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In the multicommodity rent-or-buy (MROB) network design problem we are given a network

together with a set of k terminal pairs (s1, t1), . . . , (sk, tk). The goal is to provision the network
so that a given amount of flow can be shipped between si and ti for all 1 ≤ i ≤ k simultaneously.
In order to provision the network one can either rent capacity on edges at some cost per unit of
flow, or buy them at some larger fixed cost. Bought edges have no incremental, flow-dependent

cost. The overall objective is to minimize the total provisioning cost.
Recently, Gupta et al. (Proceedings, IEEE Symp. Foundations of Computer Science, 2003)

presented a 12-approximation for the MROB problem. Their algroithm chooses a subset of the

terminal pairs in the graph at random and then buys the edges of an approximate Steiner forest
for these pairs. This technique had previously been introduced Gupta et al. (Proceedings, ACM
Symp. Theory of Computing, 2003) for the single sink rent-or-buy network design problem.

In this paper we give a 6.828-approximation for the MROB problem by refining the algorithm

of Gupta et al. and simplifying their analysis. The improvement in our paper is based on a
more careful adaptation and simplified analysis of the primal-dual algorithm for the Steiner forest
problem due to Agrawal et al. (SIAM J. Comput., 1995). Our result significantly reduces the gap

between the single-sink and multi-sink case.
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ity]: Nonnumerical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms
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1. INTRODUCTION

In the multi-commodity rent-or-buy problem (MROB) we are given an undirected
graph G = (V,E), terminal pairs R = {(s1, t1), . . . , (sk, tk)}, non-negative costs ce

for all edges e ∈ E, and a parameter M ≥ 0. The goal is to select a set of bought

edges Fb and a set of of rented edges Fr, respectively, such that for all (s, t) ∈ R, we
can ship a given amount of flow from s to t using the edges in Fb ∪Fr. The cost of
a bought edge e ∈ Fb is M · ce. A rented edge e ∈ Fr costs ce ·λ(F, e) where λ(F, e)
denotes the total flow traversing edge e. The aim is to find a feasible solution of
smallest total cost.
The MROB problem generalizes the single-commodity rent-or-buy problem

(SROB). Here we are again given an undirected network together with rental and
buying costs on all edges e ∈ E as before. We are also given a set of terminal
vertices and a root vertex r. The goal is now to provision the network such that all
terminals can send a specified amount of flow to the root vertex r simultaneously.
A recent result of Gupta et al. [Gupta et al. 2003] gives a 3.55 approximation
algorithm for the problem.

Awerbuch and Azar [Awerbuch and Azar 1997] and Bartal [Bartal 1998] were
the first to give an O(log |V | log log |V |)-approximation algorithm for the MROB
problem. Later, Kumar, Gupta and Roughgarden [Kumar et al. 2002] gave the
first constant approximation algorithm for the problem based on a primal-dual
approach. More recently, Gupta et al. [Gupta et al. 2003] extended the techniques
used by Gupta et al. [Gupta et al. 2003] and presented a 12-approximation for the
MROB problem. Their work also uses the cost-sharing concept from game-theory
(see, e.g., [Feigenbaum et al. 2001; Jain and Vazirani 2001; Pál and Tardos 2003])
in the analysis of the algorithm. Very recently, in [Fleischer et al. 2006], Fleischer
et al. improved upon the results presented in this paper and obtained an elegant
5-approximation algorithm for the MRoB problem.

The minimum-cost Steiner tree and forest problems are closely related to both
the MROB and SROB problems. In the more general Steiner forest problem, we are
given an undirected graph G = (V,E), non-negative costs ce for all edges e ∈ E, and
a set of terminal pairs R = {(s1, t1), . . . , (sk, tk)}. The goal is to find a forest F of
minimum total cost such for all 1 ≤ i ≤ k, there is a tree T ∈ F that contains both,
si and ti. It is well-known that the minimum-cost Steiner forest problem is NP-
hard[Garey and Johnson 1979] and Max-SNP hard. On the positive side, Agrawal,
Klein and Ravi [Agrawal et al. 1995] and later Goemans and Williamson [Goemans
and Williamson 1995] gave a primal-dual 2-approximation for the problem.

The MROB algorithm from [Gupta et al. 2003] crucially relies on the primal-dual
algorithm for Steiner forest of Agrawal et al. [Agrawal et al. 1995]. The algorithm
in [Gupta et al. 2003] first picks a random subset of all terminal pairs R0 ⊆ R and
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then uses a modified primal-dual Steiner forest algorithm to compute a feasible
Steiner forest F0 for R0. The algorithm buys all edges from F0. Terminal pairs in
R \ R0 that are not connected in F0 rent extra capacity in the cheapest possible
way to establish connections.

The central feature of the modified primal-dual Steiner forest algorithm used in
[Gupta et al. 2003] is β-strictness: The algorithm defines cost-shares χst for all
terminal pairs (s, t) in R. Let the Steiner forest computed by the algorithm on
input R \ {(s, t)} be denoted by F0 and let G|F0 be the graph obtained from G by
contracting F0. The algorithm then guarantees that the cheapest way of connecting
s to t in G|F0 costs at most β·χst. Moreover, the sum over all cost-shares of terminal
pairs is at most the cost of a minimum-cost Steiner forest for R.

The prize for a β-strict Steiner forest algorithm is a worse performance guarantee.
Gupta et. al show that their Steiner forest modification returns a 6-approximate
and 6-strict Steiner forest and this leads to a 12-approximate MROB-algorithm.
In general, they show that any α-approximate and β-strict algorithm leads to an
(α + β)-approximation for the MROB problem.

We remark that cost-shares and the concept of β-strictness find application in
the area of stochastic optimization as well. In [Gupta et al. 2004], Gupta et al.
presented a general framework for 2-stage stochastic optimization with recourse.
The authors showed how to turn an α-approximate and β-strict approximation
algorithm for a deterministic optimization problem into an α + β-approximation
algorithm for the corresponding stochastic version of the problem.

1.1 Our Contribution.

Our algorithm uses the cost-sharing framework proposed by Gupta et al. We prove
the following main result:

Theorem 1.1. There is a polynomial-time (2 + 2γ)-approximate and (2+1/γ)-
strict algorithm for the minimum-cost Steiner forest problem for any γ ≥ 1/2.

In [Gupta et al. 2003], Gupta et al. show the following main theorem:

Theorem 1.2. Suppose there is an α-approximate and β-strict algorithm for the

Steiner forest problem. Then there exists an (α + β)-approximation algorithm for

the multicommodity rent-or-buy problem.

Choosing γ =
√

1/2 in Theorem 1.1 together with Theorem 1.2 implies the
following corollary:

Corollary 1.3. There is a (4+2
√

2)-approximate algorithm for the multicom-

modity rent-or-buy problem.

The heart of our work is a new β-strict algorithm for the Steiner forest problem.
Our Steiner forest algorithm has two main phases: The first phase runs the standard
primal-dual Steiner forest algorithm from [Agrawal et al. 1995] and computes an
approximate Steiner forest F ′ for a given set of terminal pairs R.

