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Abstract. Network bargaining is a natural extension of the classical, 2-player
Nash bargaining solution to the network setting. Here one is given an exchange
network G connecting a set of players V in which edges correspond to potential
contracts between their endpoints. In the standard model, a player may engage
in at most one contract, and feasible outcomes therefore correspond to match-
ings in the underlying graph. Kleinberg and Tardos [STOC’08] recently proposed
this model, and introduced the concepts of stability and balance for feasible out-
comes. The authors characterized the class of instances that admit such solutions,
and presented a polynomial-time algorithm to compute them.
In this paper, we generalize the work of Kleinberg and Tardos by allowing agents
to engage into more complex contracts that span more than two agents. We pro-
vide suitable generalizations of the above stability and balance notions, and show
that many of the previously known results for the matching case extend to our new
setting. In particular, we can show that a given instance admits a stable outcome
only if it also admits a balanced one. Like Bateni et al. [ICALP’10] we exploit
connections to cooperative games. We fully characterize the core of these games,
and show that checking its non-emptiness is NP-complete. On the other hand, we
provide efficient algorithms to compute core elements for several special cases of
the problem, making use of compact linear programming formulations.

1 Introduction
The study of bargaining has been a central theme in economics and sociology, since
it constitutes a basic activity in any human society. The most basic bargaining model
is that of two agents A and B that negotiate how to divide a good of a certain value
(say, 1) amongst themselves, while at the same time each has an outside option of value
α and β respectively. The famous Nash bargaining solution [12] postulates that in an
equitable outcome, each player should receive her outside option, and that the surplus
s = 1− α− β is to be split evenly between A and B.
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More recently, Kleinberg and Tardos [10] proposed the following natural network
extension of this game. Here, the set of players corresponds to the vertices of an undi-
rected graph G = (V,E); each edge ij ∈ E represents a potential contract between
players i and j of value wij ≥ 0. In Kleinberg and Tardos’ model, players are restricted
to form contracts with at most one of their neighbours. Outcomes of the network bar-
gaining game are therefore given by a matching M ⊆ E, and an allocation x ∈ R

V
+

such that xi+xj = wij for all ij ∈M , and xi = 0 if i is not incident to an edge of M .

Unlike in the non-network bargaining game, the outside option αi of player is
not a given parameter but rather implicitly determined by the network neighbour-
hood of i. Specifically, in an outcome (M,x), player i’s outside option is defined as
αi = max{wij − xj : ij ∈ δ(i) \M}, where δ(i) is the set of edges incident to i.
An outcome (M,x) is then called stable if xi + xj ≥ wij for all edges ij ∈ E, and it
is balanced if in addition, the value of the edges in M is split according to Nash’s bar-
gaining solution; i.e., for an edge ij, xi − αi = xj − αj . Kleinberg and Tardos provide
a characterization of the class of graphs that admit balanced outcomes, and present a
combinatorial algorithm that computes one if it exists.

Bateni et al. [1] recently exhibited a close link between the study of network bar-
gaining and that of matching games in cooperative game theory. The authors showed
that stable outcomes for an instance of network bargaining correspond to allocations in
the core of the underlying matching game. Moreover, balanced outcomes correspond to
prekernel allocations. As a corollary, this implies that an algorithm by Faigle et al. [7]
gives an alternate method to obtain balanced outcomes in a network bargaining game.
Bateni et al. also extended the work of [10] to bipartite graphs in which the agents of
one side are allowed to engage in more than one contract.

Matching games have indeed been studied extensively in the game theory commu-
nity since the early 70s, when Shapley and Shubik investigated the core of the class of
bipartite matching games, so called assignment games, in their seminal paper [14]. Gra-
not and Granot [8] also study the core of the assignment game; the authors show that it
contains many points, some of which may not be desirable ways to share revenue. The
authors propose to focus on the intersection of core and prekernel instead, and provide
sufficient and necessary conditions for the former to be contained in the latter. Deng et
al. [5] generalized the work of Shapley and Shubik to matchings in general graphs as
well as to cooperative games of many other combinatorial optimization problems. We
refer the reader also to the recent survey paper [4] and the excellent textbook [2].

