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Abstract. In a column-restricted covering integer program (CCIP), all
the non-zero entries of any column of the constraint matrix are equal.
Such programs capture capacitated versions of covering problems. In
this paper, we study the approximability of CCIPs, in particular, their
relation to the integrality gaps of the underlying 0,1-CIP.

If the underlying 0,1-CIP has an integrality gap O(γ), and assuming
that the integrality gap of the priority version of the 0,1-CIP is O(ω), we
give a factor O(γ + ω) approximation algorithm for the CCIP. Priority
versions of 0,1-CIPs (PCIPs) naturally capture quality of service type
constraints in a covering problem.

We investigate priority versions of the line (PLC) and the (rooted)
tree cover (PTC) problems. Apart from being natural objects to study,
these problems fall in a class of fundamental geometric covering prob-
lems. We bound the integrality of certain classes of this PCIP by a con-
stant. Algorithmically, we give a polytime exact algorithm for PLC, show
that the PTC problem is APX-hard, and give a factor 2-approximation
algorithm for it.

1 Introduction

In a 0,1-covering integer program (0,1-CIP, in short), we are given a constraint
matrix A ∈ {0, 1}m×n, demands b ∈ Z

m
+ , non-negative costs c ∈ Z

n
+, and upper

bounds d ∈ Z
n
+, and the goal is to solve the following integer linear program

(which we denote by Cov(A, b, c, d)).

min{cT x : Ax ≥ b, 0 ≤ x ≤ d, x integer}.

Problems that can be expressed as 0,1-CIPs are essentially equivalent to set
multi-cover problems, where sets correspond to columns and elements correspond
to rows. This directly implies that 0,1-CIPs are rather well understood in terms
of approximability: the class admits efficient O(log n) approximation algorithms
and this is best possible unless NP = P. Nevertheless, in many cases one can
get better approximations by exploiting the structure of matrix A. For example,
it is well known that whenever A is totally unimodular (TU)(e.g., see [18]), the
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canonical LP relaxation of a 0,1-CIP is integral; hence, the existence of efficient
algorithms for solving linear programs immediately yields fast exact algorithms
for such 0,1-CIPs as well.

While a number of general techniques have been developed for obtaining im-
proved approximation algorithms for structured 0, 1-CIPs, not much is known
for structured non-0, 1 CIP instances. In this paper, we attempt to mitigate this
problem, by studying the class of column-restricted covering integer programs
(CCIPs), where all the non-zero entries of any column of the constraint matrix
are equal. Such CIPs arise naturally out of 0, 1-CIPs, and the main focus of this
paper is to understand how the structure of the underlying 0,1-CIP can be used
to derive improved approximation algorithms for CCIPs.

Column-Restricted Covering IPs (CCIPs): Given a 0,1-covering problem
Cov(A, b, c, d) and a supply vector s ∈ Z

n
+, the corresponding CCIP is obtained

as follows. Let A[s] be the matrix obtained by replacing all the 1’s in the jth
column by sj ; that is, A[s]ij = Aijsj for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. The column-
restricted covering problem is given by the following integer program.

min{cT x : A[s]x ≥ b, 0 ≤ x ≤ d, x integer}. (Cov(A[s], b, c, d))

CCIPs naturally capture capacitated versions of 0,1-covering problems. To il-
lustrate this we use the following 0,1-covering problem called the tree covering
problem. The input is a tree T = (V, E) rooted at a vertex r ∈ V , a set of
segments S ⊆ {(u, v) : u is a child of v}, non-negative costs cj for all j ∈ S, and
demands be ∈ Z+ for all e ∈ E. An edge e is contained in a segment j = (u, v) if
e lies on the unique u, v-path in T . The goal is to find a minimum-cost subset C
of segments such that each edge e ∈ E is contained in at least be segments of C.
When T is just a line, we call the above problem, the line cover (LC) problem.
In this example, the constraint matrix A has a row for each edge of the tree and
a column for each segment in S. It is not too hard to show that this matrix is
TU and thus these can be solved exactly in polynomial time.