The goal of the second phase of the algorithm is to augment forest F ′ with
additional edges in order to improve its connectivity. In order to do this, we first
identify the terminal vertices in each tree T in F ′. This yields a new graph G+ that
has a super-vertex for each tree in F ′. We treat these super-vertices as terminals of
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another Steiner tree instance and run an adaptation of the primal-dual algorithm
for the prize-collecting Steiner tree problem (see, e.g., [Goemans and Williamson
1995]) in order to obtain a forest F ′′. The final forest is obtained by adding the
edges of F ′′ to the forest F ′.

In a nutshell, the main insight leading to the improved performance guarantee of
our algorithm in comparison to the result in [Gupta et al. 2003] is a more careful
bound of the cost of the edges that are added to F ′ in the second phase. The two-
phased combination of standard primal-dual Steiner forest algorithms is particularly
helpful in our analysis as it produces a very structured dual much like existing
primal-dual Steiner tree and forest algorithms do.

2. THE MINIMUM-COST STEINER FOREST PROBLEM

The first primal-dual algorithm for Steiner trees and forests were obtained by
Agrawal, Klein, and Ravi [Agrawal et al. 1995]. Their algorithm was later extended
to a larger class of network design problems by Goemans and Williamson [Goemans
and Williamson 1995]. In this paper we deliberately choose the viewpoint taken in
[Agrawal et al. 1995].

In the following we use AKR to refer to the algorithm in paper [Agrawal et al.
1995]. For notational convenience, we let R be the set of all terminals, i.e.

R =
⋃

(s,t)∈R

{s, t}.

Similarly, for a set U ⊆ V , we use R[U ] to denote the set of terminals that are
contained in U .

The primal-dual algorithm AKR constructs both a feasible primal and a feasible
dual solution for a linear programming formulation of the Steiner forest problem
and its dual, respectively. A standard integer programming formulation for the
Steiner forest problem has a binary variable xe for all edges e ∈ E. Variable xe

has value 1 if edge e is part of the resulting forest. We let U contain exactly those
subsets U of V that separate at least one terminal pair in R. In other words, U ∈ U
iff there is (s, t) ∈ R with |{s, t} ∩ U | = 1. The sets in U are also referred to as
Steiner cuts.

For a subset U of the vertices we also let δ(U) denote the set of those edges
that have exactly one endpoint in U . We then obtain the following integer linear
programming formulation for the Steiner forest problem:

min
∑

e∈E

ce · xe (IP)

s.t.
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ U

x integer

The linear programming dual of the LP-relaxation (LP) of (IP) has a variable yU

for all vertex sets U ∈ U . There is a constraint for each edge e ∈ E that limits the
total dual assigned to sets U ∈ U that contain exactly one endpoint of e to be at
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most ce.

max
∑

U∈U

yU (D)

s.t.
∑

U∈U :e∈δ(U)

yU ≤ ce ∀e ∈ E (1)

y ≥ 0

Algorithm AKR constructs a primal solution for (LP) and a dual solution for (D).
The algorithm has two goals:

Compute a feasible solution for the given Steiner forest instance. The algorithm
reduces the degree of infeasibility as it progresses.

Create a feasible dual solution of largest possible total value. AKR raises dual va-
riables of certain subsets of vertices at all times. The final dual solution is maximal
in the sense that no single set can be raised without violating a constraint of type
(1).

We think of an execution of algorithm AKR as a process over time and let xτ and
yτ be the primal incidence vector and feasible dual solution at time τ . We also use
F τ to denote the forest corresponding to xτ . Initially, we let x0

e = 0 for all e ∈ E
and y0

U = 0 for all U ∈ U . In the following we say that an edge e ∈ E is tight if the
corresponding constraint (1) holds with equality.

Assume that the forest F τ at time τ is infeasible. A terminal vertex v ∈ R is
active at time τ if v and its mate v̄, i.e., (v, v̄) ∈ R, are in different trees in the
forest F τ ; v is inactive otherwise. We use F̄ τ to denote the subgraph of G that
is induced by the tight edges for dual yτ . In order to avoid confusion between
connected components in F τ and those in F̄ τ , we reserve the term moat to refer to
a connected component in F̄ τ . A moat U of F̄ τ is active at time τ if U contains
an active terminal; U is inactive otherwise. Let Aτ be the set of all active moats in
F̄ τ at time τ . AKR raises the dual variables for all sets in Aτ uniformly at all times
τ ≥ 0.

Suppose now that two active moats U and U ′ collide at time τ in the execution
of AKR. In other words, F̄ τ contains a path P of tight edges between two active
terminals u ∈ U and u′ ∈ U ′. We then add path P to F τ and continue. U and U ′

are part of the same moat of F̄ τ ′

for τ ′ > τ .
Subsequently, we use Uτ (v) to refer to the moat in F̄ τ that contains vertex

v ∈ V at time τ . Similarly, we let Uτ (C) denote the moat in F̄ τ that contains the
connected component C ∈ F τ at time τ .

We define the age age(s, t) of a terminal pair (s, t) as the first time in AKR where
s and t are contained in the same moat, i.e. s and t are in the same connected
component of F̄ τ iff τ ≥ age(s, t). We define the age of a terminal v ∈ R as the
maximum age of any terminal pair that contains v, i.e.,

age(v) = max
(s,t)∈R,v∈{s,t}

age(s, t). (2)

Let F be the final forest computed by AKR(R). For a connected component C of
F , we then let age(C) = maxv∈R[C] age(v) be the age of C. The following is the
main theorem of [Agrawal et al. 1995]:
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Theorem 2.1. Suppose that algorithm AKR outputs a forest F with connected

components C and a feasible dual solution {yU}U∈U . We then have

c(F ) ≤ 2
∑

U∈U

yU − 2
∑

C∈C

age(C) ≤
(

2 − 1

k

)
· optR,

where optR is the minimum cost of a Steiner forest for the given input instance

with terminal set R.

In the discussion to follow, we may sometimes use primal-dual terminology to
describe the properties of AKR. In particular, we may sometimes say that an active
moat U of F̄ τ or a terminal contained in U loads an edge e ∈ E. This means that
AKR raises the dual yU for moat U and e ∈ δ(U). Similarly, U loads a path P if U
loads an edge on P . We also say that moat U inflicts load on edge e at time τ for
some τ ≥ 0 if moat U ∈ Aτ loads e. Finally, we say that terminals u, v ∈ R meet

at time τ ≥ 0 in a run of AKR if u and v are in the same moat U ∈ Aτ ′

iff τ ′ ≥ τ .

3. A STRICT ALGORITHM FOR MINIMUM-COST STEINER FOREST

This section is split into three major parts. First we show how to compute the
cost shares for each terminal pair (s, t) ∈ R. Subsequently we give our (2 + 2γ)-
approximate and (2 + 1/γ)-strict algorithm for Steiner forests. The section ends
with the strictness-analysis of the algorithm.

