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Abstract. We investigate hypergraphic LP relaxations for the Steiner
tree problem, primarily the partition LP relaxation introduced by Köne-
mann et al. [Math. Programming, 2009]. Specifically, we are interested
in proving upper bounds on the integrality gap of this LP, and studying
its relation to other linear relaxations. Our results are the following.

Structural results: We extend the technique of uncrossing, usually
applied to families of sets, to families of partitions. As a consequence we
show that any basic feasible solution to the partition LP formulation has
sparse support. Although the number of variables could be exponential,
the number of positive variables is at most the number of terminals.

Relations with other relaxations: We show the equivalence of the
partition LP relaxation with other known hypergraphic relaxations. We
also show that these hypergraphic relaxations are equivalent to the well
studied bidirected cut relaxation, if the instance is quasibipartite.

Integrality gap upper bounds: We show an upper bound of
√
3

.
=

1.729 on the integrality gap of these hypergraph relaxations in general
graphs. In the special case of uniformly quasibipartite instances, we show
an improved upper bound of 73/60

.
= 1.216. By our equivalence theorem,

the latter result implies an improved upper bound for the bidirected cut
relaxation as well.

1 Introduction

In the Steiner tree problem, we are given an undirected graph G = (V,E), non-
negative costs ce for all edges e ∈ E, and a set of terminal vertices R ⊆ V . The
goal is to find a minimum-cost tree T spanning R, and possibly some Steiner

vertices from V \R. We can assume that the graph is complete and that the costs
induce a metric. The problem takes a central place in the theory of combinatorial
optimization and has numerous practical applications. Since the Steiner tree
problem is NP-hard1 we are interested in approximation algorithms for it. The
best published approximation algorithm for the Steiner tree problem is due to
Robins and Zelikovsky [20], which for any fixed ǫ > 0, achieves a performance
ratio of 1 + ln 3

2 + ǫ
.
= 1.55 in polynomial time; an improvement is currently in

press [2], see also Remark 1.

⋆ Supported by NSERC grant no. 288340 and by an Early Research Award
1 Chleb́ık and Chleb́ıková show that no (96/95−ǫ)-approximation algorithm can exist
for any positive ǫ unless P=NP [5].



In this paper, we study linear programming (LP) relaxations for the Steiner
tree problem, and their properties. Numerous such formulations are known (e.g.,
see [7, 11, 16, 17, 24, 25]), and their study has led to impressive running time
improvements for integer programming based methods. Despite the significant
body of work in this area, none of the known relaxations is known to exhibit an
integrality gap provably smaller than 2. The integrality gap of a relaxation is the
maximum ratio of the cost of integral and fractional optima, over all instances.
It is commonly regarded as a measure of strength of a formulation. One of the
contributions of this paper are improved bounds on the integrality gap for a
number of Steiner tree LP relaxations.

A Steiner tree relaxation of particular interest is the bidirected cut relaxation

[7, 25] (precise definitions will follow in Section 1.2). This relaxation has a flow
formulation using O(|E||R|) variables and constraints, which is much more com-
pact than the other relaxations we study. Also, it is also widely believed to have
an integrality gap significantly smaller than 2 (e.g., see [3, 19, 23]). The largest
lower bound on the integrality gap known is 8/7 (by Martin Skutella, reported
in [15]), and Chakrabarty et al. [3] prove an upper bound of 4/3 in so called
quasi-bipartite instances (where Steiner vertices form an independent set).

Another class of formulations are the so called hypergraphic LP relaxations
for the Steiner tree problem. These relaxations are inspired by the observation
that the minimum Steiner tree problem can be encoded as a minimum cost
hyper-spanning tree (see Section 1.2) of a certain hypergraph on the terminals.
They are known to be stronger than the bidirected cut relaxation [18], and it is
therefore natural to try to use them to get better approximation algorithms, by
drawing on the large corpus of known LP techniques. In this paper, we focus on
one hypergraphic LP in particular: the partition LP of Könemann et al. [15].

