
Distributed Weighted Vertex Cover via Maximal
Matchings?

Fabrizio Grandoni1, Jochen Könemann2, and Alessandro Panconesi1

1 Dipartimento di Informatica, Università di Roma “La Sapienza”, Via Salaria 113, 00198
Roma, Italy, {grandoni,ale}@di.uniroma1.it

2 Department of Combinatorics and Optimization, University of Waterloo, 200 University
Avenue West, Waterloo, ONN2L 3G1, Canada, jochen@math.uwaterloo.ca

Abstract. In this paper we consider the problem of computing a minimum-
weight vertex-cover in an n-node, weighted, undirected graph G = (V,E). We
present a fully distributed algorithm for computing vertex covers of weight at
most twice the optimum, in the case of integer weights. Our algorithm runs in
an expected number of O(logn + logŴ) communication rounds, where Ŵ is
the average vertex-weight. The previous best algorithm for this problem requires
O(logn(logn+ logŴ)) rounds and it is not fully distributed.
For a maximal matching M in G it is a well-known fact that any vertex-cover in
G needs to have at least |M| vertices. Our algorithm is based on a generalization
of this combinatorial lower-bound to the weighted setting.

1 Introduction

We are given an undirected graph G = (V,E) and non-negative vertex weights wv ≤W
for all vertices v ∈ V . A vertex cover is a subset C ⊆ V such that each edge e ∈ E has
at least one end-point in C. In the minimum-weight vertex-cover problem we want to
compute a vertex-cover of smallest total weight.

Computing minimum-weight vertex-covers is NP-hard [4]. Papadimitriou and Yan-
nakakis [14] show that the problem is APX-hard. More recently, Håstad [8] proves that
there is no (7/6 − ε)-approximation algorithm for the vertex-cover problem for any
ε > 0 unless P= NP.

On the positive side, the best known algorithms for the vertex cover problem are
due to Bar-Yehuda and Even [1], and to Monien and Speckenmeyer [12]. These algo-
rithms achieve an approximation ratio of (2− log logn

2logn). In graphs with maximum de-
gree ∆, Hochbaum [9] gives a (2 − 1/∆)-approximation algorithm for the problem.
This was subsequently improved by Halldórsson and Radhakrishnan [5] who present a
(2− log(∆)+O(1)

∆)-approximation algorithm. Finally, Halperin [6] presents the currently
best algorithm for the problem with a performance ratio of (2− (1−o(1)) 2lnln∆

ln∆).
In the distributed setting, it is known how to compute a 2-approximate vertex cover

in the unweighted case. This can be achieved by computing a maximal matching in
the graph and by including the matched nodes in the cover. A maximal matching can

? The first and third authors were supported with funding from EC Projects DELIS and EYES,
and project WebMinds of the Italian Ministry of University and Research (MIUR).

2 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

be computed in O(log4 n) rounds via the algorithm of Hanckowiack et al. [7], and in
O(∆ + log∗ n) rounds via the algorithm of Panconesi and Rizzi [13]. Both algorithms
are deterministic. Maximal matchings can also be computed in an expected number of
O(logn) rounds via the randomized algorithm of Israeli and Itai [10].

For the weighted case a (2 + ε)-approximation can be computed deterministically
in O(logn log 1

ε) many rounds by using the algorithm of Khuller et al. [11]. Their algo-
rithm is stated as a PRAM algorithm, but it is readily seen to be a bona fide distributed
algorithm. Let Ŵ be the average weight. Then, by setting ε = 1/(nŴ + 1), the latter
algorithm computes a 2-approximate vertex cover in O(logn(logn+ logŴ)) communi-
cation rounds. Note that the above choice of ε requires global knowledge of the quantity
nŴ . This assumption may not be realistic in all scenarios.

In this paper we present an improved fully-distributed algorithm to compute a 2-
approximate weighted vertex cover, in the case of integer weights. Our main result can
be stated as follows:

Theorem 1. There is a fully distributed algorithm which computes a 2-approximate
weighted vertex cover in an expected number of O(logn + logŴ) communication
rounds. The message size is O(logW) and the local computation done in each round
is O(∆ log(∆W)) in expectation.

Our algorithm can be viewed as a generalization of the reduction from unweighted
vertex cover to maximal matching. The basic idea is to expand each node v of weight
wv into wv micro-nodes v(1),v(2) . . . ,v(wv), and connect each v(i) to every u(j) when-
ever vu is an edge of the network. Then a maximal matching in the auxiliary graph is
computed. The vertex cover is given by the nodes such that all the corresponding micro-
nodes are matched. If the maximal matching is computed via the fully-distributed algo-
rithm of Israeli and Itai, the algorithm halts in an expected number of O(logn+ logŴ)
rounds.

