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ABSTRACT We present a surprisingly simple 5-approximation alganifior
MRoB and 6-approximation for SST, improving on the best prev
ous guarantees of 6.828 and 12.6, and show that no apprasimat
ratio better than 67 can be achieved using the above mentioned
randomized scheme in combination with the currently bestkn
Steiner forest approximation algorithms. A key compondrilo
approach are cost shares that are 3-strict fouthmodifiedorimal-
dual Steiner forest algorithm.

In the multi-commodity rent-or-buy network design problem

(MRoB) we are given a network together with a setkafermi-

nal pairsR= {(sy,t1),..., (S t)}- The goal is to install capacities

on the edges of the network so that a prescribed amount offflow

can be routed between all terminal pasysandt; simultaneously.

We can eitherent capacity on an edge at some cost per unit flow

or buy infinite capacity on an edge at some larger fixed cost. The

overall objective is to install capacities at a minimum kotzst. ) . )
The version of the stochastic Steiner tree problem (SST) con Categories and Subject Descriptors

sidered here is the Steiner tree problem in the model of tages F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-

stochastic optimization with recourse. In stage one, thigra numerical Algorithms and Problems

known probability distribution on subsets of vertices angl ean

choose to buy a subset of edges at a given cost. In stage two, a

subset of vertice3 from the prior known distribution is realized, General Terms

and additional edges can be bought at a possibly higher Tbst. Algorithms, Design, Theory

objective is to buy a set of edges in stages one and two solthat a

vertices inT are connected, and the expected cost is minimized.
Gupta et al. (FOCS '03) give a randomized scheme for the Keywords

MRoB problem that was both used subsequently to improve the approximation algorithms, stochastic optimization, chering

approximation ratio for this problem, and extended to yitild

best approximation algorithm for SST. One building blocKlis 1. INTRODUCTION
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The rootr is part of every terminal pair, i.er, € {s,t} for all
1<i <k Gupta et al. [11] gave a randomizedb3-approximation
algorithm for the problem.

Kumar, Gupta and Roughgarden [16] give the first constant-
factor approximation algorithm for the MRoB problem. Based
the techniques used by Gupta et al. [11] for the single-codityio
rent-or-buy problem, Gupta et al. [10] present a 12-appnaxion
algorithm for the MRoB problem. Becchetti et al. [6] recgrib-
tained the currently best known828-approximation algorithm for
this problem.

The MRoB problem is a special case of thalticommodity buy-
at-bulk (MBaB) problem. The input in this problem is as in the
MRoB problem, except for an additional sub-additive moneto
functionl : Z+ — R*. A feasible solution consists of a vectoe
Z|+E| of edge-capacities that allows férunits of flow to be routed

betweens andt;, for all (s,t) € R simultaneously, and feasibly.
The cost of installing capacitiesis 5 g | (Xe)Ce and the goal is to
find a feasible capacity installatiorof minimum total cost.

In [2], Awerbuch and Azar present @ a)-approximation for
MBaB, assuming that any metric can be probabilisticallyragp
imated by a family of tree metrics with an expected distorté
mosta. In [4], Bartal showsa = O(Iogzn) and improves this
bound in [5] toa = O(lognloglogn). More recently, Fakcharoen-
phol et al. [8] show thatr = O(logn). Recently, Andrews [1] shows
that the results in [2] and [8] are best possible up to conésators
unlessiiP C ZPTIME(nPoYoa(n)),

Stochastic Steiner Tree. The stochastic Steiner tree problem
(SST)we consider here is the Steiner tree problem in the model of
two-stage stochastic optimization with recourse. In stagg there
is a known probability distributiomr on subsets of vertices and we
can chose to buy a subset of edges at a given cost. In staga two,
subset of vertice3 from the prior known distribution is realized,
and additional edges can be bought at a possibly higher Tbst.
objective is to buy a set of edges in stages one and two solthat a
vertices inT are connected, and the expected cost is minimized.

We make no assumptions about the distributioon the subset
of vertices, except that we have access to it visampling ora-
cle. on request, the oracle outputs a subset of verticesawn
from the distribution. Gupta and Pal give a.@2approximation for
SST[12]. Prior to their work, there were constant factorrgntees
for the problem when all of the possible subsets realizedages
two contain a fixed root terminal [13, 14].

Common Framework. Our work uses a common framework
developed in Gupta et al. [10] for MRoB and extended by Gupta
and Palin [12] for SST. This framework first chooses a randal
setSC Rof the set of terminal pairs. It then computes an approxi-
mate Steiner foredts for Susing an adaptation of the primal-dual
algorithm for Steiner forests and buys its edges. Findtiig tor-
est is augmented to a feasible solution Roby renting additional
edges in a cheapest possible way such that all remainingrizgisn
in R\ Sare connected.

