ∈ A such that M \ d is weakly 4-connected. �
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