A naive implementation of the matching algorithm by Israeli and Itai leads to
pseudo-polynomial message and time complexity in each round. The main insight lead-
ing to the bounds on message-size and local computation time in Theorem 1 is to keep
an implicit representation of the auxiliary graph and a maximal matching in it.

The rest of this paper is organized as follows. In Section 2 we introduce some pre-
liminaries. Our algorithm relies on a careful adaptation of the matching algorithm by
Israeli and Itai. We present this adaptation in Section 3. Finally, Sections 4 and 5 deal
with the naive and refined versions of our weighted vertex cover algorithm, respectively.

2 Preliminaries

The minimum-weight vertex cover problem can be formulated as an integer linear pro-
gram (ILP):

min ∑v∈V wvxv

s.t.
xv + xu ≥ 1, ∀vu ∈ E;
xv ∈ {0,1}, ∀v ∈V .

Distributed Weighted Vertex Cover via Maximal Matchings 3

Each assignment of the variables which satisfies the constraints (feasible solution)
corresponds to a vertex cover containing exactly the nodes v with xv = 1. By (LP) we
denote the natural linear programming relaxation of (ILP).

Let N(v) be the set of neighbors of v. The linear programming dual (D) of (LP) is:

max ∑vu∈E yvu

s.t.
∑u∈N(v) yvu ≤ wv, ∀v ∈V ;
yvu ≥ 0, ∀vu ∈ E.

By weak duality (e.g., see [2]), the value of each feasible solution of (D) is a lower
bound for the value of every feasible solution of (LP) and hence (IPL).

In this paper we consider a synchronous message-passing model of computation.
The computation proceeds in rounds. In each round, a node can send/receive a mes-
sage (of unbounded size) to/from each one of its neighbors, and execute an unbounded
amount of computation. No global knowledge is available (including the number n of
nodes in the graph). The algorithms presented can be easily modified so as to work in a
(non-faulty) asynchronous system also.

By B(p), p ∈ [0,1], we denote a 0-1 Bernoulli random variable, which takes value
one with probability p. A random bit is a Bernoulli variable B(0.5).

3 Distributed Maximal Matching

A matching of a graph G = (V,E) is a subset M ⊆ E such that no two edges of M are
incident to the same node. The results of the next sections are based on the following
simplified version M of the distributed maximal-matching algorithm of Israeli and Itai
[10].

Algorithm M works in phases, each one consisting of a constant number of rounds.
In each phase, a matching is computed and the edges incident on matched nodes are
removed. The algorithm halts when no edge is left. The maximal matching is given by
the union of the matchings found in the different phases.

In a given phase a matching is computed in the following way. Let G′ = (V ′,E ′) be
the current graph. By N ′(v) and δ′v we denote the set of neighbors of v and the degree
of v in G′, respectively. Each node v randomly decides to be a sender or a receiver
with probability one half. Note that the same node may play a different role in different
phases. Each sender u selects one neighbor v ∈ N ′(u) uniformly at random and makes
a proposal to v. Each receiver v which receives at least one proposal, selects one of the
proponents (arbitrarily) and accepts its proposal. The matching is given by the edges
corresponding to accepted proposals.

Let a node v be good if at least one third of its neighbors u have degree δu ≤ δv. To
prove the bound on the number of rounds, we use the following simple combinatorial
result [10]:

Lemma 1. At least one half of the edges of a graph are incident to good nodes.

4 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

Figure 1 A weighted graph G (on the left) with the corresponding auxiliary graph G̃. A
maximal matching M of G̃ is indicated via dashed lines. The dashed nodes of G form a
vertex cover.

3

2 1

Theorem 2. Algorithm M computes a maximal matching in O(logn) expected rounds.

Proof. The correctness of the algorithm is trivial.
We show that in each phase at least a constant fraction of the edges is removed in

expectation. This implies that the expected number of rounds is O(log(n2)) = O(logn).
Consider a good node v of G′ in a given phase. The probability P′

v that v accepts a
proposal is lower bounded by:

P′
v ≥

1
2

(
1− ∏

u∈N′(v)

(
1−

1
2δ′u

))
.

¿From the definition of good nodes:

∏
u∈N′(v)

(
1−

1
2δ′u

)
≤ ∏

u∈N′(v):δ′u≤δ′v

(
1−

1
2δ′v

)
≤

(
1−

1
2δ′v

)δ′v/3

≤ e−1/6.