The performance of the above framework depends strongly on
a certainstability property of the Steiner forest algorithm used to
computeFs. For a foresF in G, let G|F denote the graph resulting
from contracting all trees of. We usecgr (u,Vv) to denote the
minimum cost of anyu,v-path inG|F. For a parametef > 0,
Gupta et al. [10] define the notion @-strict algorithms for the
minimum-cost Steiner forest problem:

DEFINITION 1. An algorithmALG for the Steiner forest prob-
lem is B-strict if there exist cost share&; for all (s,t) € R such
that

1. 3 (st)erést < optr, Whereoptg is the minimum cost of a

Steiner forest for R, and

2. G (st) < B-&stforall (st) € R, where Egt is a Steiner
forest for terminal set Rt = R\ {(s,t)} returned byALG.

Gupta et al. [10] then show that using arapproximate ang-
strict Steiner forest algorithm in their framework yields(a + f3)-
approximation algorithm for the MRoB problem. The authors
devise a 6-approximate and 6-strict algorithm for Steimeedts
which yields a 12-approximate algorithm for MRoB. Their hna
ysis can be tightened to achieve an 8-approximation. Beiiche
et al. [6] reduced the approximation ratio t8B88 by devising a
(2+ v/2)-approximate an@2+ v/2)-strict primal-dual Steiner for-
est algorithm.

The notion of strictness defined above assumesRlimh set of
terminal pairs. To extend this framework to handle SST, @apid
Pal extend the notion of strictness to a Reif terminal subsets of
arbitrary size, callegroups For a grougy € R, letcg e (9) denote
the minimum cost of connecting all terminalsgin GJ|F.

DEFINITION 2. An algorithmALG for the Steiner forest prob-
lem isB-group-strictif there exist cost share, for all g € R such
that

1. Y gerég < optr, Whereoptg is the minimum cost of a Steiner
forest for R, and

2. GgF 4(9) < B-§gforall g € R, where Eq is a Steiner forest
for terminal set Rg = R\ {g} returned byALG.

The algorithms in [6], [10], and [12] all adapt the primaladu
Steiner forest algorithm from [3]. In these papers, stasgis
achieved by adding extra edges into the Steiner forest peatiby
the standard primal-dual algorithm. This worsens the appra-
tion ratio but reduces the cost of augmenting a feasiblestére,
into a feasible forest foR.

Our Results. In this paper, we show that the primal-dual algo-
rithms for Steiner forest [3, 15] are 3-strict and 4-grotieswith
appropriate cost sharing rules. We summarize our main iboRtr
tion in the following theorem:

THEOREM 1. There exists a primal-duaé-approximate algo-
rithm for the Steiner forest problem that 8strict and 4-group-
strict.

This implies a 5-approximation for MRoB and a 6-
approximation for SST using the framework in [10, 12]. Moreo
this also implies a 5-approximation algorithm for the 2gsta
stochastic Steiner forest problem in the independent ass
model [13].

This is the first algorithm to show that thexmodifiedprimal-
dual Steiner forest algorithm hasnstantstrict or group-strict cost
shares. Finally, we present an example instance that stawthe
natural primal-dual Steiner forest algorithm is r@étf €)-strict for
any & > 0, therefore showing that the two-stage analysis of Gupta
et al. given in [10] is nearly tight for MRoB.

Outline of Paper. In Section 2, we define the structure of our
cost shares and give a surprisingly simple property thaliés@a-
group-strictness if the cost shares are based om-approximate
Steiner forest. In Section 2, we also present our impro%ed
strictness result for cost shares that satisfy an additimtpire-
ment. In Section 3, we review the Steiner forest algorithKR
and show how the cost of every edge of the forest that is casdput
is shared between terminal pairs in order to meet the regeinés
of our strictness results. Finally, in Section 4, we giveregkes
that demonstrate that our results are nearly tight for theé&work
proposed by [10].



2. STRICTNESS OF COST SHARING AL-
GORITHMS FOR STEINER FORESTS

Suppose we are given an-approximation algorithmALG that
computes a Steiner forestfor the set of terminal groupR. In this
section, we define two different cost sharing schemes taldlis¢ a
fraction of% of the cost ofF among the terminals. These schemes
crucially rely on a notion ofvithesseshat are associated with each
edgee € F. We show that ifALG and the witness definition satisfy
certain properties, these cost sharing schemes yeelgrdup-strict
and % a-strict cost shares.