In this paper we further generalize the work of [10] and [1] on network bargaining
by allowing contracts to span more than two agents. Our study is motivated by bar-
gaining settings where goods are complex composites of other goods that are under the
control of autonomous agents. For example, in a computer network setting, two hosts
A and B may wish to establish a connection between themselves. Any such connec-
tion may involve physical links from a number of smaller autonomous networks that
are provisioned by individual players. In this setting, value generated by the connection
between A and B cannot merely be shared by the two hosts, but must also be used to
compensate those facilitators whose networks the connection uses.



1.1 Generalized network bargaining
We formalize the above ideas by defining the class of generalized network bargaining
(GNB) games. In an instance of such a game, we are given a (directed or undirected)
graph G = (V,E) whose vertices correspond to players, and edges that correspond to
atomic goods; the value of the good corresponding to e is given by we ≥ 0. We assume
that V is partitioned into terminals T , and facilitators R. Intuitively, the terminals are
the active players that seek participation in contracts, while facilitators are passive, and
may get involved in contracts, but do not seek involvement. We further let C be a family
of contracts each of whom consists of a collection of atomic goods. We let w(c) be the
value of contract c which we simply define as the sum of values we of the edges e ∈ c.
We note here that in the work of [10] and [1], C consists just of the singleton edges.

A set C ⊆ C of contracts is called feasible if each two contracts in C are vertex
disjoint. An outcome of an instance of GNB is given by a feasible collection C ⊆ C
as well as an allocation x ∈ R

V
+ of the contract values to the players such that x(c) :=∑

v∈c xv = w(c).

Which outcomes are desirable? We propose the following natural extensions of the
notions of stability and balance of [10]. Consider an outcome (C, x) of some instance
of GNB. Then define the outside option αi of player i as αi := maxc∈C:i∈c6∈C{w(c)−
x(c)} + xi. Intuitively, the outside option of i is given by the value she can earn by
breaking her current contract, and participating in a contract that is not part of the
current outcome. We will assume that each agent i is incident to a self-loop of value
0, and hence has the option of not collaborating with anyone else. In what follows
a(c) :=

∑
v∈c av for a contract c ∈ C.

Having defined αi, we can now introduce the notions of stability and balance. An
outcome (C, x) is stable if xi ≥ αi for all agents i: every agent earns at least her
outside option. Again extending the concept of Nash bargaining solution in the most
natural way, we say that an outcome is balanced if the surplus of each contract is shared
evenly among the participating agents. Formally, for all c ∈ C, and for all i ∈ c we
require xi = αi +

w(c)−α(c)
|c| . Equivalently, this means that xi − αi = xj − αj for all

i, j ∈ c, and for all c ∈ C.

1.2 Our results
Following Kleinberg and Tardos, we are interested in (a) characterizing the class of
GNB instances that have stable and balanced outcomes, and (b) in computing such out-
comes efficiently whenever they exist. Similar to [1], we first identify a natural coop-
erative game Γ (I) associated with a given GNB instance I . Γ (I) has player set V and
the value function is defined by letting v(S) = maxC⊆C(S), C feasible

∑
c∈C w(c),

for all S ⊆ V , where C(S) is the set of contracts contained in the set S. We briefly
introduce a few pertinent solution concepts for cooperative games, and refer the reader
to [2] for a comprehensive introduction to the topic. The core C of Γ (I) consists of all
allocations x ∈ RV+ that satisfy x(S) ≥ v(S) for all S ⊆ V , and this inequality is tight
for S = V . The power of agent i over agent j is given by

sij(x) = max
S⊆V : i∈S,j 6∈S

v(S)− x(S), (1)



and the prekernel P consists of all allocations x for which sij = sji for all agents i and
j. In the following first result, let stable be the projection of the collection of all stable
outcomes (C, x) onto the x-space. Similarly, balance is the projection of all balanced
outcomes onto the x-space.

Theorem 1. Let I be an instance of GNB, and Γ (I) the corresponding cooperative
game. Then C = stable, and C ∩ P ⊆ stable ∩ balance. There are instances of GNB
where this inclusion is strict.

It is well known (e.g., see [7]) that if the core of Γ (I) is non-empty then so is the
intersection of core and prekernel. We therefore obtain the following corollary.

Corollary 1. Every GNB instance with a stable solution also admits a balanced one.

