
Lecture 3x

Finding Inverses Using Elementary Matrices

(pages 178-9)

In the previous lecture, we learned that for every matrix A, there is a sequence of
elementary matrices E1, . . . , Ek such that Ek · · ·E1A is the reduced row echelon
form of A. But what if the reduced row echelon form of A is I? Then we have
that Ek · · ·E1A = I. But this means that (Ek · · ·E1) is A−1.

Example: Let A =

[
2 4
5 8

]
, and consider the following row reduction of A

to I:[
2 4
5 8

]
(1/2)R1 ∼

[
1 2
5 8

]
R2 − 5R1

∼
[

1 2
0 −2

]
(−1/2)R2

∼
[

1 2
0 1

]
R1 − 2R2 ∼

[
1 0
0 1

]
.

Then we can construct a sequence of elementary matrices E4, . . . , E1 such that
E4 · · ·E1A = I as follows:

The first row operation is (1/2)R1, so E1 =

[
1/2 0

0 1

]
.

The second row operation is R2 − 5R1, so E2 =

[
1 0
−5 1

]
.

The third row operation is (−1/2)R2, so E3 =

[
1 0
0 −1/2

]
.

The fourth row operation is R1 − 2R2, so E4 =

[
1 −2
0 1

]
.

Then A−1 = E4E3E2E1, which we can calculate as follows:

E2E1 =

[
1 0
−5 1

] [
1/2 0

0 1

]
=

[
1/2 0
−5/2 1

]
E3E2E1 = E3(E2E1) =

[
1 0
0 −1/2

] [
1/2 0
−5/2 1

]
=

[
1/2 0
5/4 −1/2

]
A−1 = E4E3E2E1 = E4(E3E2E1) =

[
1 −2
0 1

] [
1/2 0
5/4 −1/2

]
=

[
−2 1
5/4 −1/2

]
.

We verify our calculation by looking at the product AA−1:

AA−1 =

[
2 4
5 8

] [
−2 1
5/4 −1/2

]
=

[
−4 + 5 2− 2
−10 + 10 5− 4

]
=

[
1 0
0 1

]
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Example: Let’s look at a different row reduction of A to I:[
2 4
5 8

]
R2 − 2R1

∼
[

2 4
1 0

]
R1 l R2 ∼

[
1 0
2 4

]
R2 − 2R1

∼
[

1 0
0 4

]
(1/4)R2

∼
[

1 0
0 1

]
Then we can construct a sequence of elementary matrices E4, . . . , E1 such that
E4 · · ·E1A = I as follows:

The first row operation is R2 − 2R1, so E1 =

[
1 0
−2 1

]
.

The second row operation is R1 l R2, so E2 =

[
0 1
1 0

]
.

The third row operation is R2 − 2R1, so E3 =

[
1 0
−2 1

]
.

The fourth row operation is (1/4)R2, so E4 =

[
1 0
0 1/4

]
.

Then A−1 = E4E3E2E1, which we can calculate as follows:

E2E1 =

[
0 1
1 0

] [
1 0
−2 1

]
=

[
−2 1

1 0

]
E3E2E1 = E3(E2E1) =

[
1 0
−2 1

] [
−2 1

1 0

]
=

[
−2 1

5 −2

]
A−1 = E4E3E2E1 = E4(E3E2E1) =

[
1 0
0 1/4

] [
−2 1

5 −2

]
=

[
−2 1
5/4 −1/2

]
.

This is the same value for A−1 that we got on the previous example, which
is good, since we’ve already shown that the inverse of a matrix is unique! So
the point of this example is to emphasize that it while a different collection of
row reductions steps will lead to a different sequence of matrices E1, . . . , Ek, no
matter which sequence we use, we still end up with our unique matrix A−1.

But what about the inverse of an elementary matrix? As they are row equivalent
to I, we know that the are invertible. And to get from an elementary matrix
E to I, you simply need to undo the row operation you did to get from I to E
in the first place. As this will be a single row operation, it turns out that the
inverse of an elementary matrix is itself an elementary matrix. And the best
way to find the inverse is to think in terms of row operations.

Example:

[
2 0
0 1

]−1

=

[
1/2 0

0 1

]
, since the way we undo multiplying row

1 by 2 is to multiply row 1 by 1/2. In general, the inverse of the operation sRi
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is (1/s)Ri.

Example:


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


−1

=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

, since to undo switching

rows 1 and 2, we simply need to switch rows 1 and 2 again. In general, the
inverse of the operation Ri l Rj isRi l Rj . (That is, switching rows is its own
inverse.)

Example:

 1 0 4
0 1 0
0 0 1

−1

=

 1 0 −4
0 1 0
0 0 1

, since the way we undo adding

four times row 3 to row 1 is to subtract four times row 3 from row 1. In general,
the inverse of the operation Ri + sRj is Ri − sRj .

Example: Let A =

[
2 4
5 8

]
, as in our previous examples. Then not only

can we write A−1 as a product of elementary matrices, but we can also write
A as a product of elementary matrices. Since A−1 = E4E3E2E1, we have
A = (A−1)−1 = (E4E3E2E1)−1 = E−1

1 E−1
2 E−1

3 E−1
4 . (REMEMBER: the order

of multiplication switches when we distribute the inverse.) And since we just
saw that the inverse of an elementary matrix is itself an elementary matrix, we
know that E−1

1 E−1
2 E−1

3 E−1
4 is a product of elementary matrices. Specifically,

we get that

A =

[
2 0
0 1

] [
1 0
5 1

] [
1 0
0 −2

] [
1 2
0 1

]
(if we use the first row reduction),

or

A =

[
1 0
2 1

] [
0 1
1 0

] [
1 0
2 1

] [
1 0
0 4

]
(if we use the second row reduc-

tion).

Generalizing the procedure in this example, we get the following theorem:

Theorem 3.6.3: If an n× n matrix A has rank n, then it may be represented as
a product of elementary matrices.

Note: When asked to “write A as a product of elementary matrices”, you are
expected to write out the matrices, and not simply describe them using row
operations, or leave them as E−1 even if you have already written out E.

There is one result that I would like to point out, that is missing from the
textbook:

Course Author’s Theorem: If A is row equivalent to B, then there is an invert-
ible matrix P such that PA = B.

Proof: If A is row equivalent to B, then there is a sequence of elementary row
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operations from A to B. If E1, . . . , Ek are the elementary matrices for these
row operations, then we have that Ek · · ·E1A = B. So, if we let P = Ek · · ·E1,
then P is invertible, as the elementary matrices are invertible and the product
of invertible matrices is invertible. And so P is an invertible matrix such that
PA = B.

As this theorem doesn’t appear in the text, we won’t really use it for anything,
but the text has placed a lot of emphasis on there being a sequence of elementary
matrices leading to the reduced row echelon form, and I wanted to point out
this fact, which holds for any matrix row equivalent to A.
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