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Abstract

In the multicommodity rent-or-buy (MROB) network
design problem we are given a network together with
a set of k terminal pairs (s1, t1), . . . , (sk, tk). The goal
is to provision the network so that a given amount of
flow can be shipped between si and ti for all 1 ≤ i ≤ k
simultaneously. In order to provision the network one
can either rent capacity on edges at some cost per unit
of flow, or buy them at some larger fixed cost. Bought
edges have no incremental, flow-dependent cost. The
overall objective is to minimize the total provisioning
cost.

Recently, Gupta et al. [8] presented a 12-
approximation for the MROB problem. Their algorithm
chooses a subset of the terminal pairs in the graph at
random and then buys the edges of an approximate
Steiner forest for these pairs. This technique has previ-
ously been introduced [9] for the single sink rent-or-buy
network design problem.

In this paper we give a 6.828-approximation for the
MROB problem by refining the algorithm of Gupta et
al. and simplifying their analysis. The improvement in
our paper is based on a more careful adaptation and
simplified analysis of the primal-dual algorithm for the
Steiner forest problem due to Agrawal, Klein and Ravi
[1]. Our result significantly reduces the gap between the
single-sink [9] and multi-sink case.

1 Introduction

In the multi-commodity rent-or-buy problem (MROB)
we are given an undirected graph G = (V, E), terminal
pairs R = {(s1, t1), . . . , (sk, tk)}, non-negative costs ce

for all edges e ∈ E, and a parameter M ≥ 0. The goal
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is to select a set of bought edges Fb and a set of of rented

edges Fr, respectively, such that for all (s, t) ∈ R, we
can ship a given amount of flow from s to t using the
edges in Fb ∪ Fr. The cost of a bought edge e ∈ Fb is
M · ce. A rented edge e ∈ Fr costs ce · λ(F, e) where
λ(F, e) denotes the total flow traversing edge e. The
aim is to find a feasible solution of smallest total cost.

The MROB problem generalizes the single-

commodity rent-or-buy problem (SROB). Here we are
again given an undirected network together with rental
and buying costs on all edges e ∈ E as before. We are
also given a set of terminal nodes and a root node r.
The goal is now to provision the network such that all
terminals can send a specified amount of flow to the
root node r simultaneously. A recent result of Gupta
et al. [9] gives a 3.55 approximation algorithm for the
problem.

Awerbuch and Azar [2] and Bartal [3] were the
first to give an O(log |V | log log |V |)-approximation al-
gorithm for the MROB problem. Later, Kumar, Gupta
and Roughgarden [13] give the first constant approxi-
mation algorithm for the problem based on a primal-
dual approach. A more recent result by Gupta et al. [8]
builds on the techniques used by Gupta et al. [9] for
the single-commodity rent-or-buy problem and obtains
a 12-approximation for the MROB problem. Their work
also uses the cost-sharing concept from game-theory
(see, e.g., [5, 10, 14]) in the analysis of the algorithm.

The minimum-cost Steiner tree and forest problems
are closely related to both the MROB and SROB
problems. In the more general Steiner forest problem,
we are given an undirected graph G = (V, E), non-
negative costs ce for all edges e ∈ E, and a set of
terminal pairs R = {(s1, t1), . . . , (sk, tk)}. The goal
is to find a forest F of minimum total cost such for
all 1 ≤ i ≤ k, there is a tree T ∈ F that contains
both, si and ti. It is well-known that the minimum-cost
Steiner forest problem is NP-hard[6] and Max-SNP hard.
On the positive side, Agrawal, Klein and Ravi [1] and
later Goemans and Williamson [7] give a primal-dual
2-approximation for the problem.

The MROB algorithm from [8] crucially relies on
the primal-dual algorithm for Steiner forest of Agrawal



et al. [1]. The algorithm in [8] first picks a random
subset of all terminal pairs R0 ⊆ R and then uses a
modified primal-dual Steiner forest algorithm to com-
pute a feasible Steiner forest F 0 for R0. The algorithm
buys all edges from F 0. Terminal pairs in R\R0 that are
not connected in F 0 rent extra capacity in the cheapest
possible way to establish connections.

The central feature of the modified primal-dual
Steiner forest algorithm used in [8] is β-strictness: The
algorithm defines cost-shares χst for all terminal pairs
(s, t) in R. Let the Steiner forest computed by the
algorithm on input R \ {(s, t)} be denoted by F 0 and
let G|F 0 be the graph obtained from G by contracting
F 0. The algorithm then guarantees that the cheapest
way of connecting s to t in G|F 0 costs at most β · χst.
Moreover, the sum over all cost-shares of terminal pairs
is at most the cost of a minimum-cost Steiner forest for
R.

The prize for a β-strict Steiner forest algorithm
is a worse performance guarantee. Gupta et. al
show that their Steiner forest modification returns a 6-
approximate and 6-strict Steiner forest and this leads to
a 12-approximate MROB-algorithm. In general, they
show that any α-approximate and β-strict algorithm
leads to an (α + β)-approximation for the MROB
problem.

Our Contribution. Our algorithm uses the cost-
sharing framework proposed by Gupta et al. We prove
the following main result:

Theorem 1.1. For any β ≥ 2 there is a polynomial-

time (2 + 2/(β − 2))-approximate and β-strict algo-

rithm for the minimum-cost Steiner forest problem.