But can one find stable and balanced solutions efficiently? As it turns out (see below)
not always. However, given a point in the core, and an efficient oracle for the computa-
tion of powers (as specified in (1)), we can find a point in the prekernel of Γ (I) via a
result by Faigle, Kern and Kuipers [7] (see also [11]). We obtain the following corollary.

Corollary 2. There is a polynomial-time algorithm to compute stable and balanced
solutions for an instance of GNB if (a) we have a polynomial-time method to compute
a point in the core, and (b) (1) can be computed efficiently.

Unfortunately, computing sij in (1) may amount to solving an NP-hard problem;
e.g., when C consists of all paths in the given graph, one easily sees that a poly-time or-
acle for computing powers would enable us to solve the NP-hard longest path problem.
Nevertheless, there are many families of instances of interest where the conditions of
Corollary 1 are satisfied, e.g. instances where C is explicitly given as part of the input,
or whenever the family C induces an acyclic subgraph of the input graph.

In light of Corollary 1, in order to characterize instances of GNB that have stable
and balanced solutions, we may characterize the set of instances I for which Γ (I) has
a non-empty core. We can show the following.

Theorem 2. For a given GNB instance I , we can write a linear program (P1) that has
an integral optimal solution iff the core of Γ (I) is non-empty.

Hence (P1) fully characterizes the class of GNB instances that admit stable and
balanced solutions. We may, however, not be able to solve the LP.

Theorem 3. Given an instance I of GNB, it is NP-complete to (a) check whether the
core of Γ (I) is non-empty, and (b) check whether a specific allocation x ∈ Rn+ is in the
core.

In this theorem, we assume that C is part of the input. We can show (a) by using
a reduction from exact-cover by 3-sets following a previous result by Conitzer and



Sandholm [3] closely. Part (b) employs a reduction from 3-dimensional matching, and
is similar to a result for minimum-cost spanning tree games by Faigle et al. [6].

We note here that the results in Theorems 1, 2 and 3 do not rely on the specific
type of underlying graph (i.e., directed or undirected). Departing from this, our next
result focuses on GNB instances whose contract set is implicitly given as the set of all
terminal-terminal paths in a directed graph. For such instances I , we present efficiently
solvable linear programs (P2) and (P3) that are integral only if the core of Γ (I) is non-
empty.

Theorem 4. Given an instance I of GNB where C is the set of all terminal-terminal
paths in an underlying directed graph, we can find efficiently solvable LPs (P2) and
(P3) that are integral only if the core of Γ (I) is non-empty.

Unfortunately, the latter two LPs do not fully characterize core non-emptiness of
Γ (I), and there are instances with non-empty core for which the two LPs are fractional.
The two LPs are not equivalent, and there are instance of GNB where one of the two
LPs is fractional and the other is not.

2 Computing balanced outcomes

The goal of this section is to provide a proof of Theorem 1. Let us fix an instance I of
GNB with graph G = (V,E), and weights we for all e ∈ E. Recall that the cooperative
game Γ (I) for I has player set V , and that the value v(S) of a coalition S ⊆ V is given
by the maximum value of any feasible collection of contracts that are entirely contained
in S. We first make the following observation.

Observation 5 Computing v(V ) for Distant Bargaining Games G=(V,E), for which the
set of feasible contracts is part of the input, is NP-hard.

Proof. The reduction is from 3-dimensional matching (3DM) where all three vertex
sets have the same size. Given an instance H = (L ∪ M ∪ R,F ) of this problem
(where F contains hyperedges, each containing exactly one vertex from each L,M,R),
we consider the following Distant Bargaining instance. The set of terminals is L ∪ R,
and the set of facilitators is M . For every hyperedge, we introduce two new edges
connecting each of the two terminals to the facilitator, each of weight 1/2, as well as
we introduce the associated contract (of weight 1) containing exactly these two edges;
we still allow only the “hyperedge contracts” to be formed by the new edges, and no
other combinations. Finally, it is easy to see that H = (L ∪M ∪ R,F ) admits a 3d-
matching if and only if v(L ∪M ∪R) = |L|.

We will now relate the core of Γ (I) and the set of stable outcomes of I . In order to
do this, we need the following lemma, and leave its straight-forward proof to the reader.