In the above tree cover problem, suppose each segment j ∈ S also has a ca-
pacity supply sj associated with it, and call an edge e covered by a collection of
segments C iff the total supply of the segments containing e exceeds the demand
of e. The problem of finding the minimum cost subset of segments covering every
edge is precisely the column-restricted tree cover problem. The column-restricted
line cover problem encodes the minimum knapsack problem and is thus NP-hard.

For general CIPs, the best known approximation algorithm, due to Kolliopoulos
and Young [15], has a performance guarantee of O(1 + log α), where α, called
the dilation of the instance, denotes the maximum number of non-zero entries
in any column of the constraint matrix. Nothing better is known for the special
case of CCIPs unless one aims for bicriteria results where solutions violate the
upper bound constraints x ≤ d (see Section 1.1 for more details).

In this paper, our main aim is to understand how the approximability of a
given CCIP instance is determined by the structure of the underlying 0, 1-CIP. In



particular, if a 0, 1-CIP has a constant integrality gap, under what circumstances
can one get a constant factor approximation for the corresponding CCIP? We
make some steps toward finding an answer to this question.

In our main result, we show that there is a constant factor approximation
algorithm for CCIP if two induced 0, 1-CIPs have constant integrality gap. The
first is the underlying original 0,1-CIP. The second is a priority version of the
0,1-CIP (PCIP, in short), whose constraint matrix is derived from that of the
0,1-CIP as follows.

Priority versions of Covering IPs (PCIPs): Given a 0,1-covering problem
Cov(A, b, c, d), a priority supply vector s ∈ Z

n
+, and a priority demand vector

π ∈ Z
m
+ , the corresponding PCIP is as follows. Define A[s, π] to be the following

0,1 matrix

A[s, π]ij =

{

1 : Aij = 1 and sj ≥ πi

0 : otherwise,
(1)

Thus, a column j covers row i, only if its priority supply is higher than the
priority demand of row i. The priority covering problem is now as follows.

min{cT x : A[s, π]x ≥ 1, 0 ≤ x ≤ d, x integer}. (Cov(A[s, π],1, c))

We believe that priority covering problems are interesting in their own right,
and they arise quite naturally in covering applications where one wants to model
quality of service (QoS) or priority restrictions. For instance, in the tree cover
problem defined above, suppose each segment j has a quality of service (QoS)
or priority supply sj associated with it and suppose each edge e has a QoS or
priority demand πe associated with it. We say that a segment j covers e iff j
contains e and the priority supply of j exceeds the priority demand of e. The
goal is to find a minimum cost subset of segments that covers every edge. This
is the priority tree cover problem.

Besides being a natural covering problem to study, we show that the priority
tree cover problem is a special case of a classical geometric covering problem:
that of finding a minimum cost cover of points by axis-parallel rectangles in 3
dimensions. Finding a constant factor approximation algorithm for this problem,
even when the rectangles have uniform cost, is a long standing open problem.

We show that although the tree cover is polynomial time solvable, the priority
tree cover problem is APX-hard. We complement this with a factor 2 approx-
imation for the problem. Furthermore, we present constant upper bounds for
the integrality gap of this PCIP in a number of special cases, implying constant
upper bounds on the corresponding CCIPs in these special cases. We refer the
reader to Section 1.2 for a formal statement of our results, which we give after
summarizing works related to our paper.

1.1 Related work

There is a rich and long line of work ([9, 11, 17, 19, 20]) on approximation al-
gorithms for CIPs, of which we state the most relevant to our work. Assum-



ing no upper bounds on the variables, Srinivasan [19] gave a O(1 + log α)-
approximation to the problem (where α is the dilation as before). Later on,
Kolliopoulos and Young [15] obtained the same approximation factor, respect-
ing the upper bounds. However, these algorithms didn’t give any better results
when special structure of the constraint matrix was known. On the hardness
side, Trevisan [21] showed that it is NP-hard to obtain a (log α − O(log log α))-
approximation algorithm even for 0,1-CIPs.