3.1 Computing cost-shares

We start by giving a precise definition of the strictness notion. For a forest F in
G, let G|F denote the graph resulting from contracting all trees of F . For vertices
u, v ∈ V , we also let cG(u, v) denote the minimum-cost of any u, v-path in G. In
[Gupta et al. 2003], Gupta et al. define the notion of β-strict algorithms for the
minimum-cost Steiner forest problem.

Definition 3.1. An algorithm A for the Steiner forest problem is β-strict if it
returns values χi for all (si, ti) ∈ R such that

(1)
∑

(si,ti)∈R χi ≤ optR, and

(2) cG|Fi
(si, ti) ≤ β · χi for all (si, ti) ∈ R where Fi is a Steiner forest for terminal

pairs R \ {(si, ti)} returned by A.

The algorithm to compute the cost shares χi for all terminal pairs (si, ti) ∈ R
differs slightly from the one presented in [Gupta et al. 2003]. We run AKR on input
graph G with terminal pairs R. For convenience, we use age(i) as a short for
age(si, ti).

For any time τ during the execution of the algorithm and for any active moat U ,
we arbitrarily designate a terminal rU ∈ R[U ] of maximum age as the beneficiary

of U . Then define an indicator variable δi
τ for all terminal pairs (si, ti) and for all

times τ ≥ 0:

δi
τ =





2 : Both, si and ti are beneficiaries at time τ < age(i)
1 : Exactly one of si and ti is a beneficiary at time τ < age(i)
0 : otherwise.
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G Graph for instance

c Costs on edges

R Set of terminal pairs
Rst Set of all terminals except pair (s, t)
F Steiner forest for instance defined by G, c and R

Fst Steiner forest for instance defined by G, c and Rst

G+ Graph obtained from G by identifying terminals in the same
connected component of Fst

F+ Forest in G+ whose connectivity increases with γ

Fst+ Forest obtained from Fst by adding the edges of F+

Cα Connected components of Fα for α ∈ {∅, st, +, st+}
Uτ

α(v) Moat containing terminal v at time τ in AKR run producing
Fα for α ∈ {∅, st, +, st+}

ageα(s′, t′) Age of terminal pair (s′, t′) at time τ in AKR run producing Fα

for α ∈ {∅, st, +, st+}

Table I. Summary of notation used in the algorithm description.

The cost-share of terminal pair (si, ti) is defined as

χi =

∫ τ∗

0

δi
τ dτ (3)

where τ∗ is the time at which AKR(R) finishes. Notice that our definition implies
that the total cost-share over all terminal pairs is equal to the objective function
value of the computed dual solution.

3.2 Adding strictness: A modified Steiner forest algorithm

Fix a terminal pair (s, t) ∈ R and let Rst = R\{(s, t)}. Analogous to the definition
of R, we define Rst as

⋃
(s′,t′)∈Rst

{s′, t′}. The new algorithm AKR2 first uses AKR

to compute a feasible Steiner forest Fst for terminal set Rst. The second phase
of the algorithm adds more paths to connect components of Fst that are close to
each other. Selecting paths carefully in this second phase yields a Steiner forest
Fst+ whose cost is only a constant factor worse than that of Fst and that satisfies
the necessary strictness properties. The notation used in the description of the
algorithm is summarized in Table I.

In the following description of the algorithm AKR2 we use F τ
α and F̄ τ

α in place of
the corresponding F τ and F̄ τ from Section 2 when the final forest produced by the
algorithm in discussion is Fα for α ∈ {∅, st,+, st+}. We also use yα to refer to the
dual solution computed at the same time and let ageα(s, t) be the age of terminal
pair (s′, t′) ∈ R in the corresponding run of AKR. Finally, Cα will be used to denote
the set of connected components of forest Fα for all α.

We now describe the algorithm AKR2 in greater detail. The algorithm works on
input Rst and has two phases:

Aerobic Phase. In this phase we first compute a feasible Steiner forest Fst for
the set of terminal pairs in Rst using AKR.

We now use Fst to create a new graph G+ = (V+, E+) from the original graph
G: For each connected component C of Fst, we identify the terminals in Rst[C].
In other words, we replace the set Rst[C] by a new vertex vC . Each edge (v, u) ∈
δ(Rst[C]) with v ∈ Rst[C] and u 6∈ Rst[C] is substituted by a new edge (vC , u)
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with cost cvu. Observe that this process may introduce loops and parallel edges.
Delete all loops and for each pair of neighboring vertices u, v ∈ V+ keep an edge of
minimum cost.

Anaerobic Phase. Define the budget bv of a vertex v ∈ V+ as

bv =

{
(2γ + 1) · agest(C) : v = vC for some C ∈ Cst

0 : otherwise
(4)

where γ is a parameter of value at least 1/2 that will be set later.
The goal of this phase is to compute a forest F+ in G+. The edges of F+ are

later added to the forest Fst in order to strengthen it. The algorithm we use to
compute F+ is similar to the prize-collecting Steiner tree algorithm introduced in
[Goemans and Williamson 1995]. As with algorithm AKR presented in Section 2 the
prize-collecting version described here starts with empty forests F 0

+ and F̄ 0
+. The

initial budget of each vertex v ∈ V+ is set to bv.
The crucial difference between this prize-collecting version of AKR and vanilla AKR

as defined in Section 2 is the definition of the set Aτ
+ of active moats at time τ ≥ 0.

Initially A0
+ is the set of all vertices v ∈ V+ with positive budget bC . The algorithm

then grows all moats in A0
+ uniformly and decreases their budgets at the rate of

growth. For τ ≥ 0 the set of active moats Aτ
+ is the set of connected components

of F̄ τ
+ with positive remaining budget.

As before, if two active moats U1 and U2 collide at some time τ ≥ 0 during the
execution of the algorithm, we add a tight path in between them to the current
forest F τ

+. The budget of the resulting moat U in F̄ τ
+ is the sum of the budgets of

moats U1 and U2.
The final forest Fst+ is now obtained from Fst by adding the edges of F+. Notice

that, by choosing a larger value for γ in (4), we obtain a higher initial budget for all
vertices in V+ that correspond to connected components of Fst. As a consequence
we therefore obtain a higher degree of connectivity in the forest F+ and hence also
in the forest Fst+. Choosing a value of at least 1/2 for γ will later enable us to
lower-bound the time of growth of a connected component in the anaerobic phase
of AKR2.

Lemma 3.2. The cost of the forest Fst+ computed by AKR2 on terminal set Rst

is at most

(2 + 2γ) · optRst

where optRst
is the cost of a minimum-cost feasible Steiner forest for terminal set

Rst.

Proof. Recall that whenever AKR(Rst) grows a moat U ∈ U there is a terminal
rU ∈ U of maximum age that is the beneficiary of this growth. For a connected
component C of Fst, we then let

UC = {U ∈ U : rU ∈ R[C]}
be the set of moats whose beneficiary is a terminal in C.