We assume without loss of generality that the terminal skts o
two different groups irR are disjoint. Ifs appears in two groups,
01 andgy, we can create two new nodgsands,, add edgess, S)
and(sp,s) each of zero cost, and replaswith s; in g; and withs,
in go.

Given thatF is produced by aa-approximation algorithnALG,
we define the cost shaéde) of an edgee € F as

1

§(e)=cle. (1)

For each edge € F, we assign two terminal¥e = {u,v} to be
the witnessef e and splité (e) between the terminals i#e. In
this section, we give two different ways of splitting thisstshare,
yielding two different strictness results.

Let &y(e) be the share of (e) of terminalu € #¢ according to
the split. The total cost share assigned to terminial

éu= u(e).

ecF 1 ue¥e

The cost share of a group of terminglg Ris §g = 3 g éu-

We prove that if cost shares are distributed as describedtatize
total cost share of all groups of terminals does not exceedphi-
mum cost. This validates condition (1) of Definition 2.

LEMMA 1. Let F be a Steiner forest computed by an
approximate algorithmALG and let {#c}ecr be the associated
witness set. If the cost sharésare computed as described above

then
ZREQ S OptR.
ge

PROOF By our cost sharing rule (1), we have

c(F)= eg':(:(e) = eg:u;/ aéyle) = agngg
O

2.1 Symmetric Cost Share Assignment

Crucial to proving the strictness of our cost sharing scheme
to define the witness sé¥e}ecr to satisfy the following property.
For a group of verticeg € R, let Ty denote the unique tree connect-
ing g in F if such atree exists; otherwiSg = 0. In the following
we abuse notation by letting a pa&®or treeT also stand for the set
of edges in it.

and this implies the lemma a$F ) < o - optg.

PROPERTY 1. Consider an arbitrary group of terminalsg R
and let e be an edge in treg.TIf #eNg= 0 then e is part of the
forest F .

Remove terminal groug from R and runALG on the set of
terminal groupR_g = R\ {g}. Property 1 implies that if an edge
e € Ty is not part of the foresF_g thene is witnessed by some
terminal ing, i.e., ZeNg # 0.

A natural idea is to split the cost shafée) of e evenly among
the two witnesses. This is what we call tigmmetric cost share
assignment

Symmetric cost share assignmentThe cost share that each wit-
nessu € #e receives for edgeis
1
éu(e) = Ef(e)- (2
It is easy to see that Property 1 together with the symmest ¢
share assignment yields cost shares that arstéct.

LEMMA 2. Let F be a Steiner forest computed by an
approximate algorithmALG and let{#z}eck be the witness set.
If algorithm ALG and {#&}eck satisfy Property 1, then the sym-
metric cost share§ are 3 = 2a-strict, i.e., for all ge R

ColF 4(9) < 20 - &g.

PrROOF. Property 1 ensures that all edges Tg that are not part
of F_g must be witnessed by some terminabinThe claim of the
lemma follows since for each edg®f Ty with #eNg # 0, there is

some terminali in g with &u(e) = 3&(e) = 5c(e). O

2.2 Asymmetric Cost Share Assignment

We next turn to a refinedsymmetric cost sharing scheménere
we split the cost sharé(e) of an edgee € F unevenly among
its witnesses iZ.. We prove that this asymmetric cost sharing
scheme yieldga-strict cost shares, if only algorithLG and the
witness se{ #c}ecr satisfy an additional property.

This property is motivated by the following intuition: Ifi@i-
nals in groupg witness some edges that are notTy) it might
be cheaper to connect the terminalsgin F_g by using those
edges instead of some edgesTy\ F_g. If these alternate edges
do not provide a cheaper connection than the correspondigese
in Ty \ F_g, then they contribute some significant cost sharg to
thatg can then use to pay for edgesTig\ F_g.

PROPERTY 2. There exists an ordek on the groups of termi-
nals in R such that for any two terminal groupshge R, h< g
implies that all edges e ofy R Ty with #e g = 0 are part of the
forest F 4.

While we will show in Section 3.3 that our witness definition
satisfies Property 2 for groups of arbitrary size, the asytriomeost
sharing rule below is designed specifically for the case wdilen
groups are pairs. Thus the remainder of this section is ddviat
the case when all groups consist of just two terminals. Ind¢hse,
we specialize our notation as followBx; is the unique path ifr
connectings andt. For terminaluy, let u be the terminal it is paired
with, i.e., (u,0) € R. The cost share of a terminal p&ir,u) € Ris
denoted .

We define an asymmetric cost sharing rule as follows:

Asymmetric cost share assignment:Consider an edgec< F and
let #e = {u,v}. Assume without loss of generality that
(u,u) < (wV). We share(e) among the two witnessas
andyv as follows:

_Jige) ife¢Pa
Eu(e)_{gf(e) it e P and

_ |38 ife¢Ru
Ev(e)_{gf(e) if ee Py ®
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Figure 1: The figure shows the pathPst and three terminal pairs (u;,u;), (uj,Uj) € lstwith 1<i < j<q.