In [8], Gupta et al. show the following main
theorem:

Theorem 1.2. Suppose there is an α-approximate and

β-strict algorithm for the Steiner forest problem. Then

there exists an (α + β)-approximation algorithm for the

multicommodity rent-or-buy problem.

Choosing β = 2+
√

2 in Theorem 1.1 together with
Theorem 1.2 implies the following corollary:

Corollary 1.1. There is a (4 + 2
√

2)-approximate

algorithm for the multicommodity rent-or-buy problem.

The heart of our work is a new β-strict algorithm
for the Steiner forest problem. Our Steiner forest
algorithm has two main phases: The first phase runs
the standard primal-dual Steiner forest algorithm from
[1] and computes an approximate Steiner forest F ′ for
a given set of terminal pairs R.

The second phase identifies the terminal nodes in
each tree T in F ′. The newly created super-node is
treated as a terminal of another Steiner tree instance.
We then run a budgeted version of the primal-dual
algorithm for Steiner trees to obtain a final Steiner
forest. Here, we borrow ideas from earlier work on prize-

collecting variants of the Steiner tree problem (see, e.g.,
[7]).

The benefit of our method is two-fold: First, we
combine existing primal-dual algorithms in a black-box
fashion as opposed to modifying technical details of
an existing method. This leads to a much simplified
algorithm and more intuitive analysis. Second, since
we use standard primal-dual algorithms for the Steiner
forest and Steiner tree problems we inherit some their
nice properties. Most notably, our dual solutions are
laminar.

Organization of this paper. The next section
recaps the primal-dual Steiner forest algorithm from [1]
since our methods and its analysis strongly relies on
it. Subsequently, we present in Section 3 our β-strict
Steiner forest. Section 4.1 has a complete analysis of a
5 approximation for a special case of the algorithm. The
analysis of the general case and the main ingredients of
the proof of Theorem 1.1 are given in Section 4.2. Due
to space limitations we defer proofs of certain technical
lemmas to the full version of the paper[4].

2 The Minimum-cost Steiner forest problem

We present the primal-dual algorithm (subsequently
referred to as AKR) for the Steiner forest problem due to
Agrawal, Klein, and Ravi [1]. The algorithm constructs
both a feasible primal and a feasible dual solution for
a linear programming formulation of the Steiner forest
problem and its dual, respectively. A standard integer
programming formulation for the Steiner forest problem
has a binary variable xe for all edges e ∈ E. Variable
xe has value 1 if edge e is part of the resulting forest.
We let U contain exactly those subsets U of V that
separate at least one terminal pair in R. In other words,
U ∈ U iff there is (s, t) ∈ R with |{s, t} ∩ U | = 1. For
a subset U of the nodes we also let δ(U) denote the set
of those edges that have exactly one endpoint in U . We
then obtain the following integer linear programming
formulation for the Steiner forest problem:

min
∑

e∈E

ce · xe(IP)

s.t
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ U

x integer



For a pair of nodes u, v ∈ R, let cuv be the minimum cost
of any u, v-path in G. It can be shown (see [11, 12]) that
the following linear program is equivalent to the dual of
the LP relaxation (LP) of (IP):

max
∑

U⊆R

yU(D)

s.t
∑

U⊆R:|{u,v}∩U |=1

yU ≤ cuv ∀u, v ∈ R(2.1)

y ≥ 0

In our presentation, we let AKR construct a primal
solution for (LP) and a dual solution for (D).

We think of an execution of Algorithm AKR as a
process over time and let xt and yt be the primal
incidence vector and dual feasible solution at time t.
We also use F t to denote the forest corresponding to
xt. The algorithm now starts with x0

e = 0 for all e ∈ E
and y0

U = 0 for all U ∈ U .
Assume that the forest F t at time t is infeasible.

For a connected component C of F t, we use R[C] to
denote the set of terminal nodes in C. We say that a
connected component C of F t is active if R[C] ∈ U .
The algorithm raises the dual variables corresponding
to all active connected components of F t simultaneously
until a constraint of type (2.1) is satisfied with equality.
Suppose that this happens for terminals u, v ∈ R and
also assume that u ∈ Cu and v ∈ Cv for connected
components Cu and Cv of F t. We then add a u, v-path
of smallest total cost to F t and continue.

The algorithm terminates at the earliest time t∗

when F t∗ is a feasible Steiner forest. A proof of the
following main result from [1] can also be found in [4].

Theorem 2.1. Suppose that algorithm AKR stops at

time t∗. We then must have that

c(F t∗) ≤ 2 ·
∑

U⊆R

yt∗

U .

3 A strict algorithm for minimum-cost Steiner
forest

This section is split into three major parts. First we
show how to compute the cost shares for each terminal
pair (s, t) ∈ R. Subsequently we give our (2+2/(β−2))-
approximate and β-strict algorithm for Steiner forests.
The section ends with the strictness-analysis of the
algorithm.

3.1 Computing cost-shares We start by giving a
precise definition of the strictness notion. For a forest
F in G, let G|F denote the graph resulting from
contracting all trees of F . For vertices u, v ∈ V , we

also let cG(u, v) denote the minimum-cost of any u, v-
path in G. In [8], Gupta et al. define the notion of
β-strict algorithms for the minimum-cost Steiner forest
problem.

Definition 1. An algorithm A for the Steiner forest

problem is β-strict if it returns values χi for all (si, ti) ∈
R such that

1.
∑

(si,ti)∈R χi ≤ c(F ∗) where F ∗ is a feasible Steiner

forest for R of minimum total cost, and

2. cG|Fi
(si, ti) ≤ β · χi for all (si, ti) ∈ R where Fi

is a Steiner forest for terminal pairs R \ {(si, ti)}
returned by A.