1.1 Our Results and Techniques

There are three classes of results in this paper: structural results, equivalence
results, and integrality gap upper bounds.

Structural results, Section 2: We extend the powerful technique of uncrossing,
traditionally applied to families of sets, to families of partitions. Set uncrossing
has been very successful in obtaining exact and approximate algorithms for a
variety of problems (for instance, [9, 14, 21]). Using partition uncrossing, we show
that any basic feasible solution to the partition LP has at most (|R|−1) positive
variables (even though it can have an exponentially large number of variables
and constraints).

Equivalence results, Section 3: In addition to the partition LP, two other
hypergraphic LPs have been studied before: one based on subtour elimination

due to Warme [24], and a directed hypergraph relaxation of Polzin and Vahdati
Daneshmand [18]; these two are known to be equivalent [18]. We prove that in
fact all three hypergraphic relaxations are equivalent (that is, they have the same
objective value for any Steiner tree instance).

We also show that, on quasibipartite instances, the hypergraphic and the
bidirected cut LP relaxations are equivalent. This result is surprising since we



are aware of no qualitative similarity to suggest why the two relaxations should
be equivalent. We believe a better understanding of the bidirected cut relaxation
is important because it is central in theory and practical for implementation.

Improved integrality gap upper bounds, Section 4: For uniformly quasi-

bipartite instances (quasibipartite instances where for each Steiner vertex, all
incident edges have the same cost), we show that the integrality gap of the hy-
pergraphic LP relaxations is upper bounded by 73/60

.
= 1.216. Our proof uses

the approximation algorithm of Gröpl et al. [13] which achieves the same ratio
with respect to the (integral) optimum. We show, via a simple dual fitting argu-
ment, that this ratio is also valid with respect to the LP value. To the best of our
knowledge this is the only nontrivial class of instances where the best currently
known approximation ratio and integrality gap upper bound are the same.

For general graphs, we give simple upper bounds of 2
√
2 − 1

.
= 1.83 and√

3
.
= 1.729 on the integrality gap of the hypergraph relaxation. Call a graph

gainless if the minimum spanning tree of the terminals is the optimal Steiner tree.
To obtain these integrality gap upper bounds, we use the following key property
of the hypergraphic relaxation which was implicit in [15]: on gainless instances
(instances where the optimum terminal spanning tree is the optimal Steiner
tree), the LP value equals the minimum spanning tree and the integrality gap
is 1. Such a theorem was known for quasibipartite instances and the bidirected
cut relaxation (implicitly in [19], explicitly in [3]); we extend techniques of [3] to
obtain improved integrality gaps on all instances.

Remark 1. The recent independent work of Byrka et al. [2], which gives an im-
proved approximation for Steiner trees in general graphs, also shows an inte-
grality gap bound of 1.55 on the hypergraphic directed cut LP. This is stronger
than our integrality gap bounds and was obtained prior to the completion of our
paper; yet we include our bounds because they are obtained using fairly different
methods which might be of independent interest in certain settings.

The proof in [2] can be easily modified to show an integrality gap upper
bound of 1.28 in quasibipartite instances. Then using our equivalence result, we
get an integrality gap upper bound of 1.28 for the bidirected cut relaxation on
quasibipartite instances, improving the previous best of 4/3.

1.2 Bidirected Cut and Hypergraphic Relaxations

The Bidirected Cut Relaxation The first bidirected LP was given by Ed-
monds [7] as an exact formulation for the spanning tree problem. Wong [25]
later extended this to obtain the bidirected cut relaxation for the Steiner tree
problem, and gave a dual ascent heuristic based on the relaxation. For this re-
laxation, introduce two arcs (u, v) and (v, u) for each edge uv ∈ E, and let both
of their costs be cuv. Fix an arbitrary terminal r ∈ R as the root. Call a subset
U ⊆ V valid if it contains a terminal but not the root, and let valid(V ) be the
family of all valid sets. Clearly, the in-tree rooted at r (the directed tree with
all vertices but the root having out-degree exactly 1) of a Steiner tree T must
have at least one arc with tail in U and head outside U , for all valid U . This



leads to the bidirected cut relaxation (B) (shown in Figure 1 with dual) which
has a variable for each arc a ∈ A, and a constraint for every valid set U . Here
and later, δout(U) denotes the set of arcs in A whose tail is in U and whose head
lies in V \U . When there are no Steiner vertices, Edmonds’ work [7] implies this
relaxation is exact.