The most relevant work to this paper is that of Kolliopoulos [12]. The author
studies CCIPs which satisfy a rather strong assumption, called the no bottleneck
assumption, that the supply of any column is smaller than the demand of any
row. Kolliopoulos [12] shows that if one is allowed to violate the upper bounds
by a multiplicative constant, then the integrality gap of the CCIP is within a
constant factor of that of the original 0,1-CIP1. As the author notes such a
violation is necessary; otherwise the CCIP has unbounded integrality gap. If one
is not allowed to violated upper bounds, nothing better than the result of [15]
is known for the special case of CCIPs.

Our work on CCIPs parallels a large body of work on column-restricted
packing integer programs (CPIPs). Assuming the no-bottleneck assumption, Kol-
liopoulos and Stein [14] show that CPIPs can be approximated asymptotically
as well as the corresponding 0,1-PIPs. Chekuri et al. [7] subsequently improve
the constants in the result from [14]. These results imply constant factor approx-
imations for the column-restricted tree packing problem under the no-bottleneck
assumption. Without the no-bottleneck assumption, however, only polylogarith-
mic approximation is known for the problem [6].

The only work on priority versions of covering problems that we are aware
of is due to Charikar, Naor and Schieber [5] who studied the priority Steiner
tree and forest problems in the context of QoS management in a network multi-
casting application. Charikar et al. present a O(log n)-approximation algorithm
for the problem, and Chuzhoy et al. [8] later show that no efficient o(log log n)
approximation algorithm can exist unless NP ⊆ DTIME(nlog log log n) (n is the
number of vertices).

To the best of our knowledge, the column-restricted or priority versions of
the line and tree cover problem have not been studied. The best known approx-
imation algorithm known for both is the O(log n) factor implied by the results
of [15] stated above. However, upon completion of our work, Nitish Korula [16]
pointed out to us that a 4-approximation for column-restricted line cover is im-
plicit in a result of Bar-Noy et al. [2]. We remark that their algorithm is not
LP-based, although our general result on CCIPs is.

1.2 Technical Contributions and Formal Statement of Results

Given a 0,1-CIP Cov(A, b, c, d), we obtain its canonical LP relaxation by remov-
ing the integrality constraint. The integrality gap of the CIP is defined as the

1 Such a result is implicit in the paper; the author only states a O(log α) integrality
gap.



supremum of the ratio of optimal IP value to optimal LP value, taken over all
non-negative integral vectors b, c, and d. The integrality gap of an IP captures
how much the integrality constraint affects the optimum, and is an indicator of
the strength of a linear programming formulation.

CCIPs: Suppose the CCIP is Cov(A[s], b, c, d). We make the following two
assumptions about the integrality gaps of the 0,1 covering programs, both the
original 0,1-CIP and the priority version of the 0,1-CIP.

Assumption 1 The integrality gap of the original 0,1-CIP is γ ≥ 1. Specifically,
for any non-negative integral vectors b, c, and d, if the canonical LP relaxation
to the CIP has a fractional solution x, then one can find in polynomial time an
integral feasible solution to the CIP of cost at most γ · cT x. We stress here that
the entries of b, c, d could be 0 as well as ∞.

Assumption 2 The integrality gap of the PCIP is ω ≥ 1. Specifically, for any
non-negative integral vectors s, π, c, if the canonical LP relaxation to the PCIP
has a fractional solution x, then one can find in polynomial time, an integral
feasible solution to the PCIP of cost at most ω · cT x.

We give an LP-based approximation algorithm for solving CCIPs. Since the
canonical LP relaxation of a CCIP can have unbounded integrality gap, we
strengthen it by adding a set of valid constraints called the knapsack cover
constraints. We show that the integrality gap of this strengthened LP is O(γ+ω),
and can be used to give a polynomial time approximation algorithm.

Theorem 1. Under Assumptions 1 and 2, there is a (24γ + 8ω)-approximation
algorithm for column-restricted CIPs.

Knapsack cover constraints to strengthen LP relaxations were introduced in
[1, 10, 22]; Carr et al. [3] were the first to employ them in the design approxima-
tion algorithms. The paper of Kolliopoulos and Young [15] also use these to get
their result on general CIPs.