Observe that with this cost sharing rule, the total costestizat the
witnesses ir#e receive fore € F is at most (e).

LEMMA 3. Let F be a Steiner forest computed by an
approximate algorithmALG and let{#z}eck be the witness set.
If algorithm ALG and{#¢}eck satisfy Properties 1 and 2, then the
asymmetric cost shardsare 3 = %a-strict, i.e, forall(st)eR

3
ColF 4 (St) < éa'fst-

PROOF Consider pathrst in F. From Property 1 we know that
each edge € Py that is missing irF_g; is witnessed by at least one
of sandt. If the cost share of terminal pafs,t) for such an edge
eis at least3&(e), then 3a - &(e) suffices to reconstrue We
can therefore reconstruct all such edges u%ugimes their total
cost share. By contracting all such edge$-in;, we can assume
without loss of generality that & or t witness an edge ¢ F_g,
thenést(e) = %E(e). Let s be the set of all such edges.

M= (< OF o : &x(0) = SE(0)}

We show that we can establish connection betweeandt in the
contracted graph at a cost at mést Y ec.u, €st(€). By then uncon-
tracting the edges for whicfs(e) > %E(e), we have established a
connection betweesandt in G|F_s; at cost at mosgafst.

By Property 2 and the cost share assignment given in (8)if
Pst N st then the following must hold: (i) there is a termina
{s,t} that together witls ort witnesse, (ii) (u,u) < (s,t) and (iii)

e € Pyg. For these edges we need to collect additional cost share

from edges irP,7\ Pst witnessed by(s,t) and possibly exploit the
connectivity provided by,gin F_gt.

Let Ist be the set of terminal pairs that witness edgesgro-
gether with one of andt:

Ist = {(u,u) € R: Je € Ps such that
{s,t} N #e # 0 and{u,u} N #e # 0}.

Assume thatst = {(u,U1),..., (g, Ug)} for someq > 0. We use
R, 1 <i <q, to refer to they;, Uj-path inF. For 1<i < q, let pj
and p; be the first and last vertices ¢ that are onPs;. We call
pi and pj the projectionsof u; andu;, respectively, on patRs.. We
choose the labgh; so that it is closer tethanp; for all 1 <i <gq.
We order the indices of pairs ig; so thatp; is closer tos than pj
forall 1 <i < j <q. Refer to Figure 1 for an example.

In the following, we letP; be thes, pi-segment ofPs; for all
0 <i < g (where we defingy = s). We then define

2 =PLUPLU...UR

as the union of patR; and the paths of the firsterminal pairs in
Ist. Finally, let.Zy = #stN 2" be the set of edges i#¥' that are
witnessed by ort.

For an edge seS C .Zs, let &(S) be a short-hand for
Yecsést(€). Using induction over G< i < g, we will now prove
that we can reconstruct anz-path inF_g; for all verticesz e &'
at a cost at mosf o - Est(7Ly).

This is clearly true for = 0. Now assume that the claim holds for
some 0<i < g. Consider first the case whepe precedes;.1 on
Pst (see also Figure 2.(i)). Letbe a node on the;, pi.1-segment
P of Ps;. Observe that none of the edges P can be contained
onPj for any 1< j < g. Hence, ifsort witnessed this edge, they
would receive at least a cost share%ﬁ(e). We excluded those
edges initially and hence, using the inductive hypothesescan
reconstruct as, z-path inF_g; at a cost at mo%a Est(MY).

For the above argument, we will now assume that precedes
pi on Pyt Let f andl be the first and last vertices d# 1, re-
spectively, that are incident to edges@ (refer to Figure 2.(ii)).
Clearly, the uniquef,l-path P;; in F must be contained in?'.
Let z; be a node orP;;. We can then use the induction hypoth-
esis in order to reconstruct anzi-path inF_g; at a cost at most
Sa- Sl ).

Now consider a node, € P 1\ Pf|. Assume that, is contained
on thel, U 1-segment o1 (the case where, is contained on
theu;,1, f-segment oB ;1 works analogously). We consider two
ways to reconstruct agz-path inF_gt:

1. UsePs for the union of thay, 1, f- andz, U;, 1-segments of
P11, and let#; be the set of edges ¢ that are witnessed
by sort. We can then inductively reconstruct srf -path in
F_st at a cost at mos%af( o). Using the fact that; .1
andu;. 1 are connected ifr_st, we obtain ars, z,-path by
reconstructing. This costs at mostd- &st(#).