min
∑

a∈A

caxa : x ∈ R
A
≥0 (B)

∑

a∈δout(U)

xa ≥ 1, ∀U ∈ valid(V )

max
∑

U

zU : z ∈ R
valid(V )
≥0 (BD)

∑

U :a∈δout(U)

zU ≤ ca, ∀a ∈ A

Fig. 1. The bidirected cut relaxation (B) and its dual (BD).

Goemans & Myung [11] made significant progress in understanding the LP,
by showing that the bidirected cut LP has the same value independent of which
terminal is chosen as the root, and by showing that a whole “catalogue” of very
different-looking LPs also has the same value; later Goemans [10] showed that
if the graph is series-parallel, the relaxation is exact. Rajagopalan and Vazirani
[19] were the first to show a non-trivial integrality gap upper bound of 3/2 on
quasibipartite graphs; this was subsequently improved to 4/3 by Chakrabarty et
al. [3], who gave another alternate formulation for (B).

Hypergraphic Relaxations Given a Steiner tree T , a full component of T is a
maximal subtree of T all of whose leaves are terminals and all of whose internal
nodes are Steiner nodes. The edge set of any Steiner tree can be partitioned in
a unique way into full components by splitting at internal terminals; see Figure
2 for an example.

Fig. 2. Black nodes are terminals and white nodes are Steiner nodes. Left: a Steiner
tree for this instance. Middle: the Steiner tree’s edges are partitioned into full com-
ponents; there are four full components. Right: the hyperedges corresponding to these
full components.

Let K be the set of all nonempty subsets of terminals (hyperedges). We as-
sociate with each K ∈ K a fixed full component spanning the terminals in K,



and let CK be its cost2. The problem of finding a minimum-cost Steiner tree
spanning R now reduces to that of finding a minimum-cost hyper-spanning tree
in the hypergraph (R,K).

Spanning trees in (normal) graphs are well understood and there are many
different exact LP relaxations for this problem. These exact LP relaxations for
spanning trees in graphs inspire the hypergraphic relaxations for the Steiner tree
problem. Such relaxations have a variable xK for every3 K ∈ K, and the different
relaxations are based on the constraints used to capture a hyper-spanning tree,
just as constraints on edges are used to capture a spanning tree in a graph.

The oldest hypergraphic LP relaxation is the subtour LP introduced by
Warme [24] which is inspired by Edmonds’ subtour elimination LP relaxation
[8] for the spanning tree polytope. This LP relaxation uses the fact that there
are no hypercycles in a hyper-spanning tree, and that it is spanning. More for-
mally, let ρ(X) := max(0, |X | − 1) be the rank of a set X of vertices. Then a
sub-hypergraph (R,K′) is a hyper-spanning tree iff

∑

K∈K′ ρ(K) = ρ(R) and
∑

K∈K′ ρ(K ∩ S) ≤ ρ(S) for every subset S of R. The corresponding LP relax-
ation, denoted below as (S), is called the subtour elimination LP relaxation.

min
{

∑

K∈K
CKxK : x ∈ RK

≥0,
∑

K∈K
xKρ(K) = ρ(R), (S)

∑

K∈K
xKρ(K ∩ S) ≤ ρ(S), ∀S ⊂ R

}

Warme showed that if the maximum hyperedge size r is bounded by a con-
stant, the LP can be solved in polynomial time.

