Lecture 5d
 Algebraic Multiplicity and Geometric Multiplicity

(pages 296-7)

Let us consider our example matrix $B=\left[\begin{array}{rrrr}3 & 0 & 0 & 0 \\ -6 & 4 & 1 & 5 \\ 2 & 1 & 4 & -1 \\ 4 & 0 & 0 & -3\end{array}\right]$ again. We found that B had three eigenvalues, even though it is a 4×4 matrix. This is because $\lambda=3$ was a double root of the characteristic polynomial for B. Now, if the eigenspace corresponding to $\lambda=3$ also had two basis vectors, this wouldn't have been so strange, but instead the eigenspace corresponding to $\lambda=3$ was the span of only one vector. This will turn out to be a less than ideal situation, but in order to study this further we will need some more definitions.

Definition: Let A be an $n \times n$ matrix with eigenvalue λ. The algebraic multiplicity of λ is the number of times λ is repeated as a root of the characteristic polynomial.

Definition: Let A be an $n \times n$ matrix with eigenvalue λ. The geometric multiplicity of λ is the dimension of the eigenspace of λ.
Example: Let $B=\left[\begin{array}{rrrr}3 & 0 & 0 & 0 \\ -6 & 4 & 1 & 5 \\ 2 & 1 & 4 & -1 \\ 4 & 0 & 0 & -3\end{array}\right]$, as in our previous examples. Then the algebraic multiplicity of $\lambda=3$ is 2 , but the geometric multiplicity of $\lambda=3$ is 1 . Both $\lambda=-3$ and $\lambda=5$ have algebraic multiplicity 1 and geometric multiplicity 1.

Example: Let $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$, as in our previous examples. Then both $\lambda=2$ and $\lambda=5$ have algebraic multiplicity 1 and geometric multiplicity 1 .
Example: Let $C=\left[\begin{array}{lll}2 & 0 & 0 \\ 4 & 2 & 0 \\ 6 & 0 & 2\end{array}\right]$. Then $C-\lambda I=\left[\begin{array}{rrr}2-\lambda & 0 & 0 \\ 4 & 2-\lambda & 0 \\ 6 & 0 & 2-\lambda\end{array}\right]$, and so $\operatorname{det}(C-\lambda I)=(2-\lambda)^{3}$ (since $C-\lambda I$ is a triangular matrix). So, $\lambda=2$ is the only eigenvalue of C, and we see that $\lambda=2$ has algebraic multiplicity 3 . To find the geometric multiplicity of $\lambda=2$, we first need to find its eigenspace. To do that, we will need to row reduce $C-2 I=\left[\begin{array}{rrr}2-2 & 0 & 0 \\ 4 & 2-2 & 0 \\ 6 & 0 & 2-2\end{array}\right]=$ $\left[\begin{array}{lll}0 & 0 & 0 \\ 4 & 0 & 0 \\ 6 & 0 & 0\end{array}\right]$. We row reduce as follows:

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
4 & 0 & 0 \\
6 & 0 & 0
\end{array}\right] \quad(1 / 4) R_{2} \sim\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
6 & 0 & 0
\end{array}\right] \quad R_{3}-6 R_{2} \sim\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] R_{1} \downarrow R_{2}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So we see that the homogeneous system $(C-2 I) \vec{v}=\overrightarrow{0}$ is equivalent to the equation $v_{1}=0$. Replacing v_{2} with the parameter s, and replacing v_{3} with the parameter t, we see that the general solution to the system is

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
s \\
t
\end{array}\right]=s\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

And so we see that the eigenspace for $\lambda=2$ is $\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. As such, the geometric multiplicity of $\lambda=2$ is 2 .