Observe that the age of a component C ∈ Cst is defined as the maximum age
agest(s

′, t′) of any terminal pair (s′, t′) whose vertices are spanned by C (see (2)).
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Improved Approximation for Multicommodity Rent-or-Buy · 9

s s1 t1 s2 t2 sq tq t

4 2 2 + ǫ 22 + ǫ 2 4

Fig. 1. The figure shows an example Steiner forest instance with q + 1 terminal pairs. The label

next to each of the edges is the cost of the edge. The thick edges in the figure depict the Steiner
forest Fst computed by AKR for the instance with terminal pairs Rst = {(s1, t1), . . . , (sq , tq)}. The
grey disks in the figure represent the dual solution computed by AKR(Rst).

This implies that AKR(Rst) grows at least two active moats in UC at all times prior
to time agest(C) and hence

2γ · agest(C) ≤ γ ·
∑

U∈UC

yst
U

for all C ∈ Cst. The argument used in the proof of Theorem 2.1 shows

c(F+) ≤ 2 ·
∑

U⊆V+

y+
U = 2 ·

∑

C∈Cst

(2γ + 1) · agest(C) ≤

2γ ·
∑

C∈Cst

∑

U∈UC

yst
U + 2 ·

∑

C∈Cst

agest(C).

Now observe that the sets {UC}C∈Cst
are pairwise disjoint and hence

c(F+) ≤ 2γ ·
∑

U∈U

yst
U + 2 ·

∑

C∈Cst

agest(C). (5)

From Theorem 2.1 we know that

c(Fst) ≤ 2 ·
(
∑

U∈U

yst
U −

∑

C∈Cst

agest(C)

)
(6)

and adding inequalities (5) and (6) gives

c(Fst+) = c(Fst) + c(F+) ≤ (2 + 2γ) ·
∑

U∈U

yst
U .

The lemma follows from weak duality and from the fact that yst is feasible dual
solution for (D) with respect to the Steiner forest instance induced by the terminal
pairs in Rst.

Much of the discussion in the remainder of this paper will try to formalize a
relationship between the execution of AKR on terminal set R and that of AKR2 on
Rst. In our discussion of AKR2 we will sometimes say that the algorithm grows a
connected component C ∈ Fst when we really mean that it grows the super-vertex
vC .

4. ANALYZING THE STRICTNESS OF ALGORITHM AKR2

Before analyzing the strictness of Algorithm AKR2, let us develop some intuition for
this notion using some concrete examples.

ACM Transactions on Computational Logic, Vol. V, No. N, February 2007.



10 · L. Becchetti et al.

s s1 t1 s2 t2 sq tq t

5 2

C1

4 + ǫ 2

C2

4 + ǫ 2

Cq

5

Fig. 2. This figure shows yet another instance of the Steiner forest problem. The thick edges

in the figure show the feasible Steiner forest Fst+ for terminal pairs Rst = {(s1, t1), . . . , (sq , tq)}
output by AKR2(Rst). The light-grey, small disks show the dual computed by AKR(Rst). The dark,
big disks represent the dual computed by the anaerobic phase of AKR2.

4.1 Intuition

The first example in Figure 1 demonstrates that AKR together with the cost-shares
defined in Section 3.1 is not O(1)-strict. The instance given in this example has
terminal pairs

R = {(s, t), (s1, t1), . . . , (sq, tq)}.
Edge-costs are depicted as labels on the edges. Recall that Rst = R \ {(s, t)}. The
thick edges in the figure show the output forest Fst computed by AKR(Rst) and
the disks in the figure visualize the corresponding feasible dual computed by the
algorithm.

Clearly, the forest output by AKR(R) is the whole path connecting s and t. The
age age(i) of terminal pair (si, ti) is 1 for all 1 ≤ i ≤ q. The age of terminal pair
(s, t) is

3 +
q − 1

2
· ǫ ≈ 3.

The cost-share χst of terminal pair (s, t) is therefore equal to 2 · age(0) ≈ 6 which,
in Figure 1, corresponds to the total cost of the segments on the s, t-path that are
not covered by any of the grey disks.

Notice that the distance between s and t in the graph G|Fst obtained from the
original graph by contracting the edges of the forest Fst is 8 + (q − 1)(2 + ǫ). The
strictness of AKR with the cost-shares from Section 3.1 is therefore at least

8 + (q − 1)(2 + ǫ)

3 + q−1
2 · ǫ

≈ 8

3
+

2

3
· (q − 1)

which is an unbounded function of q.
The main insight taken from the example in Figure 1 is that large parts of the

minimum-cost path connecting s and t in graph G|Fst may be covered (or hidden) by
grey disks. Terminal pair (s, t) does not obtain cost-share for these hidden segments,
the shortest s, t-path in G|Fst may, however, pass through these disks. Algorithm
AKR2 deals with exactly this problem by growing the connected components of Fst

further in the anaerobic phase. Indeed, it can be seen that the forest Fst+ output
by AKR2 for γ ≥ 1/2 is the unique s1, tq-path in the instance shown in Figure 1.
The cost of connecting s and t in the graph obtained from contracting the edges of
this forest is 8.

Figure 2 shows yet another example on the same set of terminal pairs. Running
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AKR on the instance with all terminal pairs yields age(i) = 1 for 1 ≤ i ≤ q and

age(0) = 4 +
2 + ǫ

2
· (q − 1) ≈ 4 + (q − 1).

The cost-share χst of (s, t) is thus roughly 8 + 2(q − 1).
Let Ci be the connected component containing si and ti in Fst. The dark grey

disks in the Figure represent the duals computed during the anaerobic phase of
AKR2(Rst) with γ = 1/2. The forest Fst+ computed during this run is given by the
thick edges in Figure 2. The cost of connecting s to t in G|Fst+ is

10 + (4 + ǫ) · (q − 1) ≈ 10 + 4(q − 1)

and this is less than 2χst.
As in the first example, the cost-share of (s, t) corresponds to the cost of those

segments of the s, t-path in Figure 2 that are not covered by the light, small disks.
Notice that the parameter γ in (7) controls the width of the dark grey ring centered
at terminal v ∈ {s1, t1, s2, t2, . . . , sq, tq}. In particular, choosing γ = 1/2 in the
example above yields a budget of

bCi
= (2γ + 1)age(Ci) = 2

for connected component Ci for all 1 ≤ i ≤ q. In other words, the dark grey ring
centered at si (or ti) has width 1 in the example.

The total width of all grey rings is a lower-bound on the cost-share of terminal
pair (s, t). We think of the dark-grey ring enclosing a component Ci as the part of
the cost-share of χst that Ci reserves in order to pay for those segments on the s, t-
path in G|Fst+ that are covered by the dark and light-grey rings around component
Ci.

The intuition given in this section is clearly oversimplifying. In particular, the
total width of all dark-grey rings may not be an accurate lower-bound on the cost-
share of (s, t). There are two main reasons for this inaccuracy. First, the cost-share
of (s, t) may not be 2 · age(s, t).