The next hypergraphic LP introduced for Steiner tree was a directed hyper-
graph formulation (D), introduced by Polzin and Vahdati Daneshmand [18], and
inspired by the bidirected cut relaxation. Given a full component K and a ter-
minal i ∈ K, let Ki denote the arborescence obtained by directing all the edges
of K towards i. Think of this as directing the hyperedge K towards i to get the
directed hyperedge Ki. Vertex i is called the head of Ki while the terminals in
K \ i are the tails of K. The cost of each directed hyperedge Ki is the cost of the
corresponding undirected hyperedge K. In the directed hypergraph formulation,
there is a variable xKi for every directed hyperedge Ki. As in the bidirected cut
relaxation, there is a vertex r ∈ R which is a root, and as described above, a
subset U ⊆ R of terminals is valid if it does not contain the root but contains
at least one vertex in R. We let ∆out(U) be the set of directed full components

coming out of U , that is all Ki such that U ∩K 6= ∅ but i /∈ U . Let
−→K be the

2 We choose the minimum cost full component if there are many. If there is no full
component spanning K, we let CK be infinity. Such a minimum cost component can
be found in polynomial time, if |K| is a constant.

3 Observe that there could be exponentially many hyperedges. This computational
issue is circumvented by considering hyperedges of size at most r, for some constant
r. By a result of Borchers and Du [1], this leads to only a (1 + Θ(1/ log r)) factor
increase in the optimal Steiner tree cost.



set of all directed hyperedges. We show the directed hypergraph relaxation and
its dual in Figure 3.

min
{

∑

K∈K,i∈K

CKxKi : x ∈ R
−→
K
≥0 (D)

∑

Ki∈∆out(U)

xKi ≥ 1, ∀ valid U ⊆ R
}

max
{

∑

U

zU : z ∈ R
valid(R)
≥0 (DD)

∑

U :K∩U 6=∅,i/∈U

zU ≤ CK , ∀K ∈ K, i ∈ K
}

Fig. 3. The directed hypergraph relaxation (D) and its dual (DD).

Polzin & Vahdati Daneshmand [18] showed that OPT(D) = OPT(S). More-
over they observed that this directed hypergraphic relaxation strengthens the
bidirected cut relaxation.

Lemma 1 ([18]). For any instance, OPT(D) ≥ OPT(B). There are instances

for which this inequality is strict.

Könemann et al. [15], inspired by the work of Chopra [6], described a partition-
based relaxation which captures that given any partition of the terminals, any
hyper-spanning tree must have sufficiently many “cross hyperedges”. More for-
mally, a partition, π, is a collection of pairwise disjoint nonempty terminal sets
(π1, . . . , πq) whose union equals R. The number of parts q of π is referred to
as the partition’s rank and denoted as r(π). Let ΠR be the set of all partitions
of R. Given a partition π = {π1, . . . , πq}, define the rank contribution rcπK of
hyperedge K ∈ K for π as the rank reduction of π obtained by merging the
parts of π that are touched by K; i.e., rcπK := |{i : K ∩ πi 6= ∅}| − 1. Then a
hyper-spanning tree (R,K′) must satisfy

∑

K∈K′ rc
π
K ≥ r(π) − 1. The partition

based LP of [15] and its dual are given in Figure 4.

min
{

∑

K∈K

CKxK : x ∈ R
K
≥0 (P)

∑

K∈K

xKrc
π
K ≥ r(π)− 1, ∀π ∈ ΠR

}

max
{

∑

π

(r(π)− 1)yπ : y ∈ R
ΠR

≥0 (PD)

∑

π∈ΠR

yπrc
π
K ≤ CK , ∀K ∈ K

}

Fig. 4. The unbounded partition relaxation (P) and its dual (PD).

The feasible region of (P) is unbounded, since if x is a feasible solution for
(P) then so is any x′ ≥ x. We obtain a bounded partition LP relaxation, denoted
by (P ′) and shown below, by adding a valid equality constraint to the LP.

min
{

∑

K∈K
CKxK : x ∈ (P),

∑

K∈K
xK(|K| − 1) = |R| − 1

}

(P ′)



2 Uncrossing Partitions

In this section we are interested in uncrossing a minimal set of tight partitions
that uniquely define a basic feasible solution to (P). We start with a few pre-
liminaries necessary to state our result formally.