The main technique in the design of algorithms for column-restricted prob-
lems is grouping-and-scaling developed by Kolliopoulos and Stein [13, 14] for
packing problems, and later used by Kolliopoulos [12] in the covering context.
In this technique, the columns of the matrix are divided into groups of ‘close-by’
supply values; in a single group, the supply values are then scaled to be the
same; for a single group, the integrality gap of the original 0,1-CIP is invoked
to get an integral solution for that group; the final solution is a ‘union’ of the
solutions over all groups.

There are two issues in applying the technique to the new strengthened LP
relaxation of our problem. Firstly, although the original constraint matrix is
column-restricted, the new constraint matrix with the knapsack cover constraints
is not. Secondly, unless additional assumptions are made, the current grouping-
and-scaling analysis doesn’t give a handle on the degree of violation of the upper



bound constraints. This is the reason why Kolliopoulos [12] needs the strong no-
bottleneck assumption.

We get around the first difficulty by grouping the rows as well, into those that
get most of their coverage from columns not affected by the knapsack constraints,
and the remainder. On the first group of rows, we apply a subtle modification to
the vanilla grouping-and-scaling analysis and obtain a O(γ) approximate feasible
solution satisfying these rows; we then show that one can treat the remainder
of the rows as a PCIP and get a O(ω) approximate feasible solution satisfying
them, using Assumption 2. Combining the two gives the O(γ + ω) factor. The
full details are given in Section 2.

We stress here that apart from the integrality gap assumptions on the 0,1-
CIPs, we do not make any other assumption (like the no-bottleneck assumption).
In fact, we can use the modified analysis of the grouping-and-scaling technique to
get a similar result as [12] for approximating CCIPs violating the upper-bound
constraints, under a weaker assumption than the no-bottleneck assumption. The
no-bottleneck assumption states that the supply of any column is less than the
demand of any row. In particular, even though a column has entry 0 on a certain
row, its supply needs to be less than the demand of that row. We show that if we
weaken the no-bottleneck assumption to assuming that the supply of a column
j is less than the demand of any row i only if A[s]ij is positive, a similar result
can be obtained via our modified analysis.

Theorem 2. Under assumption 1 and assuming Aijsj ≤ bi, for all i, j, given a
fractional solution x to the canonical LP relaxation of Cov(A[s], b, c, d), one can
find an integral solution xint whose cost c · xint ≤ 10γ(c · x) and xint ≤ 10d.

Priority Covering Problems. In the following, we use PLC and PTC to refer
to the priority versions of the line cover and tree cover problems, respectively.
Recall that the constraint matrices for line and tree cover problems are totally
unimodular, and the integrality of the corresponding 0,1-covering problems is
therefore 1 in both case. It is interesting to note that the 0,1-coefficient matrices
for PLC and PTC are not totally unimodular in general. The following integrality
gap bound is obtained via a primal-dual algorithm.

Theorem 3. The canonical LP for priority line cover has an integrality gap of
at least 3/2 and at most 2.

In the case of tree cover, we obtain constant upper bounds on the integrality
gap for the case c = 1, that is, for the minimum cardinality version of the
problem. We believe that the PCIP for the tree cover problem with general
costs also has a constant integrality gap. On the negative side, we can show an
integrality gap of at least e

e−1 .

Theorem 4. The canonical LP for unweighted PTC has an integrality gap of
at most 6.

We obtain the upper bound by taking a given PTC instance and a frac-
tional solution to its canonical LP, and decomposing it into a collection of PLC



instances with corresponding fractional solutions, with the following two proper-
ties. First, the total cost of the fractional solutions of the PLC instances is within
a constant of the cost of the fractional solution of the PTC instance. Second,
union of integral solutions to the PLC instances gives an integral solution to the
PTC instance. The upper bound follows from Theorem 3. Using Theorem 1, we
get the following as an immediate corollary.

Corollary 1. There are O(1)-approximation algorithms for column-restricted
line cover and the cardinality version of the column-restricted tree cover.

We also obtain the following combinatorial results.

Theorem 5. There is a polynomial-time exact algorithm for PLC.