Lemma 1. Let x be an allocation in the core. Then there is a feasible collection C ⊆ C
of maximum value such that

∑
i xi =

∑
c∈C w(c).



The following lemma, whose proof can be found in the full paper shows that core
and set of stable allocations coincide.

Lemma 2. C = stable

We now show that solutions in the prekernel P are balanced.

Lemma 3. C ∩ P ⊆ stable ∩ balance

Proof. Let x ∈ C ∩ P. By Lemma 2 we know that x ∈ stable. Hence it remains to
argue that x is also balanced. We first argue that for all agents i, j, whenever x ∈ C,
there must be a contract c containing i and not j such that sij = v(c) − x(c). Indeed,
suppose that sij = v(S) − x(S), for some S ⊆ V for which i ∈ S 63 j. Then let
c1, . . . , ct ∈ C(S) be a feasible collection of contracts whose joint value equals v(S).
Without loss of generality, suppose that i ∈ c1. Then for every contract cr, x ∈ C
implies that w(cr)− x(cr) ≤ 0, and hence, as claimed,

v(S)− x(S) =
t∑

r=1

(w(cr)− x(cr)) ≤ w(c1)− x(c1).

Since x ∈ P we know that sij(x) = sji(x), for all i, j ∈ V . From Lemma 1 we also
know that x corresponds to some maximum value set of feasible contracts, say, C. Fix a
contract c ∈ C and two agents i, j ∈ C. In what follows we argue that αi−xi = αj−xj ,
which directly implies that x ∈ balance.

For the sake of simplicity, we denote argmaxαi and argmax sij(x) by ci and qij
respectively. Then we note that if i 6∈ cj then qji = cj and hence sji(x) = αj − xj .
Also, if i ∈ cj , then αj − xj ≥ sji(x), since the set cj is not considered when we
maximize over subsets in order to find sij(x).

With these observations at hand, we can now examine three cases. First, suppose
that i 6∈ cj and j 6∈ ci. Then sij(x) = sji(x) implies that αi − xi = αj − xj . In the
second case, if i ∈ cj and j ∈ ci, then ci = cj , so again αi − xi = αj − xj . Finally, in
the third case we assume that i 6∈ cj (and therefore qji = cj , that is sji(x) = αj − xj)
and that j ∈ ci (and so, αi − xi ≥ sij(x)). It follows that if sij(x) = sji(x), then
αi − xi ≥ αj − xj . Also, since j ∈ ci we conclude that αj − xj ≥ αi − xi. Overall,
this implies again that αj − xj = αi − xi, as we wanted.

Figure 1 shows an instance of GNB with terminals {u, v, w, z} and contracts C =
{uv, vw,wz, uz, uxv}. Consider feasible contracts C = {uv,wz} of total value 3. The
allocation χu = χv = 1, χw = χz = 1/2, and χx = 0 is easily checked to be stable
and balanced. However, since suv = 0−(1/2+1) = −3/2, and svu = 1−(1/2+1) =
−1/2, χ is not in the prekernel. Together with Lemmata 2 and 3 we obtain a proof of
Theorem 1.

3 Characterizing the core
As we have seen in Lemma 2, the set of stable allocations for a GNB instance I equals
the core of the cooperative game Γ (I). In this section, our goal will be to characterize
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Fig. 1. Counter-example for the reverse inclusion in Lemma 3

instances I where Γ (I) has a non-empty core. Further, if the core of Γ (I) is non-empty
then we will investigate the computational complexity of finding such a point.

3.1 The core via linear programming

We start this section by presenting a linear programming formulation that is integral iff
the core of Γ (I) is non-empty. The LP has a variable zc for each contract c ∈ C, and
maximizes the total value of chosen contracts subject to feasibility. The LP is shown on
the left below.

max
∑
c∈C

w(c) zc (P1)

s.t.
∑
c:i∈c

zc ≤ 1, ∀i ∈ V

z ≥ 0

min
∑
i∈V

yi (D1)

s.t.
∑
i∈c

yi ≥ w(c), ∀c ∈ C

y ≥ 0.

The

LP on the right is the linear programming dual of (P1). It has a variable yi for each
agent i ∈ V , and a constraint for every c ∈ C. We will now present a proof of Theorem
2, and show that the core of Γ (I) is non-empty iff (P1) has an integral optimal solution.