Definition 4.1. Let (s, t), (s′, t′) ∈ R be two terminal pairs with age(s, t) ≤
age(s′, t′). We say that terminal v ∈ {s, t} interferes with v′ ∈ {s′, t′} if there is
an active moat U ∈ Aτ for some 0 ≤ τ < age(s, t) during the execution of AKR(R)
that contains both v and v′ and the beneficiary of U is v′.

Clearly, if the cost-share of (s, t) is smaller than 2 · age(s, t), then s and t must
interfere with some other terminals. Secondly, even if the cost-share of (s, t) is
2 · age(s, t), χst may be much smaller than the total width of all dark-grey rings.

Definition 4.2. Consider the anaerobic phase of AKR2. A component C ∈ Cst

captures a vertex v ∈ V+ if, for some time τ ≥ 0, there is an active moat U ∈ Aτ
+

that contains both the super-vertex vC for C and v.
We also say that a connected component C of Fst+ captures v if there is a

connected component C ′ of Fst that captures v and C ′ ⊆ C.

Consider Figure 2. If Ci captures s then s is covered by the dark-grey moats
cantered at si and ti. Clearly, in this case, the total width of all dark-grey rings is
not a good lower-bound on χst. We will deal with the above two problems in the
next section.
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4.2 Outline of analysis

Now consider a general instance of the Steiner forest problem with terminal set R
and let (s, t) be an arbitrary pair in R. Recall that Rst = R \ {(s, t)} and let F
denote the forest computed by AKR on input R. As before we let Fst+ be the forest
computed by AKR2 on input Rst. As in Section 1 we use G|Fst+ to denote the graph
obtained from G by contracting the connected components of forest Fst+. In order
to prove that AKR2 is β-strict we need to show that

cG|Fst+
(s, t) ≤ β · χst. (7)

Let Pst be the unique s, t-path in the forest F . Notice that the path Pst may
enter and leave a connected component of Fst+ multiple times. We can then remove
all loops and obtain a path P in G|Fst+ that enters and leaves each component of
Fst+ at most once.

The rough outline is as follows: The cost of P in G|Fst+ is at least cG|Fst+
(s, t).

We will show that

cG|Fst+
(P ) ≤ β · χst

where cG|Fst+
(P ) is the cost of path P in the graph G|Fst+ and this implies (7)

since cG|Fst+
(s, t) ≤ cG|Fst+

(P ).
In the following, we assume that C1, . . . , Cp are the components of Fst+ that

contain vertices of P in order of non-decreasing distance from s. Since P is loop-
less in G|Fst+ it follows that each connected component of Fst+ occurs at most
once in this list. We also assume that s and t are not part of

⋃p
i=1 Ci.

The next section presents a lower-bound of the cost-share χst of the cost-share
of terminal pair (s, t). In particular we will relate this cost-share to the length of
path P in G|Fst+.

4.3 A lower-bound of χst

In the following we let

Ust = {U ∈ U : {s, t} ∩ U = ∅}

be the set of Steiner cuts in G that do not contain s or t. Recall that y denotes the
dual solution computed by AKR(R). For an edge e ∈ E, we define the residual cost

c̄e as

c̄e = ce −
∑

U∈Ust,e∈δ(U)

yU . (8)

Using the examples in Section 4.1, the residual cost of an edge e on path P corre-
sponds to the cost of the segment of e that is not hidden by light-grey disks. In
other words, c̄e is the potential cost-share that s and t gain from edge e.

For a connected component Ci of Fst+ on path P , define P s
i and P t

i as the s, Ci-
segment and the Ci, t-segment of P , respectively. Define an indicator variable lτi,u
for all times τ ≥ 0, for all 1 ≤ i ≤ p and for all u ∈ {s, t}, and let its value be
1 if there is an active moat U ∈ Ust at time τ in AKR that loads Pu

i , and whose
beneficiary rU is in Ci. Let lτi,u = 0 otherwise. Define hi,s and hi,t to be the cost
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of the two hidden segments of P inside Ci, i.e.

hi,u =

∫ τ∗

0

lτi,udτ (9)

for u ∈ {s, t} and let hi = max{hi,s, hi,t}. In Figure 2, hi,s and hi,t correspond to
the radii of the light-grey disks centered at si and ti, respectively. We also say that
hi,u is the total load of active moats intersecting Ci on path Pu

i . We immediately
obtain the following observation:

Lemma 4.3. Let 1 ≤ i ≤ p and u ∈ {s, t} and assume that u meets the first

terminal from Ci at time τ in AKR(R).Then we must have hi,u ≤ τ . In particular

this means that hi ≤ age(s, t) for all 1 ≤ i ≤ p.

Proof. Observe that any active moat U ∈ Uτ ′

for τ ′ ≥ τ that has a non-empty
intersection with Cu

i and also intersects Pu
i must contain u. Therefore, U cannot

be in Ust and hence lτ
′

i,u = 0.

We can now express the cost of path P in G|Fst+ as

cG|Fst+
(P ) = c̄(P ) +

p∑

i=1

(hi,s + hi,t). (10)

The following main technical lemma relates χst to cG|Fst+
(P ). Its proof will be

presented in Section 5.

Lemma 4.4. Let I be the set of indices of components on P that contain termi-

nals that interfere with s or t, i.e.

I = {i ∈ {1, . . . , p} : ∃v′ ∈ Ci that interferes with {s, t}}.
For γ ≥ 1/2, we must have

χst ≥
1

2
· sl + γ ·

∑

1≤i≤p,i 6∈I

(hi,s + hi,t) (11)

where the slack in the residual cost c̄(P ) is defined as

sl = max



0, c̄(P ) +

(
∑

i∈I

(hi,s + hi,t)

)
− 2γ ·

∑

1≤i≤p,i 6∈I

(hi,s + hi,t)



 .

4.4 The strictness of AKR2

Intuitively, Inequality (11) in Lemma 4.4 shows that terminal pair (s, t) obtains
at least γ · (hi,s + hi,t) units of cost-share for connected component Ci of forest
Fst+ for all 1 ≤ i ≤ p, i 6∈ I. Figure 3 shows such a connected component. As
in Section 4.1, the dark grey rings represent (a lower-bound on) the component’s

growth in the anaerobic phase of AKR2(R̃). The rough idea of the following strictness
proof is to use γ · (hi,s + hi,t) of the cost-share χst for the stretch of P of length
(2γ + 1)(hi,s + hi,t) that is covered by dark and light grey disks in the figure.

Lemma 4.5. Algorithm AKR2 is (2 + 1/γ)-strict for γ ≥ 1/2.
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Ci

Cs
i Ct

i

hi,s hi,t2γ · hi,s 2γ · hi,t

Fig. 3. Connected component Ci on path P together with its budget reservation on P .