Theorem 6. PTC is APX-hard, even when all the costs are unit.

Theorem 7. There is an efficient 2-approximation algorithm for PTC.

The algorithm for PLC is a non-trivial dynamic programming approach that
makes use of various structural observations about the optimal solution. The
approximation algorithm for PTC is obtained via a similar decomposition used
to prove Theorem 4.

We end by noting some interesting connections between the priority tree
covering problem and set covering problems in computational geometry. The
rectangle cover problem in 3-dimensions is the following: given a collection of
points P in R

3, and a collection C of axis-parallel rectangles with costs, find a
minimum cost collection of rectangles that covers every point. We believe study-
ing the PTC problem could give new insights into the rectangle cover problem.

Theorem 8. The priority tree covering problem is a special case of the rectangle
cover problem in 3-dimensions.

Due to space restrictions, we omit many proofs. A full version of the paper
is available [4].

2 General Framework for Column Restricted CIPs

In this section we prove Theorem 1. Our goal is to round a solution to a LP re-
laxation of Cov(A[s], b, c, d) into an approximate integral solution. We strengthen
the following canonical LP relaxation of the CCIP

min{cT x : A[s]x ≥ b, 0 ≤ x ≤ d, x ≥ 0}

by adding valid knapsack cover constraints. In the following we use C for the set
of columns and R for the set of rows of A.



2.1 Strengthening the canonical LP Relaxation

Let F ⊂ C be a subset of the columns in the column restricted CIP Cov(A[s], b, c, d).
For all rows i ∈ R, define bF

i = max{0, bi −
∑

j∈F A[s]ijdj} to be the residual

demand of row i w.r.t. F . Define matrix AF [s] by letting

AF [s]ij =

{

min{A[s]ij , b
F
i } : j ∈ C \ F

0 : j ∈ F,
(2)

for all i ∈ C and for all j ∈ R. The following Knapsack-Cover (KC) inequality

∑

j∈C

AF [s]ijxj ≥ bF
i

is valid for the set of all integer solutions x for Cov(A[s], b, c, d). Adding the set
of all KC inequalities yields the following stronger LP formulation CIP. We note
that the LP is not column-restricted, in that, different values appear on the same
column of the new constraint matrix.

optP := min
∑

j∈C

cjxj (P)

s.t.
∑

j∈C

AF [s]ijxj ≥ bF
i ∀F ⊆ C, ∀i ∈ R (3)

0 ≤ xj ≤ dj ∀j ∈ C

It is not known whether (P) can be solved in polynomial time. For α ∈ (0, 1),
call a vector x∗ α-relaxed if its cost is at most optP , and if it satisfies (3) for
F = {j ∈ C : x∗

j ≥ αdj}. An α-relaxed solution to (P) can be computed
efficiently for any α. To see this note that one can check whether a candidate
solution satisfies (3) for a set F ; we are done if it does, and otherwise we have
found an inequality of (P) that is violated, and we can make progress via the
ellipsoid method. Details can be found in [3] and [15].

We fix an α ∈ (0, 1), specifying its precise value later. Compute an α-relaxed
solution, x∗, for (P), and let F = {j ∈ C : x∗

j ≥ αdj}. Define x̄ as, x̄j = x∗
j if

j ∈ C \F , and x̄j = 0, otherwise. Since x∗ is an α-relaxed solution, we get that x̄
is a feasible fractional solution to the residual CIP, Cov(AF [s], bF , c, αd). In the
next subsection, our goal will be to obtain an integral feasible solution to the
covering problem Cov(AF [s], bF , c, d) using x̄. The next lemma shows how this
implies an approximation to our original CIP.

Lemma 1. If there exists an integral feasible solution, xint, to Cov(AF [s], bF , c, d)
with cT xint ≤ β · cT x̄, then there exists a max{1/α, β}-factor approximation to
Cov(A[s], b, c, d).



2.2 Solving the Residual Problem

In this section we use a feasible fractional solution x̄ of Cov(AF [s], bF , c, αd), to
obtain an integral feasible solution xint to the covering problem Cov(AF [s], bF , c, d),
with cT xint ≤ βcT x̄ for β = 24γ + 8ω. Fix α = 1/24.