2.1 Preliminaries

We introduce some needed well-known properties of partitions that arise in com-
binatorial lattice theory [22].

Definition 1. We say that a partition π′ refines another partition π if each part

of π′ is contained in some part of π. We also say π coarsens π′. Two partitions

cross if neither refines the other. A family of partitions forms a chain if no pair

of them cross. Equivalently, a chain is any family π1, π2, . . . , πt such that πi

refines πi−1 for each 1 < i ≤ t.

The family ΠR of all partitions of R forms a lattice with a meet operator

∧ : Π2
R → ΠR and a join operator ∨ : Π2

R → ΠR. The meet π∧π′ is the coarsest
partition that refines both π and π′, and the join π ∨ π′ is the most refined
partition that coarsens both π and π′. See Figure 5 for an illustration.

Definition 2 (Meet of partitions). Let the parts of π be π1, . . . , πt and let

the parts of π′ be π′
1, . . . , π

′
u. Then the parts of the meet π∧π′ are the nonempty

intersections of parts of π with parts of π′,

π ∧ π′ = {πi ∩ π′
j | 1 ≤ i ≤ t, 1 ≤ j ≤ u and πi ∩ π′

j 6= ∅}.

Given a graph G and a partition π of V (G), we say that G induces π if the parts
of π are the vertex sets of the connected components of G.

Definition 3 (Join of partitions). Let (R,E) be a graph that induces π, and
let (R,E′) be a graph that induces π′. Then the graph (R,E∪E′) induces π∨π′.

Given a feasible solution x to (P), a partition π is tight if
∑

K∈K xKrcπK =
r(π) − 1. Let tight(x) be the set of all tight partitions. We are interested in
uncrossing this set of partitions. More precisely, we wish to find a cross-free set
of partitions (chain) which uniquely defines x. One way would be to prove the
following.

Property 21 If two crossing partitions π and π′ are in tight(x), then so are

π ∧ π′ and π ∨ π′.

This type of property is already well-used [9, 14, 21] for sets (with meets
and joins replaced by unions and intersections respectively), and the standard
approach is the following. The typical proof considers the constraints in (P)
corresponding to π and π′ and uses the “supermodularity” of the RHS and the



(a) (b) (c)

Fig. 5. Illustrations of some partitions. The black dots are the terminal set R. (a): two
partitions; neither refines the other. (b): the meet of the partitions from (a). (c): the
join of the partitions from (a).

“submodularity” of the coefficients in the LHS. In particular, if the following is
true,

∀π, π′ : r(π ∨ π′) + r(π ∧ π′) ≥ r(π) + r(π′) (1)

∀K,π, π′ : rcπK + rcπ
′

K ≥ rcπ∨π′

K + rcπ∧π′

K (2)

then Property 21 can be proved easily by writing a string of inequalities.4

Inequality (1) is indeed true (see, for example, [22]), but unfortunately in-
equality (2) is not true in general, as the following example shows.

Example 1. Let R = {1, 2, 3, 4}, π = {{1, 2}, {3, 4}} and π′ = {{1, 3}, {2, 4}}.
Let K denote the full component {1, 2, 3, 4}. Then rcπK +rcπ

′

K = 1+1 < 0+3 =

rcπ∨π′

K + rcπ∧π′

K .

Nevertheless, Property 21 is true; its correct proof is given in the full version
of this paper [4] and depends on a simple though subtle extension of the usual
approach. The crux of the insight needed to fix the approach is not to consider
pairs of constraints in (P), but rather multi-sets which may contain more than
two inequalities. Using this uncrossing result, we can prove the following theorem
(details are given in [4]). Here, we let π denote {R}, the unique partition with
(minimal) rank 1; later we use π to denote {{r} | r ∈ R}, the unique partition
with (maximal) rank |R|.