Proof (Proof of Theorem 2). Recall that by Lemma 2, the core of Γ (I) equals the set
stable of stable allocations in I . Also recall that an outcome (C, x) is stable iff for all
c′ 6∈ C, x(c′) ≥ w(c′) and w(c) = x(c) for all c ∈ C.

Now suppose that (P1) has an integral optimal solution z, and let y be the corre-
sponding optimal dual solution. Clearly, 0 ≤ z ≤ 1, and hence we may define the
set C ⊆ C of contracts c with zc = 1. We now claim that (C, y) is a stable outcome.
Indeed, all stability conditions are provided by the dual constraints, and by complemen-
tary slackness, they are tight when zc > 0.

For the other direction, consider a stable outcome (C, x). It is easy to see that zP = 1
for P ∈ C and 0 otherwise, and y = x are primal and dual feasible solutions respec-
tively. Complementary slackness is implied exactly by the definition of outcomes that
require that the sum of agent earnings in each contract matches the contract surplus.

We do not know how to solve (P1) efficiently. Worse than that, even if we are able to
solve the LP, we may not be able to decide whether there is an integral optimal solution.
The proof of the following result is implicit in [3], and given here for completeness.



Lemma 4. Given an instance I of GNB it is NP-complete to decide whether the core
of Γ (I) is non-empty.

Proof. We first show that the problem is in NP. For this, we non-deterministically guess
a feasible collection C ⊆ C of contracts. We then solve the linear system

x(c) = w(c) ∀c ∈ C (2)
x(c) ≥ w(c) ∀c ∈ C \ C. (3)

in order to find x ∈ RV+ . This can be done in polynomial time (e.g., via linear program-
ming) as C is part of the input. It is easy to check that the system has a feasible solution
if x is in the core.

To show hardness, we reduce from an instance of exact cover by 3-sets (X3C), where
we are given a ground-set S of size 3m and subsets {S1, . . . , Sq} of S each of which
has size 3. The question is whether there are m pairs whose union is S.

Here is how we encode this problem as an instance of GNB. We create a graph
G with vertex set S ∪ {x, y}, where x and y are two new dummy vertices. For each
Si = {a, b, c} in the X3C instance, we add distinct edges ab and bc each of cost 3/2
(middle vertex is chosen, say, lexicographically), and we add abc to the list of allowed
contracts C. We also add trees Tx and Ty spanning S ∪ {x}, and S ∪ {y}, respectively.
Once again, the edge sets of Tx and Ty are disjoint, and distinct from the other edges
added previously. We distribute weight 6m over the edges of Tx, and similarly over the
edges of Ty in some arbitrary way, and add E(Tx) and E(Ty) to the set of allowed
contracts. Finally we add xy to the graph and contract set, and assign a weight of 6m to
this edge. We claim that the core of the game Γ (I) of the above instance is non-empty
iff the given X3C instance is a ’yes’ instance.

Assume first that S1, . . . , Sm is an exact 3-cover. In this case, note that the corre-
sponding contracts together with xy are feasible, and have joint value 9m. One can now
verify that χ with χi = 1, for all i ∈ S, and χx = χy = 3m is in the core.

Conversely, if no exact 3-cover exists, then the value v(S) is less than 3m, and
the value of the grand coalition is less than 9m. Consider any vector χ ∈ R

S∪{x,y}
+

such that χ(V ) = v(V ) < 9m. It is not difficult to see that there are two distinct sets
U,W ∈ {S, {x}, {y}}, such that χ(U) + χ(W ) < 6m. But U ∪W is a coalition of
value 6m by our definition, and χ is therefore not in the core.

So, even if (P1) can be solved efficiently, we may not be able to check efficiently for
an integral optimal solution. We now show that it is also hard to check whether a certain
allocation is in the core, which in combination with Lemma 4 conclude Theorem 3.

Lemma 5. It is NP-complete to check whether an allocation x ∈ R
V
+ is in the core of

the cooperative game of a GNB instance I .

Proof. The problem is certainly contained in NP. To see this, we first non-
deterministically guess a feasible collection C ⊆ C and then check that (2) and (3)
hold.