Converting to Powers of 2. For ease of exposition, we first modify the input
to the residual problem Cov(AF [s], bF , c, d) so that all entries of are powers of 2.
For every i ∈ R, let b̄i denote the smallest power of 2 larger than bF

i . For every
column j ∈ C, let s̄j denote the largest power of 2 smaller than sj .

Lemma 2. y = 4x̄ is feasible for Cov(AF [s̄], b̄, c, 4αd).

Partitioning the rows. We call b̄i the residual demand of row i. For a row
i, a column j ∈ C is i-large if the supply of j is at least the residual demand of
row i; it is i-small otherwise. Formally,

Li = {j ∈ C : Aij = 1, s̄j ≥ b̄i} is the set of i-large columns

Si = {j ∈ C : Aij = 1, s̄j < b̄i} is the set of i-small columns

Recall the definition from (2), AF [s̄]ij = min(A[s̄]ij , b
F
i ). Therefore, AF [s̄]ij =

Aijb
F
i for all j ∈ Li since s̄j ≥ b̄i ≥ bF

i ; and AF [s̄]ij = Aij s̄j for all j ∈ Si, since
being powers of 2, s̄j < b̄i implies, s̄j ≤ b̄i/2 ≤ bF

i .

We now partition the rows into large and small depending on which columns
most of their coverage comes from. Formally, call a row i ∈ R large if

∑

j∈Si

AF [s̄]ijyj ≤
∑

j∈Li

AF [s̄]ijyj ,

and small otherwise. Note that Lemma 2 together with the fact that each column
in row i’s support is either small or large implies,

∑

j∈Li

AF [s̄]ijyj ≥ b̄i/2, for all large rows i, and

∑

j∈Si

AF [s̄]ijyj ≥ b̄i/2, for all small rows i.

Let RL and RS be the set of large and small rows.

In the following, we address small and large rows separately. We compute
a pair of integral solutions xint,S and xint,L that are feasible for the small and
large rows, respectively. We then obtain xint by letting

xint

j = max{xint,S
j , xint,L

j }, (4)

for all j ∈ C.



Small rows. For these rows we use the grouping-and-scaling technique a la [7,
12–14]. However, as mentioned in the introduction, we use a modified analysis
that bypasses the no-bottleneck assumptions made by earlier works.

Lemma 3. We can find an integral solution xint,S such that
a) xint,S

j ≤ dj for all j,

b)
∑

j∈C
cjx

int,S
j ≤ 24γ

∑

j∈C
cj x̄j, and

c) for every small row i ∈ RS ,
∑

j∈C
AF [s]ijx

int,S
j ≥ bF

i .

Proof. (Sketch) Since the rows are small, for any row i, we can zero out the
entries that are larger than b̄i, and still 2y will be a feasible solution. Note that,
now in each row, the entries are < b̄i, and thus are at most b̄i/2 (everything
being powers of 2). We stress that it could be that b̄i of some row is less than the
entry in some other row, that is, we don’t have the no-bottleneck assumption.
However, when a particular row i is fixed, b̄i is at least any entry of the matrix
in the ith row. Our modified analysis of grouping and scaling then makes the
proof go through.

We group the columns into classes that have sj as the same power of 2, and

for each row i we let b̄
(t)
i be the contribution of the class t columns towards the

demand of row i. The columns of class t, the small rows, and the demands b̄
(t)
i

form a CIP where all non-zero entries of the matrix are the same power of 2.

We scale both the constraint matrix and b̄
(t)
i down by that power of 2 to get a

0,1-CIP, and using assumption 1, we get an integral solution to this 0,1-CIP. Our
final integral solution is obtained by concatenating all these integral solutions
over all classes.

Till now the algorithm is the standard grouping-and-scaling algorithm. The
difference lies in our analysis in proving that this integral solution is feasible for
the original CCIP. Originally the no-bottleneck assumption was used to prove
this. However, we show that, since the column values in different classes are
geometrically decreasing, the weaker assumption of b̄i being at least any entry
in the ith row is enough to make the analysis go through.