The algorithm to compute the cost shares χi for all
terminal pairs (si, ti) ∈ R differs slightly from the one
presented in [8]. We run AKR on input graph G with
terminal pairs R. Let agei be the time at which si and
ti meet during this execution.

For an active component U at some time t during
the execution of AKR(R) we pick a distinct terminal
r ∈ R[U ] of maximum age and declare it the beneficiary

of U . We then define an indicator variable δi
t for all

terminal pairs (si, ti) and for all times t ≥ 0:

δi
t =






2 : Both, si and ti are beneficiaries at time
t < agei

1 : Exactly one of si and ti is a beneficiary
at time t < agei

0 : otherwise.

The cost-share of terminal pair (si, ti) is defined as

(3.2) χi =

∫ t∗

0

δi
t dt.

Notice that our definition implies that the total cost-
share over all terminal pairs is equal to the objective
function value of the computed dual solution.

3.2 Adding strictness: A modified Steiner for-
est algorithm Fix a terminal pair (s, t) ∈ R and let
R0 = R \ {(s, t)}. The new algorithm AKR2 first uses
AKR to compute a feasible Steiner forest F ′ for termi-
nal set R0. The second phase of the algorithm adds
more paths to connect components of F ′ that are close

to each other. Selecting paths carefully in this second
phase yields a Steiner forest F 0 whose cost is only a
constant factor worse than that of F ′ and that satisfies
the necessary strictness properties.

We now describe the algorithm AKR2 in greater
detail. The algorithm works on input R0 and has two
phases:



[Aerobic Phase] In this phase we execute AKR on
terminal set R0. This produces a forest F ′ that is feasi-
ble for R0 and a corresponding dual solution {y′

U}U⊆R0 .
We let C′ be the set of connected components of F ′ and
define U ′ to be the set of subsets of R0 that receive
positive dual in AKR(R0), i.e.

U ′ = {U ⊆ R0 : y′
U > 0}.

We now use F ′ to create a new graph G′ from the
original graph G: For each connected component C of
F ′, we identify the terminals in R0[C]. In other words,
we replace the set R0[C] by a new vertex C. Each edge
(u, v) ∈ δ(R0[C]) with u ∈ R0[C] and v 6∈ R0[C] is
substituted by a new edge (C, v) with cost cuv. Finally,
we delete all edges e ∈ E that have both end-points in
R0[C]. The graph G′ contains a super-node C for each
non-trivial connected component C ∈ C ′.

[Anaerobic Phase] Recall that whenever AKR(R0)
grows a moat U ∈ U there is a terminal rU ∈ U of
maximum age that is the beneficiary of this growth.
For a connected component C of F ′, we then let

U ′
C = {U ∈ U ′ : rU ∈ R[C]}

be the set of moats whose beneficiary is a terminal in
C. The set {U ′

C}C∈C′ is a partition of U ′.
For a node C ∈ C′ let ageC denote the maximum

age among the terminal pairs in R0[C]. Then define the
budget bC of node C ∈ C′ as

(3.3) bC = ageC + γ ·
∑

U∈U ′

C

y′
U

for a parameter γ ≥ 1/2. For nodes v ∈ V [G′] \ C′ we
let bv = 0.

We now run a budgeted version of the Steiner tree
algorithm that bears resemblance to the prize-collecting
Steiner tree algorithm from [7]: Say a connected com-
ponent of the current forest is active if it has remaining
budget. At any point during the algorithm we then
raise the dual variables of all active connected compo-
nents in the current forest. We decrease the budget of
these components at the rate at which their duals grow.

Two possible events can occur:

Merge A path connecting two active connected com-
ponents C1 and C2 in the current forest becomes
tight. In this case, add the edges of the path to the
current forest and by this create a new connected
component C. The budget of this new component
C is the sum of the remaining budgets of C1 and
C2.

Death A connected component runs out of budget in
the growth phase. In this case the component sim-
ply dies and we continue growing those components
that have positive remaining budget.

We let F ′′ be the forest in G′ computed during the
anaerobic phase and let {y′′

U}U⊆V [G′] be the correspond-
ing dual solution. We obtain the final forest F 0 from
F ′′ by replacing each super-node v ∈ C ′ by the corre-
sponding connected component in F ′.

The proof of the following lemma is a direct conse-
quence of Theorem 2.1.

Lemma 3.1. The cost of the forest F 0 computed by

AKR2 on terminal set R0 is at most

(2 + 2γ) · optR0

where optR0 is the cost of a minimum-cost feasible

Steiner forest for terminal set R0.

4 Analyzing the strictness of Algorithm AKR2

We focus on terminal pair (s, t) ∈ R. Recall that
R0 = R \ {(s, t)} and let F denote the forest computed
by AKR on input R. As before we let F 0 be the forest
computed by AKR2 on input R0. As in Section 1 we
use G|F 0 to denote the graph obtained from G by
contracting the connected components of forest F 0. In
order to prove that AKR2 is β-strict we need to show that

(4.4) cG|F 0(s, t) ≤ β · χst.

Let Pst be the unique s, t-path in the forest F .
Notice that Pst may enter and leave a given connected
component of F 0 more than once. In this case we obtain
a new s, t-path P in G|F 0 from Pst by deleting such
loops.