Proof. Using equation (10) and the definition of slack in Lemma 4.4 we obtain

cG|Fst+
= c̄(P ) +

p∑

i=1

(hi,s + hi,t)

≤ (2γ + 1)




∑

1≤i≤p,i 6∈I

(hi,s + hi,t)


+ sl. (12)

On the other hand Lemma 4.4 yields that the cost-share of terminal pair (s, t) is
at least

γ ·




∑

1≤i≤p,i 6∈I

(hi,s + hi,t)


+

sl

2
. (13)

We will now prove the claimed strictness bound of AKR2 by comparing expressions
(12) and (13) in a term-by-term fashion. First, we clearly have sl ≤ (2+1/γ)·(sl/2)
for γ ≥ 1/2. Secondly, observe that

(2γ + 1)hi,u = (2 + 1/γ) · γ · hi,u

for all 1 ≤ i ≤ p, i 6∈ I and for u ∈ {s, t} and this finishes the strictness proof.

Lemma 3.2 and Lemma 4.5 imply the following main theorem 1.1:

Theorem. There is a polynomial-time (2 + 2γ)-approximate and (2+1/γ)-strict
algorithm for the minimum-cost Steiner forest problem for any γ ≥ 1/2.

5. A GENERAL LOWER-BOUND ON THE COST-SHARE χST

In this section we will present the proof of Lemma 4.4. In order to do this, we will
need to compare the execution of AKR on terminal set R with the anaerobic phase
of AKR2(Rst).

5.1 Comparing AKR(R) and AKR2(Rst)

The execution of AKR2(Rst) crucially depends on the budgets bv of vertices in V+.
Thus, it also depends on AKR(Rst). The following Lemma compares the ages of
terminal pairs in AKR(R) and AKR(Rst). Recall that Uτ (v) and Uτ

st(v) are the moats
containing terminal v at time τ in AKR(R) and AKR(Rst), respectively.
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Lemma 5.1. For all τ ≤ age(s, t) and for all terminals v ∈ Rst: Uτ
st(v) ⊆ Uτ (v).

Moreover, if Uτ (v) ∩ {s, t} = ∅, then Uτ
st(v) = Uτ (v).

Proof. We prove the lemma by induction over time τ . At time τ = 0 we have
Uτ

st(v) = Uτ (v) for all v ∈ Rst and thus the induction hypothesis clearly holds.
Assume the induction hypothesis holds at time 0 ≤ τ < age(s, t). We will show

that it remains true at time τ + ǫ for any small ǫ > 0.
Consider the case Uτ (v) ∩ {s, t} = ∅ and thus Uτ

st(v) = Uτ (v). That is, Uτ
st(v)

is active at time τ iff Uτ (v) is active at that time. Then Uτ+ǫ
st (v) = Uτ+ǫ(v) if

Uτ+ǫ(v) ∩ {s, t} = ∅ and Uτ+ǫ
st (v) ⊆ Uτ+ǫ(v) otherwise.

Now assume Uτ (v) ∩ {s, t} 6= ∅ and thus Uτ
st(v) ⊆ Uτ (v). Clearly, Uτ+ǫ(v) ∩

{s, t} 6= ∅. Since τ < age(s, t), terminals s and t are active at time τ and thus
Uτ (v) is active at time τ . It follows that Uτ+ǫ

st (v) ⊆ Uτ+ǫ(v).

Corollary 5.2. Consider a terminal v ∈ Rst. If v is active at time τ <
age(s, t) in AKR(R) then v must be active until time at least τ in AKR(Rst).

Recall that V+ is the set of vertices of graph G+ used in the anaerobic phase of
AKR2. For a subset U of V+, we let Ū be the set obtained from U by replacing each
super vertex vC ∈ U by the set of terminals R[C] that are contained in C.

Lemma 5.3. Consider a terminal v ∈ Rst that is active at time 0 ≤ τ < age(s, t)
in AKR(R). Let C ∈ Cst be the connected component of Fst that contains v and let

vC ∈ V+ be the corresponding super node in G+. If Uτ (v) does not contain s or t
then Uτ (v) ⊆ Ūτ

+(v).

Proof. The proof is by induction on the time τ . The claim is true at time τ = 0
as the set of active moats in AKR(R) is the set of terminal vertices in R.

Consider an active terminal pair (v, u) ∈ Rst at time 0 ≤ τ < age(s, t) in AKR(R).
Lemma 5.1 shows that Uτ

st(v) = Uτ (v) and hence v is active at time τ in AKR(Rst)
as well. This implies that the age of (u, v) in AKR(Rst) is bigger than τ .

Let C be the connected component of forest Fst that contains u and v and let
vC ∈ V+ be the corresponding super node in graph G+. Using the induction
hypothesis, we know that Uτ (v) ⊆ Ūτ

+(vC). The initial budget bvC
of vertex vC is

at least

(2γ + 1)agest(u, v) > (2γ + 1)τ

as u and v are active at time τ in AKR(Rst). Therefore the moat Uτ
+(vC) must have

positive remaining budget at time τ in the anaerobic phase and it is active. The
inductive hypothesis must therefore be true for terminal v at time τ + ǫ for some
small positive ǫ.

5.2 Observations: Interfering terminals

The observation presented in this section are corollaries of Lemma 5.3. They provide
a useful characterization of the possible location of interfering terminals in the forest
Fst+.

Corollary 5.4. Let u′ be a terminal that interferes with u ∈ {s, t} and assume

that u and u′ meet at time τ < age(s, t) in AKR(R). Let C ′ ∈ Cst be the connected

component of Fst containing u′ and let vC′ ∈ V+ be the corresponding vertex of G+.
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The total dual value assigned to moats that contain both u and vC′ in the anaerobic

phase of AKR2(Rst) must be at least (2γ + 1) · age(s, t) − 2τ , i.e.
∑

U⊆V+,{u,v
C′}⊆U

y+
U ≥ (2γ + 1) · age(s, t) − 2τ.

Proof. Let Pu′ be the path that is added in AKR(R) when u and u′ meet at time
τ < age(s, t). Lemma 5.3 shows that Uτ (v) ⊆ Ūτ

+(vC′). Lemma 5.3 also implies
that the total load on path Pu′ until time τ in the anaerobic phase of AKR2(Rst) is
at least c(Pu′) − τ .

Finally, as in the proof of Lemma 5.3 we observe that the remaining budget of
vertex vC′ at time τ in the anaerobic phase of AKR2(Rst) is at least

(2γ + 1) · age(s, t) − τ

which is at least τ by our choice of γ. This implies that u ∈ U2τ
+ (vC′) and the

lemma follows.

The following corollary is implicit in the proof of Corollary 5.4.

Corollary 5.5. Let u1 and u2 be terminals that interfere with u ∈ {s, t}. They

both capture u by time 2 · age(s, t) in the anaerobic phase of AKR2(Rst) and there

must exist a connected component C in Fst+ with {u1, u2} ⊆ Rst[C].