Theorem 1. Let x∗ be a basic feasible solution of (P), and let C be an inclusion-

wise maximal chain in tight(x∗)\π. Then x∗ is uniquely defined by

∑

K∈K
rc

π
Kx∗

K = r(π) − 1 ∀π ∈ C. (3)

4 In this hypothetical scenario we get r(π) + r(π′) − 2 =
∑

K xK(rcπK + rc
π′

K ) ≥
∑

K xK(rcπ∧π′

K + rc
π∨π′

K ) ≥ r(π ∧ π′) + r(π ∨ π′) − 2 ≥ r(π) + r(π′) − 2; thus the
inequalities hold with equality, and the middle one shows π∧π′ and π∨π′ are tight.



Any chain of distinct partitions of R that does not contain π has size at most
|R|−1, and this is an upper bound on the rank of the system in (3). Elementary
linear programming theory immediately yields the following corollary.

Corollary 1. Any basic solution x∗ of (P) has at most |R| − 1 non-zero coor-

dinates.

3 Equivalence of Formulations

In this section we describe our equivalence results. A summary of the known and
new results is given in Figure 6.

OPT(S)

OPT(P)

OPT(P ′) OPT(D) OPT(B)

= [Thm. 2]

= [Thm. 3] = [18]

= [4] ≥ [Lemma 1],[18]

≤ in quasi-bipartite [Thm. 4]

Fig. 6. Summary of relations among various LP relaxations

For lack of space, we present only sketches for our main equivalence results
in this extended abstract, and refer the reader to [4] for details.

Theorem 2. The LPs (P ′) and (P) have the same optimal value.

Proof sketch. To show this, it suffices to find an optimum solution of (P) which
satisfies the equality in (P ′); i.e., we want to find a solution for which the
maximal-rank partition π is tight. We pick the optimum solution to (P) which
minimizes the sum

∑

K∈K xK |K|. Using Property 21, we show that either π is
tight or there is a shrinking operation which decreases

∑

K∈K xK |K| without
increasing the cost. Since the latter is impossible, the theorem is proved.

Theorem 3. The feasible regions of (P ′) and (S) are the same.

Proof sketch. We show that the inequalities defining (P ′) are valid for (S), and
vice-versa. Note that both have the same equality and non-negativity constraints.
To show that the partition inequality of (P ′) for π holds for any x ∈ (S), we
use the subtour inequalities in (S) for every part of π. For the other direction,
given any subset S ⊆ R, we invoke the inequality in (P ′) for the partition
π := {{S} as one part and the remaining terminals as singletons}.



Theorem 4. On quasibipartite Steiner tree instances, OPT(B) ≥ OPT(D).

Proof sketch. We look at the duals of the two LPs and we show OPT(BD) ≥
OPT(DD) in quasibipartite instances. Recall that the support of a solution to
(DD) is the family of sets with positive zU . A family of sets is called laminar if
for any two of its sets A,B we have A ⊆ B,B ⊆ A, or A∩B = ∅. The following
fact follows along the standard line of “set uncrossing” argumentation.

Lemma 2. There is an optimal solution to (DD) with laminar support.

Given the above result, we may now assume that we have a solution z to
(DD) whose support is laminar. The heart of the proof of Theorem 4 is to show
that z can be converted into a feasible solution to (BD) of the same value.

Comparing (DD) and (BD) one first notes that the former has a variable for
every valid subset of the terminals, while the latter assigns values to all valid
subsets of the entire vertex set. We say that an edge uv is satisfied for a candidate
solution z, if both a)

∑

U :u∈U,v/∈U zU ≤ cuv and b)
∑

U :v∈U,u/∈U zU ≤ cuv hold; z
is then feasible for (BD) if all edges are satisfied.

Let z be a feasible solution to (DD). One easily verifies that all terminal-
terminal edges are satisfied. On the other hand, terminal-Steiner edges may
initially not be satisfied; e.g., consider the Steiner vertex v and its neighbours
depicted in Figure 7 below. Initially, none of the sets in z’s support contains
v, and the load on the edges incident to v is quite skewed: the left-hand side
of condition a) above may be large, while the left-hand side of condition b) is
initially 0.

U

v

u

U’ u’

Fig. 7. Lifting variable zU .