Thus P′
v ≥ (1−e−1/6)/2 and the expected number of edges removed is at least a fraction

(1− e−1/6)/4 of the total. 2

4 Distributed Vertex Cover via Maximal Matchings

In this section we present a simple pseudo-polynomial reduction from the problem of
computing a 2-approximate vertex cover to the problem of computing a maximal match-
ing in an auxiliary graph. Thanks to this reduction, a 2-approximate vertex cover can be
computed in O(logn+ logŴ) expected rounds via algorithm M of section 3.

Consider the following auxiliary graph G̃. For each node v of G, G̃ contains wv

micro-nodes v(1),v(2) . . .v(wv). Two micro-nodes v(i) and u(j) are adjacent if and only
if vu is an edge of G. In Figure 1 an example of the reduction is given.

Let M be a maximal matching in G̃. By V (M) we denote the set of nodes v of G
such that all the corresponding micro-nodes v(i) are matched by M.

Distributed Weighted Vertex Cover via Maximal Matchings 5

Lemma 2. Set V (M) is a 2-approximate vertex cover of G.

Proof. Assume by contradiction that V (M) is not a vertex cover. Thus there are two
adjacent nodes v and u in G which do not belong to V (M). This implies that there are
two adjacent micro-nodes v(i) and u(j) in G̃ which are not matched by M. Then the set
M′ = M∪{v(i)u(j)} is a matching, which contradicts the maximality of M.

Let apx and opt denote the weight of the vertex cover found and that of a minimum
weight vertex cover, respectively. Moreover, let zv be the number of micro-nodes in
{v(1),v(2) . . .v(wv)} that are matched by M. A feasible solution of (D) is obtained by
assigning to each dual variable yvu the number of edges of the kind v(i)u(j) ∈ M. This
solution is feasible since, for every v ∈ V : ∑u∈N(v) yvu = zv ≤ wv. By weak duality we
obtain apx ≤ ∑v∈V zv ≤ 2∑vu∈E yvu ≤ 2opt and hence V (M) is 2-approximate. 2

Lemma 2 suggests a strategy to compute a 2-approximate vertex cover distribu-
tively. The idea is to simulate the behavior of algorithm M on a virtual auxiliary graph
G̃, and then to select the nodes in the vertex cover as suggested by Lemma 2.

Specifically, each node simulates the execution of the algorithm on the correspond-
ing micro-nodes v(i) in G̃. Whenever two micro-nodes v(i) and u(j) of G̃ need to com-
municate, nodes v and u are responsible for allowing such communication. The ver-
tex cover is given by the nodes v such that all the corresponding micro-nodes v(i) are
matched by the maximal matching computed. Since the virtual auxiliary graph contains
O(nŴ) nodes, the total number of rounds is O(log(nŴ)) = O(logn+ logŴ).

This naive application of Lemma 2 has two major drawbacks. The first problem
is the large message size. In fact, in each phase all the micro-nodes of v may send a
proposal to some micro-node of u. Thus the message size is Ω(W).

A second problem is the time complexity of the algorithm: consider a node v in a
given phase. Each micro-node v(i) of v, with probability one half, needs to select one
neighbor out of Θ(∆W) uniformly at random. This random selection can be performed
in Θ(log(∆W)) expected time, assuming that the cost of generating a random bit is O(1)
(e.g., see [3]). Thus the expected time complexity of each phase is Ω(W log(∆W)).

In next section we show how to solve both problems by creating the matchings
implicitly.

5 An Improved Algorithm

In this section we present an improved fully distributed algorithm A for computing a 2-
approximate vertex cover. Algorithm A still requires O(logn+ logŴ) expected rounds,
but it reduces the size of the messages to O(logW) and the expected time complexity
of each phase to O(∆ log(∆W)).