This completes the sketch of the proof.

Large rows. The large rows can be showed to be a PCIP problem and thus
Assumption 2 can be invoked to get an analogous lemma to Lemma 3.

Lemma 4. We can find an integral solution xint,L such that
a) xint,L

j ≤ 1 for all j,

b)
∑

j∈C
cjx

int,S
j ≤ 8ω

∑

j∈C
cj x̄j , and

c) for every large row i ∈ RL,
∑

j∈C
AF [s]ijx

int,S
j ≥ bF

i .

Define xint as xint

j = max{xint,S
j , xint,L

j } for all j; using the previous two lemmas
and Lemma 1, this integral solution proves Theorem 1.



3 Priority line cover

In this extended abstract, we show that the integrality gap of the canonical linear
programming relaxation of PLC is at most 2. Subsequently, we sketch an exact
combinatorial algorithm for the problem.

3.1 Canonical LP relaxation: Integrality gap

We start with the canonical LP relaxation for PLC and its dual in Figure 1.

min
n

X

j∈S

cjxj : x ∈ R
S
+

(Primal)
X

j∈S:j covers e

xj ≥ 1, ∀e ∈ E
o

max
n

X

e∈E

ye : y ∈ R
E
+ (Dual)

X

e∈E:j covers e

ye ≤ cj , ∀j ∈ S

o

Fig. 1. The PLC canonical LP relaxation and its dual.

We use the terminology an edge e is larger than f , if πe ≥ πf . The algorithm
maintains a set of segments Q initially empty. Call an edge e unsatisfied if no
segment in Q covers e and let U be the set of unsatisfied edges. The algorithm
picks the largest edge in U and raises the dual value ye till some segments
becomes tight. The segments with the farthest left-end point and the farthest
right-end point are picked in Q, and all edges contained in any of them are
removed from U . Note that since we choose the largest in U , all such edges are
covered. The algorithm repeats this process till U becomes ∅, that is, all edges
are covered. The final set of segments is obtained by a reverse delete step, where
a segment is deleted if its deletion doesn’t make any edge uncovered.

The algorithm is a factor 2 approximation algorithm. To show this it suffices
by a standard argument for analysing primal-dual algorithms, that any edge
with a positive dual ye is contained in at most two segments in Q. These two
segments correspond to the left-most and the right-most segments that cover e;
it is not too hard to show if something else covers e, then either e has zero dual,
or the third segment is removed in the reverse delete step.

3.2 An Exact Algorithm for PLC

We sketch the exact algorithm for PLC. A segment j covers only a subset of
edges it contains. We call a contiguous interval of edges covered by j, a valley of
j. The uncovered edges form mountains. Thus a segment can be thought of as
forming a series of valleys and mountains.

Given a solution S ⊆ S to the PLC (or even a PTC) instance, we say that
segment j ∈ S is needed for edge e if j is the unique segment in S that covers



e. We let ES,j be the set of edges that need segment j. We say a solution is
valley-minimal if it satisfies the following two properties: (a) If a segment j is
needed for edge e that lies in the valley v of j, then no higher supply segment of
S intersects this valley v, and (b) every segment j is needed for its last and first
edges. We show that an optimum solution can be assumed to be valley-minimal,
and thus it suffices to find the minimum cost valley-minimal solution.

The crucial observation follows from properties (a) and (b) above. The valley-
minimality of solution S implies that there is a unique segment j ∈ S that covers
the first edge of the line. At a very high level, we may now use j to decompose
the given instance into a set of smaller instances. For this we first observe that
each of the remaining segments in S \ {j} is either fully contained in the strict
interior of segment j, or it is disjoint from j, and lies to the right of it. The set
of all segments that are disjoint from j form a feasible solution for the smaller
PLC instance induced by the portion of the original line instance to the right
of j. On the other hand, we show how to reduce the problem of finding an
optimal solution for the part of the line contained in j to a single shortest-path
computation in an auxiliary digraph. Each of the arcs in this digraph once again
corresponds to a smaller sub-instance of the original PLC instance, and its cost
is that of its optimal solution. The algorithm follows by dynamic programming.