The rough outline is as follows: The cost of P
in G|F 0 is at least cG|F 0(s, t). We will show that
cG|F 0(P ) ≤ β · χst where cG|F 0(P ) is the cost of
path P in the graph G|F 0 and this implies (4.4) since
cG|F 0(s, t) ≤ cG|F 0(P ).

We let C1, . . . , Cp be the connected components of
F 0 that P touches in that order. Since P is loop-less in
G|F 0 it follows that each connected component of F 0

occurs at most once in this list. We also assume that
s and t are not part of

⋃p
i=1 Ci. Finally, let pm be the

point on P where the active moats containing s and t
meet during the execution of AKR(R).

Recall that we use {yU}U⊂R to denote the dual
solution computed by AKR(R). We then define the
residual cost c̃e of edge e ∈ E as

(4.5) c̃e = ce −
∑

U⊆R0,e∈δ(U)

yU .

The residual cost of edge e is the part of ce that does not
feel dual load from subsets of R0 in AKR(R). Therefore,
roughly speaking, s and t gather c̃e units of cost-share
while traversing edge e.



We can now express cG|F 0(P ) as the sum of residual
and hidden costs of P . Formally, for a connected com-
ponent Ci of F 0 that is on path P , we let P s

i and P t
i

be the s, Ci-segment and the Ci, t-segment of P , respec-
tively. Let C′[C] be the set of connected components of
forest F ′ that are contained in a connected component
C of F 0. We then let Cs

i , Ct
i ∈ C′[Ci] be the first and

last connected components on the s, t-path Pst in G′.
We then define hi,s and hi,t to be the cost of the

two hidden segments of P inside Ci, i.e.

(4.6) hi,u =
∑

U⊆R0,U∩Ci 6=∅

|δ(U) ∩ P u
i | · yU

for u ∈ {s, t} and let hi = max{hi,s, hi,t}. The cost of
path P in G|F 0 can now be expressed as

(4.7) cG|F 0(P ) = c̃(P ) +

p∑

i=1

(hi,s + hi,t).

In the following, we use ages′,t′ and age0
s′,t′ to

denote the time at which the terminals of (s′, t′) ∈ R0

meet during the execution of AKR(R) and AKR(R0),
respectively. We extend this notion to sets C ⊆ V by
letting ageC = max(s′,t′)∈R0[C] ages′,t′ .

Consider two connected components C1, C2 ∈ C′.
We say that C1 encloses C2 in AKR(R0) if there is a set
U ∈ U ′

C1
that contains C2. In other words, there is a

point in time (the time of enclosure) during AKR(R0) at
which an active moat containing C1 grows across a dead
moat containing C2.

For 1 ≤ i ≤ p and for u ∈ {s, t}, we let Cu
i ∈ C′[Ci]

be the connected component in Ci that encloses Cu
i

latest (Cu
i = Cu

i if Cu
i is not enclosed by any other

connected component in Ci). Intuitively, the budget-
growth of component Cu

i along path P u
i reserves parts

of the residual cost of P u
i which are later used to pay

for the segments of P u
i that are hidden within Ci.

For ease of notation we define the excess budget

(4.8) b0
i,u = 2γ ·

∑

U∈U ′

Cu
i

y′
U

and let bi,u = b0
i,u + hi,u. We also use bi for the

maximum of bi,s and bi,t.

Lemma 4.1. Let 1 ≤ i ≤ p and u ∈ {s, t} and assume

that u meets the first terminal from Ci at time T in

AKR(R).Then we must have hi,u ≤ min{T, age0
Cu

i

}. In

particular this means that hi ≤ ages,t for all 1 ≤ i ≤ p.

Proof. First, consider the case where T ≤ age0
Cu

i

. Let

U ⊆ R be an active moat in AKR(R) at time T ′ ≥ T with

δ(U) ∩ P u
i 6= ∅. In this case u must clearly also be in U

and hence the dual assigned to U does not contribute
to hi,u. At any time prior to T there exists at most one
active moat loading P u

i that intersects Ci and hence
hi,u ≤ T .

Now assume that T > age0
Cu

i

. This means that u

meets Ci only after time age0
Cu

i

and the moat containing

Cu
i is dead at this point. Since Cu

i encloses Cu
i we know

that Cu
i must also be dead at time age0

Cu
i

. Moreover, as

before, at any time t ∈ [0, age0
Cu

i

] there is at most one

moat loading P u
i in AKR(R). Therefore we must have

hi,u ≤ age0
Cu

i

.

The lemma follows since T ≤ ages,t.

Lemma 4.2. For all connected components Ci on P and

for u ∈ {s, t} we must have b0
i,u ≥ 2γhi,u.

Proof. Observe that AKR(R0) grows at least two moats
that are contained in Cu

i at all times t ∈ [0, age0
Cu

i
].

Therefore we must have

b0
i,u = γ ·

∑

U∈U ′

Cu
i

y′
U ≥ 2γ · age0

Cu
i

.

An application of Lemma 4.1 finishes the proof.

We define a useful interference notion that is needed
throughout the rest of this paper.

Definition 2. Let (s′, t′) ∈ R be a terminal pair with

ages,t ≤ ages′,t′ . We say that terminal v′ ∈ {s′, t′}
interferes with v ∈ {s, t} if v and v′ meet before time

ages,t in AKR(R). Formally v′ interferes with v if there

is a set U ⊆ R such that {v, v′} ⊆ U and yU > 0.