The basic structure of algorithm A is analogous to the structure of the naive algo-
rithm described in previous section: in each phase, a matching in the current auxiliary
graph G̃′ is computed, and the matched nodes are removed from G̃′ (together with all
the edges incident to them). The algorithm halts when no edge is left. The vertex cover
is given by the nodes v such that all the corresponding micro-nodes v(i) are matched by
one of the matchings computed. The main novelty in Algorithm A is that matchings are

6 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

Figure 2 Protocol for node v for 2-approximate vertex cover.

w′
v = wv; N ′(v) = N(v), sv = active;

while (sv = active) {
send w′

v and receive w′
u to/ from all u ∈ N ′(v);

N ′(v) = {u ∈ N(v) : w′
u > 0};

if (|N ′(v)| = 0)
sv = outside;

else {
compute the proposals pv(u);
send pv(u) and receive pu(v) to/ from all u ∈ N ′(v);
compute the counter-proposals cv(u);
send cv(u) and receive cu(v) to/ from all u ∈ N ′(v);
for (all u ∈ N ′(v))

w′
v = w′

v − cv(u)− cu(v);
if (w′

v = 0) {
send w′

v to all u ∈ N ′(v);
sv = inside;

}
}

}

created implicitly: in each phase each node only knows the number of the correspond-
ing matched micro-nodes. Intuitively, this simplification is allowed by the symmetry
properties of G̃: all the micro-nodes corresponding to a node v have the same degree
and share the same neighborhood. This invariant is kept by all the induced subgraphs
of G̃.

Algorithm A , which is described in Figure 2, works in phases. Each phase consists
of a constant number of communication rounds. Each node v has an associated state
sv, which is initially active. In each phase, part of the active nodes switch to the state
inside or outside, and the algorithm terminates when no active node is left. When a
node leaves the active state, it halts. At the end of the algorithm, the inside nodes form
a vertex cover.

In more details, each node v has an associated residual weight w′
v, which is initially

wv. The residual weight w′
v can be interpreted as the number of micro-nodes v(i) of v in

the current auxiliary graph G̃′. Note that all the micro-nodes v(i) have the same degree
W ′

v = ∑u∈N(v) w′
u. In each phase, the expected residual weight of active nodes decreases.

The decrease of w′
v in a given phase reflects the number of micro-nodes of v that have

been matched in that phase.
At the beginning of each phase, each active node v sends w′

v to all its currently active
neighbors N ′(v). The neighbors with w′

u = 0 are removed from N ′(v). If N ′(v) becomes
empty, node v switches to the outside state. In fact, in this case the degree W ′

v of the
micro-nodes v(i) is zero, and thus they will never be matched.

Otherwise, v sends a proposal pv(u) to each active neighbor u ∈ N ′(v). The value
of pv(u) can be interpreted as the number of proposals directed from the micro-nodes
of v to the micro-nodes of u. Let p′v be the sum of the proposals pv(u):

p′v = ∑
u∈N′(v)

pv(u).

Distributed Weighted Vertex Cover via Maximal Matchings 7

This quantity can be viewed as the number of micro-senders among v(1),v(2) . . .v(wv).
We postpone a detailed description of how proposals are fixed until later.

For each proposal pu(v) received, node v replies with a counter-proposal cv(u). The
counter-proposal cv(u) can be interpreted as the number of micro-nodes of v which ac-
cept proposals of micro-nodes of u. Let c′v = w′

v − p′v be the number of micro-receivers
of v. The sum of the counter-proposals for node v then needs to be at most c′v. At
the same time each counter-proposal cv(u) must not exceed the corresponding pro-
posal pu(v). Given these restrictions we choose a feasible set of counter-proposals
{cv(u)}u∈N′(v) arbitrarily such that their sum is maximum, i.e.

∑
u∈N′(v)

cv(u) = min

{
c′v, ∑

u∈N′(v)

pu(v)

}
.

Eventually, node v decrements w′
v by the sum of all the counter-proposals

cv(u) and cu(v) which have been sent and received by v, respectively: w′
v = w′

v −

∑u∈N′(v) (cv(u)+ cu(v)). This decrement reflects the number of micro-nodes of v which
are matched in the considered phase.

If w′
v becomes zero, node v sends w′

v to all its neighbors (for the last time) and
switches to the inside state (since all the corresponding micro-nodes are matched).

We now show how proposals are fixed by each node v. If the number w′
v of micro-

nodes v(i) is “sufficiently” small, the proposals pv(u) are fixed according to algorithm
M . Otherwise, they are fixed in a more efficient way, while keeping the same expected
value. In more details, there are two different strategies, depending on whether w′

v < 2δ′v
or not, where δ′v = |N ′(v)| is the number of currently active neighbors of v. If w′

v < 2δ′v,
the proposals pv(u) are initially set to zero. Then, for w′

v times, an active neighbor u ∈
N′(v) is selected at random with probability proportional to w′

u, and the corresponding
proposal pv(u) is incremented by one with probability one half. Note that each pv(u),
considered separately, is the sum of w′

v i.i.d. Bernoulli variables B(w′
u/(2W ′

v)):

pv(u) =
w′

v

∑
i=1

B

(
w′

u

2W ′
v

)
. (1)