To prove hardness, we once again reduce from the 3-dimensional matching problem.
Given an instance of 3DM, we create an instance of GNB by creating a graph with
terminal vertices L∪M ∪R. For each (l,m, r) ∈ F , we add edges lm and mr of value
1/2 each, and add contract {lm,mr} to the set C of allowed contracts.

Consider the vector χ with χv = 1 if v ∈M , and χv = 0 otherwise. We claim that
χ is in the core iff the given 3DM instance is a ’yes’ instance.

If the given 3DM instance is a ’no’ instance, then v(V ) < |M | = χ(V ), and hence
χ is not in the core. Conversely suppose that the 3DM instance is a ’yes’ instance. In
this case, χ(V ) = |M | = v(V ), and clearly χ(c) = 1 = w(c) for every contract c ∈ C.

3.2 Implicitly given contracts

In this section, we focus on GNB instances where C is implicitly given as the set of all
terminal-terminal paths in an underlying directed graph D with node-set V , and arcs
A. The internal nodes of each of these paths are assumed to be facilitators. Thus, C is
not part of the input, and LP (P1) may have an exponential number of variables. We do
not know how to efficiently solve this LP in this case. In the following, we present two
LPs for a given instance of GNB that (a) have integral optimal solutions only if the core
of Γ (I) is non-empty, and (b) are poly-time solvable.

In the following, let us fix an instance I of GNB with graph D = (V,A), and
weights wuv for all arcs (u, v) ∈ A. The two LPs to be presented are flow formulations.

Cycle-free Flow Formulation Observe that a set C of arcs in D corresponds to a
feasible set of contracts iff (a) every terminal agent has at most one incident arc, (b)
every facilitator agent has at most one outgoing arc, (c) every facilitator has equally
many incoming and outgoing arcs, and (d) for every set of facilitators S, there is at least
one outgoing arc in C if there is an arc in C that has both endpoints in S. Therefore, the
following LP is a relaxation for computing the value of the grand coalition (recall that
contracts are all terminal-terminal paths). For a set S of nodes, we let δ+(S) be the set
of arcs with tail in and head outside S. Furthermore, we let γ(S) be the set of arcs with
both ends in S.

max
∑
a∈A

waxa (P2)

s.t. x
(
δ−(v)

)
+ x

(
δ+(v)

)
≤ 1 ∀v ∈ T

x(δ+(v)) ≤ 1 ∀v ∈ R
x
(
δ−(v)

)
− x

(
δ+(v)

)
= 0 ∀v ∈ R

x
(
δ+(S)

)
≥ xa ∀S ⊆ R, ∀a ∈ γ(S) (4)

x ≥ 0

Note that (P2) can be solved in polynomial time via the Ellipsoid method [9]: given
a candidate solution x, it can be efficiently checked whether one of the polynomially



many constraints of one of the first three types is violated. Separating the constraints
of type (4) can be reduced to a polynomial number of minimum-cut computations in
suitable auxiliary graphs. We leave the details to the reader.

Lemma 6. If LP (P2) for GNB instance I has an integral optimal solution, then the
core of Γ (I) is non-empty.

The reader can find a constructive proof of Lemma 6 in the full version of the paper.
Note that Lemma 6 is a direct implication of Theorem 2. The reason is that any solution
feasible to (P1) can be converted to a feasible solution to (P2) (of equal objective value)
as follows; for every uv ∈ A set χuv = 1

2

∑
P∈P: uv∈P zP . It follows that the optimal

value of (P1) is sandwiched between the value of the cooperative game Γ (I), and that
of (P2). Taking into consideration that (P2) restricted to integral values is an exact for-
mulation of our problem, if (P2) has integrality gap 1, so does (P1). Nevertheless, the
important observation is that unlike (P1), we know how to efficiently solve relaxation
(P2). Furthermore, the proof of Lemma 6 is constructive, and gives rise to an efficient
algorithm to compute a core allocation.