Recall that we use C ′ to denote the set of connected
components in the forest F ′ produced by the aerobic
phase of AKR2(R

0).

Definition 3. A component C ∈ C ′ captures a node v
if a moat containing C reaches v in the anaerobic phase

of AKR2(R
0). We also say that a connected component

C of F 0 captures v if there is a connected component C ′

of F ′ that captures v and C ′ ⊆ C.

4.1 The strictness of AKR2: A simple case As a
warm up for the reader, we prove the strictness result
under the following assumption:

Assumption 1. There are no interfering terminals for

terminal pair (s, t) and none of the components in

{Cu
i }u∈{s,t},1≤i≤p captures s or t.

We will argue that Assumption 1 implies that the
amount of cost-share recovered by s and t is at least the



Ci

Cs
i Ct

i

hi,s hi,tb0
i,s b0

i,t

bi,s bi,t

Figure 1: Connected component Ci on path P together with its budget reservation on P . The budget growth bu
i

of component Cu
i is split into hi,u and b0

i,u.

residual cost c̃(P ) of path P . This in turn will enable
us to prove that the algorithm is 5-strict in this case.

Lemma 4.3. Consider two connected components

C1, C2 ∈ C′ such that C1 encloses C2 at time T in

AKR(R0). Then C1 also encloses C2 by time T in the

anaerobic phase of AKR2(R
0).

Proof. Since C1 encloses C2 at time T in AKR(R0), there
must exist terminals s1 ∈ R0[C1] and s2 ∈ R0[C2]
and a tight path P12 connecting them at time T in
AKR(R0). By definition, the budget bCj

of component
Cj for j ∈ {1, 2} is at least the maximum age of any
terminal in Cj . Therefore, path P12 must also be tight
in the anaerobic phase of AKR2(R

0) at time T .

The Lemma implies that the connected components
in C′(Ci) inflict at least hi,u units of dual on P u

i by
time ageCu

i
in the anaerobic phase of AKR2(R

0) for all

1 ≤ i ≤ p and for u ∈ {s, t}. Since the remaining budget
of component C

u

i at this point is b0
i,u it follows that the

load on P u
i coming from Ci in the anaerobic phase of

AKR2(R
0) is at least

bi,u = hi,u + b0
i,u ≥ (2γ + 1)hi,u

where the inequality follows from Lemma 4.2. Assump-
tion 1 implies that
(4.9)

(2γ + 1)

p∑

i=1

(hi,s + hi,t) ≤
p∑

i=1

(bi,s + bi,t) ≤ cG|F 0(P ).

Let χ1
st denote the cost-share of terminal pair (s, t) given

Assumption 1. We now show that χ1
st is at least equal

to the residual cost of P .

Lemma 4.4. The cost share χ1
st of terminal pair (s, t)

is at least the residual cost c̃(P ) of the s, t-path P in

AKR(R).

Proof. Let U ⊆ R be an active moat in the execution
of AKR(R) and let u ∈ {s, t} ∩ U . By Assumption 1,
u must be the beneficiary of U . Hence, the total cost-
share collected by {s, t} is exactly

∑

U⊆R,|{s,t}∩U |=1

yU = cG|F 0(P ) −
∑

U⊆R0

|δ(U) ∩ P | · yU

and the right-hand side of this equality is c̃(P ).

In the anaerobic phase of AKR2, the super-node
Cu

i ∈ C′ extends along P u
i for all 1 ≤ i ≤ p and for

u ∈ {s, t}. This way, component Cu
i reserves b0

i,u units
of the residual cost c̃(P ) of path P . The total amount
of residual cost reserved for component i is therefore
b0

i,s + b0
i,t and Lemma 4.4 shows that this translates

into at least the same amount of cost-share.
We use this cost-share to pay for those segments of

P in G|F 0 that feel dual load from Ci in the anaerobic
phase of AKR2(R

0). Specifically, showing β-strictness
amounts to proving

(4.10) bi,u = b0
i,u + hi,u ≤ β · b0

i,u

for all 1 ≤ i ≤ p and for u ∈ {s, t}. Remember that the
size of bi,u is controlled by the parameter γ in (3.3).

Theorem 4.1. For any β ≥ 2 there is a polynomial-

time (2 + 1/(β − 1))-approximate and β-strict algo-

rithm for the minimum-cost Steiner forest problem un-

der Assumption 1.

Proof. Define the slack sl of path P as the amount of
residual cost that is not needed for budget-reservation
in AKR2: sl = c̃(P ) − ∑p

i=1(b
0
i,s + b0

i,t). Equation
(4.7) then shows that the cost cG|F 0(P ) of path P is∑

1≤i≤p(b
0
i,s + hi,s + b0

i,t + hi,t) + sl.
On the other hand we know from Assumption 1 that

none of the components on path P capture s and t and



hence equation (4.9) holds. The definition of residual
cost together with Lemma 4.4 imply

χ1
s,t ≥ c̃(P ) =

(
p∑

i=1

b0
i,s + b0

i,t

)
+ sl.

Therefore showing b0
i,u + hi,u ≤ βb0

i,u for all 1 ≤ i ≤
p and for u ∈ {s, t} suffices to prove β-strictness.
Equivalently we need to show b0

i,u ≥ 1/(β − 1) · hi,u

for all 1 ≤ i ≤ p and for u ∈ {s, t}. By Lemma 4.2, this
is true for γ ≥ 1/2(β − 1) and our final choice of β = 2
implies that γ ≥ 1/2 as wanted.