To construct a valid solution for (BD), we
therefore lift the initial value zS of each ter-
minal subset S to supersets of S, by adding
Steiner vertices. The lifting procedure processes
each Steiner vertex v one at a time; when pro-
cessing v, we change z by moving dual from
some sets U to U ∪ {v}. Such a dual transfer
decreases the left-hand side of condition a) for
edge uv, and increases the (initially 0) left-hand
sides of condition b) for edges connecting v to
neighbours other than v.

We are able to show that there is a way of
carefully lifting duals around v that ensures that all edges incident to v become
satisfied. The definition of our procedure will ensure that these edges remain
satisfied for the rest of the lifting procedure. Since there are no Steiner-Steiner
edges, all edges will be satisfied once all Steiner vertices are processed.

Throughout the lifting procedure, we will maintain that z remains unchanged,
when projected to the terminals. The main consequence of this is that the ob-
jective value

∑

U⊆V zU remains constant throughout, and the objective value of
z in (BD) is not affected by the lifting. This yields Theorem 4.



4 Improved Integrality Gap Upper Bounds

In this extended abstract, we show the improved bound of 73/60 for uniformly
quasibipartite graphs, and due to space restrictions, we only show the weaker
(2
√
2− 1)

.
= 1.828 upper bound on general graphs.

4.1 Uniformly Quasibipartite Instances

Uniformly quasibipartite instances of the Steiner tree problem are quasibipartite
graphs where the cost of edges incident on a Steiner vertex are the same. They
were first studied by Gröpl et al. [13], who gave a 73/60 factor approximation
algorithm. We start by describing the algorithm of Gröpl et al. [13] in terms of
full components. A collection K′ of full components is acyclic if there is no list
of t > 1 distinct terminals and hyperedges in K′ of the form r1 ∈ K1 ∋ r2 ∈
K2 · · · ∋ rt ∈ Kt ∋ r1 — i.e. there are no hypercycles.

Procedure RatioGreedy

1: Initialize the set of acyclic components L to ∅.
2: Let L∗ be a minimizer of CL

|L|−1 over all full components L such that |L| ≥ 2

and L ∪ L is acyclic.
3: Add L∗ to L.
4: Continue until (R,L) is a hyper-spanning tree and return L.

Theorem 5. On a uniformly quasibipartite instance RatioGreedy returns a

Steiner tree of cost at most 73
60 OPT(P).

Proof sketch. Let t denote the number of iterations and L := {L1, . . . , Lt} be the
ordered sequence of full components obtained. We now define a dual solution y
to (PD). Let π(i) denote the partition induced by the connected components of
{L1, . . . , Li}. Let θ(i) denote CLi

/(|Li| − 1) and note that θ is nondecreasing.
Define θ(0) = 0 for convenience. We define a dual solution y with

yπ(i) = θ(i + 1)− θ(i)

for 0 ≤ i < t, and all other coordinates of y set to zero. It is straightforward to
verify that the objective value

∑

i yπ(i)(r(π(i)) − 1) of y in (PD) equals C(L).
The key is to show that for all K ∈ K,

∑

i

yπ(i)rc
π(i)
K ≤ (|K| − 1 +H(|K| − 1))/|K| · CK , (4)

where H denotes the harmonic series; this is obtained by using the greedy nature
of the algorithm and the fact that, in uniformly quasi-bipartite graphs, CK′ ≤
CK

|K′|
|K| whenever K ′ ⊂ K. Now, (|K| − 1 +H(|K| − 1))/|K| is always at most

73
60 . Thus (4) implies that 60

73 · y is a feasible dual solution, which completes the
proof.



4.2 General graphs

For conciseness we let a “graph” be a triple G = (V,E,R) where R ⊂ V are
G’s terminals. In the following, we let mtst(G; c) denote the minimum terminal

spanning tree, i.e. the minimum spanning tree of the terminal-induced subgraph
G[R] under edge-costs c : E → R. We will abuse notation and let mtst(G; c)
mean both the tree and its cost under c.