Proof. Let τi < age(s, t) be the time at which u and ui meet in AKR(R) for
i ∈ {1, 2}. Let Ci ∈ Cst be the connected component of Fst containing ui for
i ∈ {1, 2}. The proof of Corollary 5.4 shows that u is contained in U2τi

+ (vCi
) for all

i ∈ {1, 2}. Our choice of γ ≥ 1/2 in the budget definition (4) ensures that both u1

and u2 are active at time 2 · age(s, t) ≥ 2τi for all i ∈ {1, 2} and hence, they must
be in the same connected component of Fst+.

Let u′ be a terminal that interferes with u ∈ {s, t}. We say that u′ is on P if the
path that is added when u and u′ meet in AKR(R) is part of P .

Corollary 5.6. Let u′ be a terminal on P that interferes with u ∈ {s, t} and

let C ′ ∈ Cst be the connected component of Fst that contains u′. Then {s, t} ⊆
U

2·age(s,t)
+ (vC′) and there is a connected component Cm for 1 ≤ m ≤ p that

contains all interfering terminals.

Proof. Corollary 5.2 implies that the initial budget of vC′ is at least

(2γ + 1)agest(u
′) ≥ (2γ + 1)age(s, t)

and the right-hand side is at least 2 · age(s, t) by our choice of γ.
As u′ and u interfere, Uτ (u′) intersects P for some τ < age(s, t). Let Ps and

Pt be the s, Uτ (u′)- and Uτ (u′), t-segments of P , respectively. Lemma 5.3 implies
that, for all u ∈ {s, t}, the total dual load on path Pu at time age(s, t) in the

anaerobic phase of AKR2(Rst) is at least c(Pu)− age(s, t). Moat U
age(s,t)
+ (vC′) has

at least age(s, t) remaining budget. Lemma 5.3 shows that Ū
age(s,t)
+ (vC′) contains

Uage(s,t)(u′). Therefore we must have {s, t} ⊆ U
2·age(s,t)
+ (vC′).

Notice that this implies that u′ captures s and t before time 2 · age(s, t) in the
anaerobic phase of AKR2(Rst). Corollary 5.5 implies that all interfering terminals
for s and t must be contained in the same connected component of Fst+.
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In the case of interfering terminals on P we will from now on use Cm to denote
the connected component of Fst+ that contains all interfering terminals.

5.3 Observations: Insufficient residual cost

Suppose that one or more connected components of the forest Fst capture s or t
during the aerobic phase of AKR2(Rst). In other words, the moats around these
components grow beyond s or t in the anaerobic phase. Let Cr be such a connected
component of Fst and assume that it captures u ∈ {s, t}. We can then show that
the cost of path Pu

r in G|Fst+ is at least the total budget of all components on Pu
r

excluding Cr itself.

Lemma 5.7. Let u ∈ {s, t} and assume that Cr for 1 ≤ r ≤ p is a connected

component of Fst+ on P that captures u. Let K be the index set of connected

components on Pu
r excluding Cr that capture u. Furthermore, let M be the set of

indices of those components on Pu
r that do not capture u. We must have

cG|Fst+
(Pu

r ) ≥ (2γ + 1) ·
∑

i∈K∪M

(hi,s + hi,t).

Proof. For ease of notation and w.l.o.g. we now assume that u = s. We first
consider components Ci with i ∈ M. Such a component dies in the anaerobic
phase of AKR2(Rst) before any other component on P reaches it. In other words,
the components in M exhaust their budget without capturing either s or t. The
components C1, . . . , Cq in the example in Figure 2 are such components; the area
covered by the dark- and light-grey rings for these components is part of the s, t-
path P . An application of Lemma 5.3 shows that the total dual load on path P
from components Ci for i ∈ M is at least (2γ + 1)(hi,s + hi,t).

For ease of notation renumber the components such that

K = {1, . . . , r − 1}
and such that Ci+1 captures s after Ci for all 1 ≤ i < r.

Consider component Ci for 1 ≤ i < r. Ci must be dead at the time τ at which
Ci+1 captures it in AKR2(Rst) since otherwise Ci and Ci+1 would be part of the
same connected component of Fst+.

This has two consequences: first, component Ci loads the Ci, Ci+1-segment of P
until its budget runs out. The argument in Lemma 5.3 shows that the dual load of
Ci on the Ci, Ci+1-segment of P is at least

(2γ + 1)min{hi,s, hi,t}.
Second, the component Ci must be dead when it is captured by Ci+1. Thus, the
load of Ci+1 on the Ci, Ci+1-segment of P is at least

(2γ + 1)max{hi,s, hi,t}.
This means that the cost of path P s

r in G|Fst+ is at least

(2γ + 1) ·
∑

i∈K∪M

(hi,t + hi,s).

The lemma follows.
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Let Lu be the set of indices of connected components that capture u ∈ {s, t}.
We then define

L = {max
l∈Ls

l, min
q∈Lt

q}.

For ease of notation we also define K = (Ls ∪Lt) \ L. Finally, we let M be the set
of indices of connected components of Fst+ on P that do not capture either s or t.
Observe that this means that {l + 1, . . . , q − 1} ⊆ M in the case where L = {l, q}
with 1 ≤ l < q ≤ p.

In the following corollary, we use hL as a short for hl,s + hq,t and let

hi
L = hl,t + hq,s

if L = {l, q} for 1 ≤ l < q ≤ p and hi
L = 0 otherwise.

Corollary 5.8. With the notation defined above, we must have

2γ ·
(

hi
L +

∑

i∈K∪M

(hi,s + hi,t)

)
≤ c̄(P ) + hL.

Proof. Lemma 5.7 implies that

(2γ + 1) ·
(

hi
L +

∑

i∈K∪M

(hi,s + hi,t)

)
≤ cG|Fst+

(P ).

Subtracting
∑

i∈K∪M(hi,s + hi,t) on both sides yields

(2γ + 1)hi
L + 2γ ·

∑

i∈K∪M

(hi,s + hi,t) ≤ c̄(P ) +
∑

i∈L

(hi,s + hi,t). (14)

Adding hL −∑i∈L(hi,s + hi,t) to both sides of (14) finishes the proof.

5.4 A general lower-bound for χst

We are now ready to give a proof of Lemma 4.4. We restate the lemma here for
completeness.

Lemma. Let I be the set of indices of components on P that contain terminals

that interfere with s or t, i.e.

I = {i ∈ {1, . . . , p} : ∃v′ ∈ Ci that interferes with {s, t}}.
For γ ≥ 1/2, we must have

χst ≥
1

2
· sl + γ ·

∑

1≤i≤p,i 6∈I

(hi,s + hi,t)

where the slack in the residual cost c̄(P ) is defined as

sl = max



0, c̄(P ) +

(
∑

i∈I

(hi,s + hi,t)

)
− 2γ ·

∑

1≤i≤p,i 6∈I

(hi,s + hi,t)



 .