Choosing β = 2 in Theorem 4.1 together with [8]
yields:

Corollary 4.1. There is a 5-approximate algorithm

for the multicommodity rent-or-buy problem under As-

sumption 1

4.2 The strictness of AKR2: The general case
The intuitive outline given above does not suffice to
analyze the strictness of AKR2 in general. The problem
is two-fold: First, there maybe components on P that
capture s or t and hence (4.9) may not hold. Second,
there may exist terminals that interfere with {s, t}.

In order to present a general relation between χst

and the residual cost of P we need to handle the problem
of insufficient residual cost. The presence of interfering
terminals further complicates matters. We start with a
few useful observations whose proofs are reported in [4].

4.2.1 Observations: Old terminals In this section
we prove a few structural properties of the forest F 0

computed by AKR2(R
0) pertaining to the location of

terminal pairs (s′, t′) that interfere with (s, t). Recall
that y′′ is the dual solution computed by AKR2(R

0) in
the anaerobic phase. In the following we say that a
connected component C of F 0 interferes with u ∈ {s, t}
if there is a terminal u′ ∈ R0[C] that interferes with u.

Lemma 4.5. Let u′ be a terminal that interferes with

u ∈ {s, t} and assume that u meets u′ at time T <
ages,t in AKR(R). Let C ′ ∈ C′ be the super-node in G′

containing u′. The total dual value assigned to moats

that contain both u and C ′ in the anaerobic phase of

AKR2(R
0) must be at least (2γ + 1) · agest − 2T , i.e.

∑

U⊆V [G′],{u,u′}⊆U

y′′
U ≥ (2γ + 1) · agest − 2T.

The following corollary is a consequence of Lemma
4.5.

Corollary 4.2. Let u1 and u2 be terminals that inter-

fere with u ∈ {s, t}. They both reach u by time 2 ·ages,t

in the anaerobic phase of AKR2(R
0) and there must exist

a connected component C in F 0 with {u1, u2} ⊆ R0[C].

Let u′ be a terminal that interferes with u ∈ {s, t}.
We say that u′ is on P if u and u′ meet in AKR(R) at
some point p on P . Recall that pm is the point on P
where the moats of s and t collide in AKR(R).

Lemma 4.6. Let u′ be a terminal on P that interferes

with u ∈ {s, t}. Also let C ′ be the connected component

of F ′ containing u′. In this case C ′ captures both s and

t by time 2 · ages,t in the anaerobic phase of AKR2(R
0).

Moreover, there must be a connected component Cm for

1 ≤ m ≤ p that contains all interfering terminals.

In the case of interfering terminals on P we will from
now on use Cm to denote the connected component of
F 0 that contains all interfering terminals.

Lemma 4.7. Let u ∈ {s, t} and assume that Cr is a

connected component of F 0 that captures u before time

(2γ + 1) · ages,t in AKR2(R
0). Let u′ be a terminal that

interferes with u and let C ′ be its connected component

in F ′. Moreover let T be the time where u and u′ meet

in AKR(R) and let T ′ be the time when C ′ captures u in

the anaerobic phase of AKR2(R
0). We then must have

either u′ ∈ Cr or 2T ≥ T ′ ≥ br ≥ hr.

4.2.2 Observations: Insufficient residual cost
Suppose that one or more connected components of the
forest F ′ at the end of the aerobic phase of AKR2(R

0) do
not find enough space on P to reserve their portion of
budget. In other words, they grow beyond s or t in the
anaerobic phase. Let Cr be such a connected component
of F ′ and assume that it captures u ∈ {s, t}. We can
then show that the cost of path P u

r in G|F 0 is at least
the total budget of all components on P u

r excluding Cr

itself.

Lemma 4.8. Let u ∈ {s, t} and assume that Cr for 1 ≤
r ≤ p is a connected component of F 0 on P that captures

u. Let C be the index set of connected components on

P u
r excluding Cr that capture u. Furthermore, let M be

the set of indices of those components on P u
r that do not

capture u. We must have

cG|F 0(P u
r ) ≥

∑

i∈C∪M

(bi,s + bi,t).

Let Lu be the set of indices of connected compo-
nents that capture u ∈ {s, t}. We then define

L = {max
l∈Ls

l, min
q∈Lt

q}.



For ease of notation we also define C = (Ls ∪ Lt) \ L.
Finally, we let M be the set of indices of connected
components of F 0 on P that do not capture either s or
t. Observe that this means that {l + 1, . . . , q − 1} ⊆ M
in the case where L = {l, q} with 1 ≤ l < q ≤ p.

Corollary 4.3. Define b0
L = b0

l,t + b0
q,s if L = {l, q}

for some 1 ≤ l < q ≤ p. Otherwise let b0
L = 0. Also let

hL = hl,s + hq,t. We then must have

b0
L +

∑

i∈C∪M

(b0
i,s + b0

i,t) ≤ c̃(P ) + hL.

4.2.3 A general lower-bound for χst We are fi-
nally ready to present the general lower bound on χst.

Lemma 4.9. Let I be the set of indices of components

on P that contain terminals that interfere with s or t,
i.e.

I = {i ∈ {1, . . . , p} :

∃v′ ∈ Ci that interferes with {s, t}}.

Also define b
0
i,u = min{b0

i,u, 2/(β − 2) · hi,u} and let

bi,u = b
0
i,u + hi,u for all 1 ≤ i ≤ p and for u ∈ {s, t}.