Otherwise (w′
v ≥ 2δ′v), the value of each pv(u) is independently set to:

pv(u) =

⌊
w′

vw′
u

2W ′
v

⌋
+B

(
w′

vw′
u

2W ′
v
−

⌊
w′

vw′
u

2W ′
v

⌋)
. (2)

Note that, in both cases, the sum p′v of the proposals is upper bounded by w′
v. In

the first case this is trivially true. In the second case, this is a consequence of the small
value of δ′v:

∑
u∈N′(v)

pv(u) ≤ ∑
u∈N′(v)

(
w′

vw′
u

2W ′
v

+1

)
=

w′
v

2
+δ′v ≤ w′

v.

Moreover, in both cases E[p′v] = w′
v/2. The following technical property of proposals

will be useful in later parts of the analysis.

8 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

Lemma 3. For any two given nodes v and u ∈ N ′(v) we have

Eu,v = E

[(
1−

1
w′

v

)pu(v)
]
≤

(
1−

1
W ′

u

)w′
u/4

.

Proof. If w′
u < 2δ′u, by Equation (1):

Eu,v = E



(

1−
1

w′
v

)∑w′u
i=1 B

(
w′v

2W ′
u

)
=


E



(

1−
1

w′
v

)B

(
w′v

2W ′
u

)




w′
u

=

=

(
1−

w′
v

2W ′
u

+
w′

v

2W ′
u

(
1−

1
w′

v

))w′
u

≤

(
1−

1
W ′

u

)w′
u/2

.

Consider now the case w′
u ≥ 2δ′u. By Equation (2), if w′

uw′
v/(2W ′

u) ≥ 1:

Eu,v ≤ E

[(
1−

1
w′

v

)bw′
uw′

v/(2W ′
u)c
]
≤

(
1−

1
w′

v

)w′
uw′

v/(4W ′
u)

≤

(
1−

1
W ′

u

)w′
u/4

.

Otherwise (w′
uw′

v/(2W ′
u) < 1):

Eu,v = E



(

1−
1

w′
v

)B

(
w′uw′v
2W ′

u

)
= 1−

w′
u

2W ′
u
≤

(
1−

1
W ′

u

)w′
u/2

.

2

Lemma 4. Algorithm A computes a 2-approximate vertex cover.

Proof. The algorithm halts. In fact, the residual weight of each active node decreases
by at least one in each round with positive probability. It follows that the nodes which
do not switch to the outside state, switch to the inside state in a finite expected number
of rounds. Assume by contradiction that, at the end of the algorithm, the inside nodes
do not form a vertex cover. This implies that there is an outside node v which has at
least one outside neighbor. Let v switch to the state outside in phase p. At the beginning
of phase (p− 1), all the neighbors of v are either inside or active nodes. Consider the
active neighbors of v in phase (p−1). These nodes are not active any more when phase
p starts. But they cannot switch to the state outside in phase (p−1), since their active
degree is greater than zero in that phase. Thus they all switch to the state inside, which is
a contradiction. Let zv be the difference between wv and the final residual weight w′

v. A
feasible solution of (D) is obtained by assigning to each dual variable yvu the sum of all
the counter-proposals of the kind cv(u) and cu(v). Let apx and opt be the weight of the
vertex cover found and that of a minimum vertex cover, respectively. By weak duality:
apx ≤ ∑v∈V zv ≤ 2∑vu∈E yvu ≤ 2opt. Thus the vertex cover found is 2-approximate. 2

Lemma 5. Algorithm A sends messages of size O(logW). Each phase of algorithm A
has time complexity O(∆ log(∆W)) in expectation.

Distributed Weighted Vertex Cover via Maximal Matchings 9

Proof. Both proposals and counter-proposals can be packed in messages of size
O(logW). The time complexity of each phase is upper bounded by the cost of com-
puting the proposals. Computing the proposals is as expensive as selecting O(∆) times
an element out of O(∆W) ones uniformly at random. Each random selection can be
performed by generating O(log(∆W)) random bits in expectation. By assuming a O(1)
cost for generating a random bit, the total expected cost of each phase is O(∆ log(∆W)).

2

Recall that a node is good if at least one third of its neighbors have degree smaller
or equal than its own degree. Consider a node v in G. The degree of all the micro-nodes
corresponding to v in G̃ is Wv = ∑u∈N(v) wu. Thus a micro-node v(i) is good if and only
if:

∑
u∈N(v):Wu≤Wv

wu ≥
Wv

3
.