Proof. We know from Corollary 5.6 that I is either empty or consists of index
m only (in the case where there are interfering terminals on P ). We subdivide the
argument into two parts depending on the existence of interfering terminals that
are on path P .
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Interfering terminals on P . Corollary 5.6 shows that there exists an index m ∈
{1, . . . , p} such that Cm contains all terminals that interfere with s or t. Consider
u ∈ {s, t} and let τu ≤ age(s, t) be the time in AKR(R) when u meets the first
interfering terminal in R[Cm]. Lemma 4.3 shows that

hm,u ≤ τu

for u ∈ {s, t}.
Observe that definition (8) implies that the residual cost of P is exactly τs + τt.

Corollary 5.6 shows that there are no interfering terminals for s and t outside Cm.
Hence,

χst = τs + τt = c̄(P ) ≥ hm,s + hm,t. (15)

As in Corollary 5.8 we let K be the index set of components that capture s or t
excluding m. We also let M be the set of indices of components on P that do not
capture s or t. Corollary 5.8 implies that

c̄(P ) + hm,s + hm,t ≥ 2γ ·
∑

i∈K∪M

(hi,s + hi,t). (16)

In the case of interfering terminals on P , the definition of slack reduces to

sl = max

{
0, c̄(P ) + (hm,s + hm,t) − 2γ ·

∑

i∈K∪M

(hi,s + hi,t)

}

as I ∪M = {1, . . . ,m − 1,m + 1, . . . , p}. In other words, sl is precisely the slack
in inequality (16). Hence, (15) and (16) imply

χst ≥
c̄(P ) + hm,s + hm,t

2
=

1

2
·
(
sl + 2γ ·

∑

i∈K∪M

(hi,s + hi,t)

)

and this finishes the proof in the case of interfering terminals on P .

No interfering terminals on P . In the following we use vs and vt to denote
terminals that interfere with s and t, respectively. Similarly, we let Cs and Ct be
connected components of Fst that contain vertices vs and vt.

Corollary 5.5 shows that we need to consider only two cases: In the two-sided
case, both s and t see interference from distinct terminals vs and vt. Notice that
Cs 6= Ct in this case since otherwise Cs = Ct would be on P . In the one-sided case,
only one of s and t sees interference.

[Case 1: Two-sided interference] Let τs and τt be the times when s meets vs and
when t meets vt, respectively, in AKR(R). Let Pvs

and Pvt
be the respective paths

that AKR adds at these times. Corollary 5.4 shows that the combined load from Cs

and Ct on 〈Pvs
, P, Pvt

〉 is at least

(4γ + 2) · age(s, t) ≥ (2γ + 1) · c̄(P ). (17)

Define sets Lu for u ∈ {s, t} as in Corollary 5.8 and consider set Ci for i ∈ Lu.
W.l.o.g. assume that u is the first vertex in {s, t} that is captured by Ci. Now
observe that u and Ci meet at a time τ ≤ age(s, t) in AKR(R). An argument similar
to that used in the proof of Corollary 5.4 therefore shows that Ci captures u by
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time 2 · age(s, t) in the anaerobic phase. Corollary 5.5 shows that vu captures u by
time 2 · age(s, t) as well. As Cu is not on P , this must mean that Ci is dead when
Cu captures u.

Hence component Ci must have extended fully in the anaerobic phase of AKR2(Rst)
for all 1 ≤ i ≤ p before either Cs or Ct reach it in the anaerobic phase. A careful look
at Corollary 5.4 shows that the load in (17) is inflicted before time (2γ+1)·age(s, t)
in the anaerobic phase and thus, both Cs and Ct are active at this time.

Therefore the load in (17) has to be at most

cG|Fst+
(P )+2τs+2τt−(2γ+1)·

p∑

i=1

(hi,s+hi,t) = c̄(P )+2τs+2τt−2γ ·
p∑

i=1

(hi,s+hi,t).

Solving for τs + τt gives

τs + τt ≥
1

2
· c̄(P ) + γ ·

p∑

i=1

(hi,s + hi,t).

Observing that χst = τs + τt concludes the proof in Case 1.
[Case 2: One-sided interference] We assume, w.l.o.g., that there is no terminal

vt that interferes with t. As before let τs denote the time when s meets the first
interfering terminal vs in AKR(R). Since t sees no interference in AKR(R), we have

χst = age(s, t) + τs =
1

2
· c̄(P ) + τs. (18)

We again let Cs be the connected component of Fst that captures s. Let Ci for
1 ≤ i ≤ p be a connected component of Fst+ on path P . Component Ci must be
dead when Cs captures it during the anaerobic phase of AKR2(Rst) since otherwise
Cs would be on path P as well. In other words, Ci must have finished its budget-
growth phase by the time Cs reaches it in the anaerobic phase.

In the following we let L = {l, q} with 1 ≤ l ≤ q ≤ p. Consider the case where
l < q and hence L contains exactly two indices. Observe that Cl captures s by time
2 · age(s, t) in this case. Otherwise Cl would also capture Cq and this contradicts
the assumption l 6= q. Corollary 5.4 shows that Cs captures s by time 2 · age(s, t)
as well. As before, this implies that Cl is dead by the time Cs captures s.

Lemma 5.7 shows that

(2γ + 1) ·
p∑

i=q+1

(hi,s + hi,t) ≤ cG|Fst+
(P t

q ). (19)

Let Pvs
be the path that is added in AKR(R) when s and vs meet and let P ′ =

〈Pvs
, P s

q 〉 be the concatenation of Pvs
and P s

q .
Assume first that Cs captures Cq. This means that Cq is dead when the moats

containing Cs and Cq meet in the anaerobic phase of AKR2(Rst). Therefore, the
dual load of Cs on path P ′ is at least bq. The total load coming from super-vertices
contained in sets {Ci}1≤i≤q and from Cs on path P ′ is bounded by cG|Fst+

(P s
q )+2τs.

These observations imply

(2γ + 1) ·
q∑

i=1

(hi,s + hi,t) ≤ cG|Fst+
(P s

q ) + 2τs. (20)
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On the other hand assume that Cs does not capture Cq. Cq may still capture s
but this must happen after Cs is dead and hence at a time later than

(2γ + 1) · age(vs) ≥ (2γ + 1) · age(s, t)

in the anaerobic phase. In other words, Cs and Cq are contained in different moats

in A
(2γ+1)age(s,t)
+ . Hence

2 · (2γ + 1) · age(s, t) + (2γ + 1) ·
∑

1≤i<q

(hi,s + hi,t) ≤ cG|Fst+
(P s

q ) + 2τs.

Lemma 4.3 implies that (hq,s+hq,t) ≤ 2·age(s, t) and the above inequality therefore
yields

(2γ + 1) ·
∑

1≤i≤q

(hi,s + hi,t) ≤ cG|Fst+
(P s

q ) + 2τs. (21)

Inequalities (19), (20), and (21) imply that (2γ+1)·∑p
i=1(hi,s+hi,t) ≤ cG|Fst+

+2τs

and hence

2γ ·
p∑

i=1

(hi,s + hi,t) ≤ c̄(P ) + 2τs.

It can be seen that (18) together with the definition of slack sl implies

χst ≥ γ ·
p∑

i=1

(hi,s + hi,t) +
sl

2

and the lemma follows.
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