4 Priority tree cover

In this extended abstract, we sketch a factor 2 approximation for the PTC
problem, and show how the PTC problem is a special case of the 3 dimensional
rectangle cover problem. For the APX hardness and the integrality gap of the
unweighted PTC LP, we refer the reader to the full version.

4.1 An approximation algorithm for PTC

We use the exact algorithm for PLC to get the factor 2 algorithm for PTC.
The crucial idea is the following. Given an optimum solution S∗ ⊆ S, we can
partition the edge-set E of T into disjoint sets E1, . . . , Ep, and partition two
copies of S∗ into S1, . . . , Sp, such that Ei is a path in T for each i, and Si is a
priority line cover for the path Ei. Using this, we describe the 2-approximation
algorithm which proves Theorem 7.

Proof of Theorem 7: For any two vertices t (top) and b (bottom) of the tree T ,
such that t is an ancestor of b, let Ptb be the unique path from b to t. Note that
Ptb, together with the restrictions of the segments in Sto Ptb, defines an instance
of PLC. Therefore, for each pair t and b, we can compute the optimal solution
to the corresponding PLC instance using the exact algorithm; let the cost of
this solution be c′tb. Create an instance of the 0,1-tree cover problem with T and
segments S′ := {(t, b) : t is an ancestor of b} with costs c′tb. Solve the 0,1-tree
cover instance exactly (recall we are in the rooted version) and for the segments



(t, b) in S′ returned, return the solution of the corresponding PLC instance of
cost c′tb.

One now uses the decomposition above to obtain a solution to the 0,1-tree
cover problem (T,S′) of cost at most 2 times the cost of S∗. This proves the
theorem. The segments in S′ picked are precisely the segments corresponding to
paths Ei, i = 1, . . . , p and each Si is a solution to the PLC instance. Since we
find the optimum PLC, there is a solution to (T,S′) with costs c′ of cost less
than total cost of segments in S1 ∪ · · · ∪ Sp. But that cost is at most twice the
cost of S∗ since each segment of S∗ is in at most two Si’s.

4.2 Priority Tree Cover and Geometric Covering Problems

We sketch how the PTC problem can be encoded as a rectangle cover problem.
To do so, an auxiliary problem is defined, which we call 2-PLC.

2-Priority Line Cover (2-PLC) The input is similar to PLC, except each
segment and edge has now an ordered pair of priorities, and a segment covers an
edge it contains iff each of the priorities of the segment exceeds the corresponding
priority of the edge. The goal, as in PLC, is to find a minimum cost cover.

It is not too hard to show 2-PLC is a special case of rectangle cover. The
edges correspond to points in 3 dimension and segments correspond to rectangles
in 3-dimension; dimensions encoded by the linear coordinates on the line, and
the two priority values. In general, p-PLC can be shown to be a special case of
(p + 1)-dimensional rectangle cover.

What is more involved is to show PTC is a special case of 2-PLC. To do so, we
run two DFS orderings on the tree, where the order in which children of a node
are visited is completely opposite in the two DFS orderings. The first ordering
gives the order in which these edges must be placed on a line. The second gives
one of the priorities for the edges. The second priority of the edges comes from
the original priority in PTC. It can be shown that the segments priorities can
be so set that the feasible solutions are precisely the same in both the instances
proving Theorem 8.

5 Concluding Remarks

In this paper we studied column restricted covering integer programs. In particu-
lar, we studied the relationship between CCIPs and the underlying 0,1-CIPs. We
conjecture that the approximability of a CCIP should be asymptotically within
a constant factor of the integrality gap of the original 0,1-CIP. We couldn’t show
this; however, if the integrality gap of a PCIP is shown to be within a constant of
the integrality gap of the 0,1-CIP, then we will be done. At this point, we don’t
even know how to prove that PCIPs of special 0,1-CIPS, those whose constraint
matrices are totally unimodular, have constant integrality gap. Resolving the
case of PTC is an important step in this direction, and hopefully in resolving
our conjecture regarding CCIPs.
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