2. UseR for thel,z-segment of® 1 and let.# be a short-
hand for.ZstnA. We can then inductively reconstruct an
s,|-path inF_gt at a cost at moga & (). We obtain an
s, zp-path by reconstructing at a cost at most@- &«t(.4 ).

In summary, reconstructing anz,-path inF_g; costs at most

- Bl )+ 30t min{E( 1), Eal A1)}

< ga' <Est(///3it) + &st(At) + Est(%)) .

Observing thatss U.#; U.#} is a partition of. 24 finishes the
proof of the lemma. O

3. A PRIMAL-DUAL BASED STRICT AL-
GORITHM FOR STEINER FORESTS

In this section we review § — 1/k)-approximate primal-dual
algorithm for Steiner forests. The algorithms for Steirett pre-
sented in [3] and [15] differ only slightly. In this paper, feus on
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Figure 2: The figure illustrates the cases used in the proof diemma 3. Solid edges represent segments Bf;, dotted edges represent

connectivity in F_gt.

the viewpoint taken in [3]. We usBKR to refer to this algorithm.
We then show thaAKR together with an appropriate witness defi-
nition satisfies Properties 1 and 2.

While the Steiner forest problem is traditionally definedpairs
of nodes, itis easy to extend the definition to groups of noHesv-
ever, in the case of the Steiner forest problem, the groupl@mo
can be modeled and solved as the problem defined on pairseby cr
ating a pair for each pair of nodes in a group.

3.1 Primal-Dual
Forests

The primal-dual algorithmAKR constructs both a feasible pri-
mal and a feasible dual solution for a linear programmingnior
lation of the Steiner forest problem and its dual, respebtivA
standard integer programming formulation for the Steirmeedgt
problem has a binary variabkg for all edges € E. Variablexe has
value 1if edgeeis part of the resulting forest. We |&t contain ex-
actly those subsets$ of V thatseparateat least one terminal pair in
R. In other wordsl € % iff there is(s,t) € Rwith |[{s,t}NU|=1.

For a subset of the nodes we also I€f(U) denote the set of
those edges that have exactly one endpoibk.ilVe then obtain the
following integer linear programming formulation for theefher
forest problem:

Algorithms for Steiner

min CeXe (1P)
&

s.t. Xe>1 YWUWew%
eco(U)
X integer

The linear programming dual of the LP-relaxation (LP) of)(fRs
a variableyy for all node setd) € . There is a constraint for
each edge € E that limits the total dual assigned to skétss %
that contain exactly one endpoint@fo be at moste.

(D)

max Yu
Ue#

s.t. Yy <cC VecE
Ue%ecd(U)

y>0

4)

Algorithm AKR constructs a primal solution for (LP) and a dual
solution for (D). The algorithm has two goals:

1. Compute a feasible solution for the given Steiner fonest i
stance. The algorithm reduces the degree of infeasibiity a
it progresses.

2. Create a dual feasible packing of sets of largest possitde
value. The algorithm raises dual variables of certain sgbse
of nodes at all times. The final dual solution is maximal in

the sense that no single set can be raised without violating a
constraint of type (4).

Consider the execution of algorith&AKR as a process over time
and letx" andy' be the primal incidence vector and feasible dual
solution at timer. Note that in any optimal solution to (IP}e €
{0,1}. LetFT denote the forest corresponding to the set of edges
with x§ = 1. Initially, let x2 = 0 for all e € E andyg = 0 for all

U € % . The algorithm maintains the invariacg < xZ andyf, <y§
forallt < 1.

An edgee € E is tight if the corresponding constraint (4) holds
with equality; and a path i8ght if every edge in the path is tight.
Assume that the fore$t” at timerT is infeasible. A terminal node
v € Ris activeat timet if v and itsmatev, i.e., (V) € R, are in
different trees in the foredt™; v is inactive otherwise! Let FT
denote the subgraph &fthat is induced by the tight edges for dual
y'. To avoid confusion between connected components’iand
those inF T, the termmoatrefers to a connected componentih.
The algorithm maintains that @ € FT thenC C U € FT. A moat
U of FT is active at timer if U contains an active termindlj is
inactive otherwise. LeA” be the set of all active moats F’ at
time 7. AKR raises the dual variables for all setsAh uniformly
at all timest > 0, so that ifU is active from timer’ until time 1”,
thenyy =1 —1'.