When contracting an edge uv in a graph, the new merged node resulting from
contraction is defined to be a terminal iff at least one of u or v was a terminal;
this is natural since a Steiner tree in the new graph is a minimal set of edges
which, together with uv, connects all terminals in the old graph. Our algorithm
performs contraction, which may introduce parallel edges, but one may delete
all but the cheapest edge from each parallel class without affecting the analysis.

Our algorithm proceeds in stages. In each stage we apply the operation G 7→
G/K which denotes contracting all edges in some full component K. To describe
and analyze the algorithm we introduce some notation. For a minimum terminal
spanning tree T = mtst(G; c) define dropT (K; c) := c(T ) − mtst(G/K; c). We
also define gainT (K; c) := dropT (K) − c(K), where c(K) is the cost of full
component K. A tree T is called gainless if for every full component K we have
gainT (K; c) ≤ 0. The following useful fact is implicit in [15] (see also [4]).

Theorem 6 (Implicit in [15]). If mtst(G; c) is gainless, then OPT(P) equals
the cost of mtst(G; c).

We now give the algorithm and its analysis, which uses a reduced cost trick
introduced by Chakrabarty et al.[3].

Procedure Reduced One-Pass Heuristic

1: Define costs c′e by c′e := ce/
√
2 for all terminal-terminal edges e, and c′e = ce

for all other edges. Let G1 := G, Ti := mtst(Gi; c
′), and i := 1.

2: The algorithm considers the full components in any order. When we exam-
ine a full component K, if gainTi

(K; c′) > 0, let Ki := K, Gi+1 := Gi/Ki,
Ti+1 := mtst(Gi+1; c

′), and i := i+ 1.

3: Let f be the final value of i. Return the tree Talg := Tf ∪
⋃f−1

i=1 Ki.

Note that the full components are scanned in any order and they are not ex-
amined a priori. Hence the algorithm works just as well if the full components
arrive “online,” which might be useful for some applications.

Theorem 7. c(Talg) ≤ (2
√
2− 1)OPT(P).

Proof. First we claim that gainTf
(K; c′) ≤ 0 for all K. To see this there are

two cases. If K = Ki for some i, then we immediately see that dropTj
(K) = 0

for all j > i so gainTf
(K) = −c(K) ≤ 0. Otherwise (if for all i, K 6= Ki)

K had nonpositive gain when examined by the algorithm; and the well-known
contraction lemma (e.g., see [12, §1.5]) immediately implies that gainTi

(K) is
nonincreasing in i, so gainTf

(K) ≤ 0.



By Theorem 6, c′(Tf ) equals the value of (P) on the graph Gf with costs c′.
Since c′ ≤ c, and since at each step we only contract terminals, the value of this
optimum must be at most OPT(P). Using the fact that c(Tf ) =

√
2c′(Tf ), we

get

c(Tf ) =
√
2c′(Tf) ≤

√
2OPT(P) (5)

Furthermore, for every i we have gainTi
(Ki; c

′) > 0, that is, dropTi
(Ki; c

′) >
c′(K) = c(K). The equality follows since K contains no terminal-terminal edges.
However, dropTi

(Ki; c
′) = 1√

2
dropTi

(Ki; c) because all edges of Ti are terminal-

terminal. Thus, we get for every i = 1 to f , dropTi
(Ki; c) >

√
2 · c(Ki).

Since dropTi
(Ki; c) := mtst(Gi; c)− mtst(Gi+1; c), we have

f−1
∑

i=1

dropTi
(Ki; c) = mtst(G; c)− c(Tf).

Thus, we have

f−1
∑

i=1

c(Ki) ≤
1√
2

f
∑

i=1

dropTi
(Ki; c) =

1√
2
(mtst(G; c)− c(Tf ))

≤ 1√
2
(2OPT(P)− c(Tf ))

where we use the fact that mtst(G, c) is at most twice OPT(P)5. Therefore

c(Talg) = c(Tf) +

f−1
∑

i=1

c(Ki) ≤
(

1− 1√
2

)

c(Tf ) +
√
2OPT(P).

Finally, using c(Tf ) ≤
√
2OPT(P) from (5), the proof of Theorem 7 is complete.
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