Unfortunately, we will later see that there are example instances of GNB with non-
empty core for which (P2) has no integral optimal solution (see Lemma 8). There are,
however, many natural instance classes of GNB for which we are able to find core
allocations if these exist via our LP. An example is a class of multi-layered graphs
where the nodes are partitioned in k layers L1, . . . , Lk, with (L1 ∪ L2) = T, (L2 ∪
L3 ∪ . . . ∪ Lk−1) = R, and arcs existing only between nodes in consecutive layers
(i.e., if (u, v) ∈ E then u ∈ Li, v ∈ Li+1 for some 1 ≤ i ≤ k − 1). Note that the
only contracts allowed are paths from terminals in L1 to terminals in Lk. Each feasible
solution we get if we relax (P2) by removing constraints (4) can be mapped to a single-
commodity flow on the network we get if we connect all nodes in L1 to a source s and
all nodes in Lk to a sink t (with arcs of weight 0), and we give capacity 1 to all nodes.
Each such flow can also be mapped to a feasible solution of the relaxed (P2). Since the
flow polytope is integral, the optimal solution of the relaxed (P2) is also integral; it also
satisfies constraints (4), and, therefore, it is also an integral optimal solution for (P2).

Subtour Formulation We now present yet another polynomial-time solvable relax-
ation for GNB. Once again, we will see that the existence of an integral optimal solu-
tion implies non-emptiness of core for Γ (I), and that the reverse of this statement is
false. However, we show in the full version of the paper that (P2) and this new LP are
incomparable, and one may have integer optimal solution when the other does not.

max
∑
a∈A

waxa (P3)

s.t. x(δ+(v)) + x(δ−(v)) ≤ 1 ∀v ∈ T
x(δ+(v)) ≤ 1 ∀v ∈ R
x(δ−(v))− x(δ+(v)) = 0 ∀v ∈ R
x(γ(S)) ≤ |S| − 1 ∀S ⊆ R
x ≥ 0



It can be easily seen that (P3) restricted on integral values models exactly the problem
of computing the value of the grand coalition in the associated coalition game (recall
that contracts are all terminal-terminal paths). Once again it is easily shown that (P3) is
polynomial-time solvable, and once again we utilize the Ellipsoid method. We observe
that the function (|S| − 1)− x(γ(S)) is submodular. Separating the constraints of type
(4) then reduces to submodular function minimization, for which there are polynomial-
time algorithms (e.g., see [13]).

Similarly to the previous section, we show that (P3) can be used as a certificate that
the core is non empty, for some, but not all instances.

Lemma 7. If LP (P3) for GNB instance I has an integral optimal solution, then the
core of Γ (I) is non-empty.

Similarly to (P2), Lemma 7 is a direct consequence of Theorem 2. We provide a con-
structive proof in the full version of the paper which gives rise to an efficient algorithm
for computing core allocations. Finally note that Lemmata 6 and 7 prove Theorem 4.

Lemma 8. There are instances for which the C is non empty, still the integrality gap of
both (P2) and (P3) is bigger than 1.

Proof. Consider terminals t1, t2 and facilitators f1, f2, f3, f4, with edges connecting
them (along with weights) as seen in Figure 2. One of the optimal solutions is the

Fig. 2. The optimal contract. Fig. 3. The fractional LP solution.

path t1f2, f2f4, f4t2 of value 11. A core assignment would give xt1 = xt2 = 11
2 ,

and 0 to all facilitators. This can be seen to be in the core since contracts are always
paths connecting t1, t2, and none of them has cost more than what both terminals earn
together.

Finally, we argue how to fool both (P2) and (P3). For this we invent three flows;
the path t1f2, f2f4, f4t2, the path t1f1, f1f3, f3t2 and the cycle f1f2, f2f4, f4f3, f3f1
(depicted in Figure 3) all with value 1/2. A claim that can be easily checked is that the
proposed values satisfy both LPs, while the objective value in both cases is 12, which
is strictly bigger than the integral optimal.



4 Conclusion

In this paper, we introduce the class of generalized bargaining games as a natural ex-
tension of network bargaining. We show that many of the known results for network
bargaining extend to the new setting. For example, we show that an instance I of GNB
has a balanced outcome whenever it has a stable one. We define a cooperative game
Γ (I) for every GNB instance I and present an LP (P1) that has an integral optimal
solution iff the core of Γ (I) is non-empty.

Several interesting open questions remain: (1) In the case where the set of contracts
is implicitly given as all terminal-terminal paths in the underlying graph, is it hard to
solve (P1) efficiently? (2) In the same setting, can we give a good characterization of
the class of graphs (possibly via excluded minors) that have stable solutions?
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