Two disjoint moatscollide at time T in the execution ofAKR
if there is a path inG from one moat to the other that becomes
tight at timet. In order for this to happen, at least one of the two
moats must be active. Suppose that a ffatlonnecting twaactive
terminalsu andu’ becomes tight at time in the execution oAKR.
Thenu is contained in some active mddtandu’ is in a disjoint
active moat)’. When this happen#AKR adds the edges & not
already inFT to FT: that is, for alle € P, the algorithm sets} = 1.
Fort’' > 1, setsU andU’ are part of the same moat Bf .

Subsequently, we usé’ (v) to refer to the moat ifF* that con-
tains nodes € V at timet. Similarly, we letU ™ (C) denote the moat
in FT that contains the connected compor@mt F' at timet. Let
F be the final forest.

The following is the main theorem of [3]:

THEOREM 2. Let F be the forest computed BKR on termi-
nal set R. We then havéfe) < (2— 1) - optg, Whereoptg is the
minimum cost of a Steiner forest for the given input instamitke
terminal set R.

3.2 Witness Definition

We define a sef#c}eck Of witnesses that are used to distribute
the cost shares as described in Section 2. In Section 3.3 ave sh

INote that for the problem defined on groups, each termindien t
group will become inactive at exactly the same time, sindbéf
group is not connected, then each terminal is not connectsaihe
other terminal in the group.



Figure 3: A path P that becomes tight at timetp in AKR(R).

that AKR together with this witness definition satisfies Properties 1
and 2.

Let AKR(S) refer to the execution 0AKR on terminal se6C R.
Let F be the forest computed BYKR(R) for terminal setR. The
witnesses#, for each edge € F are defined by the execution of
AKR(R).

Consider a patl® that becomes tight at timg in AKR(R), as
depicted in Figure 3. Path starts from a node& in a connected
componentC of F™, passes through a (possibly empty) sequence
Ci,...,G of connected components BfF, and ends in a nodé of
a connected compone@t of F». LetPy,..., A1 be the sequence
of paths ofP\ F® and letZp be the set of edges \F . When
P becomes tight, the se¥p is added to~- and we determine for
each edge € &p the corresponding withess#4 as follows.

Each edge € % will have the same witness sgt = {w,w'}.
We will also say thaP is witnessed byv andw’. Since the moats
U™ (C) andU™(C’) are active at timap, bothC andC’ must con-
tain at least one active terminal. We will choose one witra@seng
the active terminals in each & andC’. Intuitively, the witness
chosen irC is the active terminal whose moat interseét®arliest
among all active terminals i@. Similarly, the moat of the witness
chosen irC’ is the first to intersed® , ; among all active terminals
in C'. To make this precise, | be the set of terminals i@ that
are active at timap. By definition ofC, all terminals inAc are
connected tarin F™. If uc Ac, thenw = u. Otherwise, letr, be
the first time that modt *(u) collides with a moat, containing a
terminal inAc. (Letty=0ifue Ac.)

LEMMA 4. There is a terminal w in YN Ac whose moat col-
lides with u’s moat at time even if all terminals in A\ {w} are
not part of the terminal set R.

PrRoOFR We will prove the lemma by showing a stronger claim:
For all terminalsv in C that become inactive before ting, let 1,
be the first time that mo&t T (v) collides with a moatly containing
at least one terminal frofc. Then there is a terminal € UyNAc
whose moat collides witk’'s moat at timery, even if all terminals
in Ac\ {w} are not part of the terminal s This clearly implies
the lemma.

Fix a terminalv in C that becomes inactive at some time before
Tp. Observe that by the definition af, UT(v) does not intersect
Ac before timery, and therefore the growth efs moat until time
Ty is not affected by the removal é&.

The proof is by induction ofJy|. If |Uy| = 1 then the set con-
sists of only a terminalv € Ac, and the growth ofv's moat is not
affected by the removal of other terminalsAg.

Now assume thgtly| > 1. Letze Uy be the endpoint of the path
R, that becomes tight whe, collides withUT(v). If zis in Ac we
are done: We define = z and observe that’'s moat intersect&,
atall times 0< 1 < 1y even if the terminals i\c \ {w} are not part
of the terminal set.

Assume thatis notinAc. Inthis case, let; be the first time that
U'(z) collides with a moalJ; that contains a terminal frodc. We
have|U;| < |Uy| and can therefore apply the induction hypothesis
to zandU,. That is, there is a terminal € U, whose moat collides

with Zs moat at timer; even if all terminals irAc \ {w} are not part
of the terminal seR. Sincew s in Ac, it causes the moat containing
zto grow after timer; regardless of other terminals At. Thus,
w's moat collides with that o at time 1, and this finishes the
lemma. O

The witnesaw is a terminal described by Lemma 4. The witness
w with respect tcC’ is defined analogously.