We must have

(4.11) χst ≥
1

2
·



sl +
∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t)





where the slack in the residual cost c̃(P ) is defined as

sl = max{0, c̃(P ) +
∑

i∈I

(hi,s + hi,t)−
∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t)}.

Proof. We know from Lemma 4.6 that I is either empty
or consists of index m only (in the case where there are
interfering terminals on P ). We subdivide the argument
into two parts depending on the existence of interfering
terminals that are on path P .

Interfering terminals on P . Lemma 4.6 shows
that there exists an index m ∈ {1, . . . , p} such that
Cm contains all terminals that interfere with s or t.
Consider u ∈ {s, t} and let Tu ≤ ages,t be the time
in AKR(R) when u meets the first interfering component
C ∈ C′[Cm]. Lemma 4.1 shows that

(4.12) hm,u ≤ Tu

for u ∈ {s, t}.
Let p be the point on P u

m where u and Cm meet in
AKR(R) and use Pup and Ppm to denote the u, p-segment

and the p, Cm-segment of P u
m, respectively. Definition

(4.5) implies that the residual cost of Ppm is 0. We
therefore obtain

c̃(P u
m) = c̃(〈Pup, Ppm〉) = c̃(Pup) = hm,u.

Together with (4.12) this implies that
(4.13)
χst ≥ Ts + Tt ≥ hm,s + hm,t = c̃(P s

m) + c̃(P t
m) = c̃(P ).

As in Corollary 4.3 we let C be the index set of
components that capture either s or t excluding m. We
also let M be the set of indices of components on P
that do not capture s and t. Corollary 4.3 implies that

c̃(P ) + hm,s + hm,t ≥∑

i∈C∪M

(b0
i,s + b0

i,t) ≥
∑

i∈C∪M

(b
0
i,s + b

0
i,t).

The definition of sl together with (4.13) imply

χst ≥
c̃(P ) + hm,s + hm,t

2
=

1

2
·
(
sl+

∑

i∈C

(b
0
i,s + b

0
i,t)

)

and this finishes the proof in the case of interfering
terminals on P .

No interfering terminals on P . In the following
we use vs and vt to denote terminals that interfere with
s and t, respectively. Similarly, we let Cs and Ct be
connected components of F ′ that contain vertices vs and
vt.

We observe that the cost-share collected by {s, t}
is smallest if there are interfering terminals. Corollary
4.2 shows that we need to consider only two cases: In
the two-sided case, both s and t see interference from
distinct terminals vs and vt. Notice that Cs 6= Ct in
this case since otherwise Cs = Ct would be on P . In
the one-sided case, only one of s and t sees interference
from older terminal pairs.

[Case 1: Two-sided interference] Let Ts be the time
when s meets vs in AKR(R) and define Tt analogously for
t and vt. Let Pvs

and Pvt
be the paths that are added

in AKR(R) when vs and s meet and when vt and t meet,
respectively. Lemma 4.5 shows that the combined load
from Cs and Ct on 〈Pvs

, P, Pvt
〉 is at least

(4.14) (4γ + 2) · ages,t ≥ (2γ + 1) · c̃(P ).

Define sets Lu for u ∈ {s, t} as in Corollary 4.3 and
consider set Ci for i ∈ Lu. W.l.o.g. assume that u is
the first vertex in {s, t} that is captured by Ci. Then
Ci captures u by time 2 · ages,t in the anaerobic phase:
Let C contain the indices of all sets on P u

i excluding i.
Notice that all components Cj for j ∈ C must be dead



by the time Ci captures u. Hence, the maximal load
that Ci can inflict on P u

i is bounded by

cG|F 0(P u
i ) −

∑

j∈C

(bj,s + bj,t) ≤ c̃(P u
i ) + hi,u ≤ 2 · ages,t.

This shows that Ci captures u by time 2 · ages,t in the
anaerobic phase. Let C ∈ {Cs, Ct} be the first set to
reach Ci in the anaerobic phase of AKR2(R

0). The above
argument shows that the collision of Ci and C must
happen before time (2γ + 1) · ages,t. It follows that Ci

must be dead at this time since otherwise C would be
on path P .

Hence component Ci must have extended fully in
the anaerobic phase of AKR2(R

0) for all 1 ≤ i ≤ p
before either Cs or Ct reach it in the anaerobic phase. A
careful look at Lemma 4.5 shows that the load in (4.14)
is inflicted before time (2γ + 1) · ages,t in the anaerobic
phase and thus, both Cs and Ct are active at this time.

Therefore the load in (4.14) has to be at most

cG|F 0(P ) + 2Ts + 2Tt −
p∑

i=1

(bi,s + bi,t) =

c̃(P ) + 2Ts + 2Tt −
p∑

i=1

(b0
i,s + b0

i,t).

Solving for Ts + Tt gives

Ts + Tt ≥
1

2
· c̃(P ) +

1

2
·

p∑

i=1

(b0
i,s + b0

i,t).

Now observe that χst ≥ Ts + Tt and hence

χst ≥
1

2
· c̃(P ) +

1

2
·

p∑

i=1

(b0
i,s + b0

i,t).

This concludes the proof in Case 1.
[Case 2: One-sided interference] We assume,

w.l.o.g., that there is no terminal vt that interferes with
t. As before let Ts denote the time when s meets the
first interfering terminal vs in AKR(R). Since t sees no
interference in AKR(R), the proof of Lemma 4.4 implies
that

(4.15) χst ≥ agest + Ts =
1

2
· c̃(P ) + Ts.