Note that, if a micro-node v(i) is good, all the micro-nodes v(j), j ∈ {1,2 . . .wv}, are
good and vice-versa. We call a node of G heavy if all its micro-nodes in G̃ are good.
The next observation can be seen as the weighted analogue of Lemma 1.

Lemma 6. Let EH ⊆ E be the subset of edges incident to heavy nodes. Then
∑vu∈EH

wvwu ≥
1
2 ∑vu∈E wvwu.

Proof. Consider the auxiliary graph G̃. The number of edges of G̃ that are incident to
good nodes is ∑{v,u}∈EH

wvwu. Since the number of edges of G̃ is ∑{v,u}∈E wvwu, the
claim follows from Lemma 1. 2

We use the properties of heavy nodes to prove the following bound on the number
of rounds.

Lemma 7. Algorithm A halts in O(logn+ logŴ) expected rounds.

Proof. We show that the residual weight of heavy nodes decreases by at least a positive
constant factor in expectation in each phase. It follows from Lemma 6 that the same
holds for the potential function: 0 ≤ ∑vu∈E w′

vw′
u < (nŴ)2, thus implying the claim.

Consider a heavy node v in a given phase. Let w′′
v be the values of w′

v at the end of the
phase. The residual weight of v decreases by at least the sum of the counter-proposals
cv(u) sent by v:

w′′
v ≤ w′

v − ∑
u∈N′(v)

cv(u) = p′v + c′v

(
1−

1
c′v

min{c′v, ∑
u∈N′(v)

pu(v)}

)

= p′v +(w′
v − p′v)

(
1−

1
c′v

min{c′v, ∑
u∈N′(v)

pu(v)}

)
.

Note that:
(

1−
1
c′v

min{c′v, ∑
u∈N′(v)

pu(v)}

)
≤

(
1−

1
c′v

)∑u∈N′(v) pu(v)

≤ ∏
u∈N′(v)

(
1−

1
w′

v

)pu(v)

.

10 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

Thus:

E[w′′
v] ≤

w′
v

2
+

w′
v

2 ∏
u∈N′(v)

E

[(
1−

1
w′

v

)pu(v)
]

,

where we used E[p′v] = w′
v/2. By Lemma 3 and the definition of heavy nodes:

∏
u∈N′(v)

E

[(
1−

1
w′

v

)pu(v)
]
≤ ∏

u∈N′(v)

(
1−

1
W ′

u

) w′u
4

≤ ∏
u ∈ N ′(v)
W ′

u ≤W ′
v

(
1−

1
W ′

v

) w′u
4

≤

(
1−

1
W ′

v

)W ′
v

12

.

The right-hand side is at most e−1/12 and it follows that E[w′′
v] ≤ w′

v (1+ e−1/12)/2. 2

Lemmas 4, 5, and 7 together imply Theorem 1.

References

1. R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the weighted vertex
cover problem. Journal of Algorithms, 2:198–203, 1981.

2. V. Chvátal. Linear programming. Freeman, 1983.
3. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press and

McGraw-Hill Book Company, 6th edition, 1992.
4. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of

NP-Completeness. Freemann, 1979.
5. M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent sets in

sparse and bounded-degree graphs. In ACM Symposium on the Theory of Computing, pages
439–448, 23–25 1994.

6. E. Halperin. Improved approximation algorithms for the vertex cover problem in graphs and
hypergraphs. SIAM Journal on Computing, 31(5):1608–1623, Oct. 2002.

7. M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complexity of comput-
ing maximal matchings. SIAM Journal on Discrete Mathematics, 15(1):41–57, 2001.

8. J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, July
2001.

9. D. S. Hochbaum. Efficient bounds for the stable set, vertex cover, and set packing problems.
Discrete Applied Mathematics, 6:243–254, 1983.

10. A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal matching.
Information Processing Letters, 22:77–80, 1986.

11. S. Khuller, U. Vishkin, and N. Young. A primal-dual parallel approximation technique ap-
plied to weighted set and vertex cover. Journal of Algorithms, 17(2):280–289, 1994.

12. B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm for the
vertex cover problem. Acta Informatica, 22:115–123, 1985.

13. A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse networks. DIST-
COMP: Distributed Computing, 14, 2001.

14. C. Papadimitriou and M. Yannakakis. Optimization, approximization and complexity
classes. Journal of Computer and System Sciences, 43:425–440, 1991.