3.3 Properties ofAkR

We show that Properties 1 and 2 hold #KR and the witness
definition given above. Lef#c}ecr be the set of witnesses as-
signed byAKR. Let¥_g (where¥ =U,F or F) refer to set¥
in run AKR(R—g). For examplel I (u) refers to the moat ofi at
time 7 in AKR(R_g). Let 7y denote the time at which all terminals
in groupg become inactive ilMKR(R). Subsequently, we abuse
notation by lettingR also refer to the set of all terminals that are
contained in the groups &.

LEMMA 5. For all T < 1g and for all terminals ve R g:
UZg4(v) CUT(v). Moreover, if UF (v)Ng =0, then UL (v) =U T (v).

PROOF We prove the lemma by induction over timeAt time
T =0 we haveUIy(v) =UT(v) for all v € R_g and thus the in-
duction hypothesis clearly holds. Assume the inductioroliypsis
holds at timer. We will show that it remains true at time+ € for
any smalle > 0.

Consider the cade’ (v) g =0 and thusJ*y(v) =UT(v). That
is, UZ4(v) is active at timer iff UT(v) is active at that time. Then
UTEE(V) = UTHE(v) if UTHE(v)ng = 0; andUT{#(v) CUTHE(v)
otherwise. Now assumé®(v) Ng# 0 and thudJy(v) CUT(v).
Clearly,U™"¢(v)ng+ 0. Sincer < g, all terminals ing are active
at timet and thus ™ (v) is active at timer. It follows UT{#(v) C
UT™éwv). O

CoROLLARY 1. Consider a terminal £ R_g. If v is active at
timet < 14 in AKR(R) then v must be active until time at leasin
AKR(R_g).

As in Figure 3, leP be a path connecting two active components
C andC’ that becomes tight at timg < Ty in the execution of
AKR(R). As before, let andu’ be the two endpoints i@ andC’,
respectively, and le€y, .. .,C; be the connected componentsdf
that lie onP. Moreover, assume is witnessed by andw'. The
following lemma implies Property 1 for our definition of wésses.

LEMMA 6. Assume that none of the two witnesses’wf P is
in g, i.e.,, Zeng =0 for all edges e= &p. Then for each edge
e e P, the contribution to (4) before tin®g is the same IMKR(R)
as itis iNAKR(R_g). In particular, P is added at timep in both
runs.

PROOF. Firstwe show that the contribution to (4) from variables
corresponding to moats not containingndu’ is the same in both
runs. Forall I<i <1, G is inactive at timep < 1g, so thaCiNg =



Figure 4: Instance used in the lower bound argument.

0. LetT; < 1p be the time at which compone@t becomes inactive.
Then, by Lemma BJQT(V) =UT(v) forall T < 1, for all v e G, for
all 1 <i <. Thus, the dual variable values for all sets restricted to
subsets o€ are the same in bothKR(R) andAKR(R_g).

Now consider the contribution to (4) from variables cormsg
ing to moats containing. Let 7 be the first time at which moat
UT(u) collides with a moalJ containing a terminal if\c. By the
definition of T, U (uyng=0forall T € [0, 7). Thus by Lemma 5,
Ufg(u) =UT(u) for all T € [0,T); and the contribution to (4) from
variables corresponding to moats containingefore timef is the
same inAKR(R) andAKR(R_g). From timef, w andu are in the
same moat iMKR(R), and by Lemma 4, they are also in the same
moat at this time iIMKR(R_g). By Lemma 5,w is still active at
time 7p in both AKR(R) andAKR(R_g). Thus the contribution to
(4) of variables corresponding to moats containinfjom time £
until time 1p is also the same in both runs. A symmetric argument
for variables corresponding to moats containihnghows that path
P is tight at timetp in AKR(R_gt).

Finally, note that Lemma 5 also implies thatandw’ are con-
tained in disjoint moats iIMKR(R_st) before timerp. Hence path
P is added at timep in AKR(R_st) and the lemma follows. []

We show that the following precedence ordertogether with
the witness definition described above imply Property 2R

Consider a rurAKR(R). For each group of terminatse R, let
Ty be the time at which the terminals gnbecome inactive. Fix an
order on the terminal groups R= {gi }1<i<k such that

Tg < Tg < -+ < Tg-

We definegj < g;j if i < j in this order.
The following lemma implies Property 2.

LEMMA 7. Let g and h be two groups of terminals in R such
that h< g and let e be an edge on treg i F. If #eng=0then
ecF_g.