We again let Cs be the connected component of F ′

that captures s. Let Ci for 1 ≤ i ≤ p be a connected
component of F 0 on path P . Component Ci must be
dead when Cs captures it during the anaerobic phase
of AKR2(R

0) since otherwise Cs would be on path P as
well. In other words, Ci must have finished its budget-
growth phase by the time Cs reaches it in the anaerobic
phase.

In the following we let L = {l, q}with 1 ≤ l ≤ q ≤ p.
Consider the case where l < q and hence L contains
exactly two indices. Observe that Cl captures s by time
2 · ages,t in this case. Otherwise Cl would also capture
Cq and this contradicts the assumption l 6= q. The
budget of Cs is at least (2γ + 1) · ages,t ≥ 2 · ages,t and
therefore Cs reaches s by time 2Ts ≤ 2 · ages,t as well.
This means that Cs captures Cl and Cl must be dead
at that time.

Lemma 4.8 implies that

(4.16)

p∑

i=q+1

(bi,s + bi,t) ≤ cG|F 0(P t
q ).

Let Pvs
be the path that is added in AKR(R) when s and

vs meet and let P ′ = 〈Pvs
, P s

q 〉 be the concatenation of
Pvs

and P s
q .

Assume first that Cs captures Cq . This means
that Cq is dead when Cs meets it in AKR2(R

0) and
therefore, Cs inflicts at least bq units of budget on path
P ′. The total load coming from super-nodes contained
in sets {Ci}1≤i≤q and from Cs on path P ′ is bounded
by cG|F 0(P s

q ) + 2Ts. These observations imply

(4.17)

q∑

i=1

(bi,s + bi,t) ≤ cG|F 0(P s
q ) + 2Ts.

On the other hand assume that Cs does not capture
Cq . Cq may still capture s but this must happen after
Cs is dead and hence at a time later than

bCs
≥ (2γ + 1) · agevs

≥ (2γ + 1) · ages,t

in the anaerobic phase. In other words, Cs and Cq do
not touch at time (2γ+1) ·ages,t in the anaerobic phase

of AKR2(R
0) and hence

(4.18)

2 · (2γ +1) ·ages,t +
∑

1≤i<q

(bi,s +bi,t) ≤ cG|F 0(P s
q )+2Ts.

For u ∈ {s, t}, the definition of bq,u, our choice of
γ ≥ 1/(β − 2) in Theorem 1.1, and Lemma 4.1 imply
that

bq,u ≤ (2γ + 1) · hq,u ≤ (2γ + 1) · ages,t.

Together with (4.18) we then obtain

(4.19)
∑

1≤i≤q

(bi,s + bi,t) ≤ cG|F 0(P s
q ) + 2Ts.

Inequalities (4.16), (4.17), and (4.19) imply that∑p

i=1(bi,s + bi,t) ≤ cG|F 0 + 2Ts and hence

p∑

i=1

(b
0
i,s + b

0
i,t) ≤ c̃(P ) + 2Ts.



It can be seen that (4.15) together with the definition
of slack sl implies

χst ≥
1

2
·
(

p∑

i=1

(b
0
i,s + b

0
i,t)

)
+

sl

2

and the lemma follows.

Equation (4.11) in Lemma 4.9 shows that we obtain

(b
0
i,s + b

0
i,t) units of cost-share for each component Ci

with i ∈ {1, . . . , p} \ I. For each such i ∈ {1, . . . , p} \ I
we are going to use this amount of cost-share to pay for

a stretch of length b
0
i,s + hi,s + b

0
i,t + hi,t along path P .

In particular, this way we pay for a total of

(4.20)
∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t)

of the residual cost of path P . The slack sl in Lemma
4.9 is the difference between the residual cost of P and
(4.20). A negative difference indicates that all of the

residual cost is paid for by
∑

1≤i≤p,i6∈I(b
0
i,s + b

0
i,t) and

we therefore define the slack to be 0 in this case. We
are now ready to prove Theorem 1.1 which we restate
for completeness.

Theorem 4.2. For any β ≥ 2 there is a polynomial-

time (2 + 2/(β − 2))-approximate and β-strict algo-

rithm for the minimum-cost Steiner forest problem.

Proof. We assume that there exist terminals that inter-
fere with {s, t}. Notice that this assumption is w.l.o.g.
since the presence of interfering terminals can only lower
the cost-share χst. Now recall the definition of slack in
Lemma 4.9 and observe that the cost cG|F 0(P ) of path
P is at most




∑

1≤i≤p,i6∈I

(b
0
i,s + hi,s + b

0
i,t + hi,t)



+ sl.

On the other hand Lemma 4.9 yields that the cost-share
collected by (s, t) is at least

1

2
·




∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t)


+

sl

2
.

We clearly have sl ≤ β · (sl/2) as β ≥ 2. In order to

complete the proof it suffices to show b
0
i,u+hi,u ≤ β

2 ·b
0
i,u

for all 1 ≤ i ≤ p, i 6∈ I and for u ∈ {s, t}. Equivalently

we need to have b
0
i,u ≥ 2/(β−2) ·hi,u. This follows from

the definition of b
0
i,u in Lemma 4.9 and from Lemma 4.2

with γ ≥ 1/(β − 2). Our final choice of β = 2 +
√

2 also
ensures that γ ≥ 1/2 as wanted.
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