PROOF The proof is by contradiction. Assume that edges
not part ofF_g. Edgee € Ty is added td- at timeTt < 1, < 7g. By
Lemma 6 and sinc#eNg= 0, eis picked at timer in AKR(R_g).
This is a contradiction. [

4. A LOWER BOUND ON THE STRICT-
NESS FACTOR

Figure 4 shows a simple Steiner forest instance with twoiteam
pairsR= {(s;t),(s,t')}. The solid lines in Figure 4.(i) correspond
to edges of foresF returned by algorithnAKR when run on this
instance. The total cost share of all edge§ iis 3 and therefore,
there must be a terminal pair Rwhose cost share is at mo%t
Without loss of generality, assume th&at < % RunningAKR on
terminal setR_st = {(5,t)} yields the forest in Figure 4.(ii). As
ColF_q(Sit) = 4— ¢, this example shows that the strictnes#\6fR

is at leas{4— s)/% ~ % whenever the sum of the cost shares of all
terminal pairs is at most half of the cost of the computeddbre

We remark that the previously known algorithms for the MRoB
problem in [10] and [6] essentially distribute half of thestof a
forest computed bAKR as cost shares among the terminal pairs.
Given a terminal paifs,t) € R, both of these algorithms use an
adaptation of the standard primal-dual Steiner forestrialyno (so
calledtimedor boostedprimal-dual algorithms) to compute a forest
F_st. In a nutshell, the idea behind these adaptations is to pedu
a forest whose connectivity is higher than that of a forestipced
by standard primal-dual algorithms. For the example abboei-
ever, both algorithms in [10] and [6] return the forest in Uig
4.(ii). Thus, the above example provides%rower bound for the
strictness of these algorithms as well.

5. REFERENCES

[1] M. Andrews. Hardness of buy-at-bulk network design. In
Proceedings, IEEE Symposium on Foundations of Computer
Sciencepages 115-124, 2004.

B. Awerbuch and Y. Azar. Buy-at-bulk network design. In

Proceedings, IEEE Symposium on Foundations of Computer

Sciencepages 542-547, 1997.

[3] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An
approximation algorithm for the generalized Steiner peabl
in networks.SIAM J. Comput.24:440-456, 1995.

[4] Y. Bartal. Probabilistic Approximation of Metric Spasand
its Algorithmic Applications. InProceedings, IEEE
Symposium on Foundations of Computer Sciepages
184-193, 1996.

[5] Y. Bartal. On approximating arbitrary metrics by tree

metrics. InProceedings, ACM Symposium on Theory of

Computing pages 161-168, 1998.

L. Becchetti, J. Kbnemann, S. Leonardi, and M. Pal.r8ita

the cost more efficiently: Improved approximation for

multicommodity rent-or-buy. IfProceedings, ACM-SIAM

Symposium on Discrete Algorithnmages 375-384, 2005.

M. Bern and P. Plassmann. The Steiner problem with edge

lengths 1 and 2nform. Process. Lett32(4):171-176, 1989.

[8] J. Fakcharoenphol, S. Rao and K. Talwar. A tight bound on

approximating arbitrary metrics by tree metrics. In

Proceedings, ACM Symposium on Theory of Computing

pages 448-455, 2003.

M. R. Garey and D. S. Johnso@omputers and

Intractability: A Guide to the Theory of NP-completeness

Freeman, San Francisco, 1979.

A. Gupta, A. Kumar, M. Pal, and T. Roughgarden.

Approximation via cost-sharing: A simple approximation

algorithm for the multicommaodity rent-or-buy problem. In

Proceedings, IEEE Symposium on Foundations of Computer

Sciencepages 606-617, 2003.

A. Gupta, A. Kumar, and T. Roughgarden. Simpler and

better approximation algorithms for network design. In

Proceedings, ACM Symposium on Theory of Computing

pages 365-372, 2003.

(2]

(6]

(7]

(9]

[10]

[11]



[12] A. Gupta and M. Pal. Stochastic Steiner trees withoutod. [14] A. Gupta, R. Ravi, and A. Sinha. An edge in time saves:nine

In Proceedings, International Colloquium on Automata, LP rounding approximation algorithms. Rroceedings,

Languages and Programmingages 1051-1063, 2005. IEEE Symposium on Foundations of Computer Science
[13] A. Gupta, M. Pal, R. Ravi, and A. Sinha. Boosted sanplin pages 218-227, 2004.

Approximation algorithms for stochastic optimization. In [15] M. X. Goemans and D. P. Williamson. A general

Proceedings, ACM Symposium on Theory of Computing approximation technique for constrained forest problems.

pages 417-426, 2004. SIAM J. Comput.24:296-317, 1995.

[16] A. Kumar, A. Gupta, and T. Roughgarden. A constant facto
approximation algorithm for the multicommodity rent-amb
problem. InProceedings, IEEE Symposium on Foundations
of Computer Scien¢g@ages 333—-344, 2002.



