
Primal-dual meets local search: Approximating MST’s with
nonuniform degree bounds ∗

Jochen Könemann
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

jochen@cmu.edu

R. Ravi
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

ravi@cmu.edu

ABSTRACT
We present a new bicriteria approximation algorithm for
the degree-bounded minimum-cost spanning tree problem:
Given an undirected graph with nonnegative edge weights
and degree bounds Bv > 1 for all vertices v, find a spanning
tree T of minimum total edge-cost such that the maximum
degree of each node v in T is at most Bv. Our algorithm finds
a tree in which the degree of each node v is O(Bv + log n)
and the total edge-cost is at most a constant times the cost
of any tree that obeys all degree constraints.

Our previous algorithm[9] with similar guarantees worked
only in the case of uniform degree bounds (i.e. Bv = B
for all vertices v). While the new algorithm is based on
ideas from Lagrangean relaxation as is our previous work, it
does not rely on computing a solution to a linear program.
Instead it uses a repeated application of Kruskal’s MST al-
gorithm interleaved with a combinatorial update of approx-
imate Lagrangean node-multipliers maintained by the algo-
rithm. These updates cause subsequent repetitions of the
spanning tree algorithm to run for longer and longer times,
leading to overall progress and a proof of the performance
guarantee.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory ; F.2.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity—Nonnu-
merical Algorithms and Problems
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1. INTRODUCTION

1.1 Formulation
In this paper, we address the degree-bounded minimum-

cost spanning tree problem with nonuniform degree bounds
(nBMST). Given an undirected graph G = (V, E), a cost
function c : E → IR+ and positive integers {Bv}v∈V all
greater than 1, the goal is to find a spanning tree T of mini-
mum total cost such that for all vertices v ∈ V the degree of
v in T is at most Bv. This problem is clearly NP-hard since
it generalizes a variant of the TSP problem.

1.2 Previous work and our result
Related to the nBMST problem is the problem of comput-

ing a spanning tree of a given undirected graph G with min-
imizing maximum degree (MDST). Fürer and Raghavachari
presented an approximation algorithm for this problem with
an additive performance guarantee of one [4]: i.e., they de-
scribe a polynomial-time algorithm that finds a spanning
tree T of G with maximum node-degree ∆∗+1, where ∆∗ de-
notes the minimum possible maximum degree over all span-
ning trees.

It should be noted that the result in [4] can be extended
easily to the setting of non-uniform degree bounds: For each
node v in an n-node graph G, add n−Bv auxiliary nodes and
connect v to all of them. Then, run the algorithm from [4]
and, afterwards, remove the auxiliary nodes together with
their incident edges from the tree. It is not hard to see that
the degree of each node v is at most Bv + 1.

In the weighted setting, Ravi et al. [12, 13] showed how to
compute a spanning tree T of degree O(Bv log n) for all v ∈
V and total cost O(log n) · opt where opt is the minimum
cost of any tree in which the degree of node v is bounded
by Bv for all v ∈ V . The authors generalized their ideas
to Steiner trees, generalized Steiner forests and the node-
weighted case. Subsequently, Könemann and Ravi [8, 9]
improved the results on the (edge-weighted) spanning tree
version of the problem with uniform degree-bounds (where
Bv = B for all v). The main theorem from [9] is as follows:

Theorem 1 (see [9]). There is an approximation al-
gorithm that, given a graph G = (V, E), a nonnegative cost



function c : E → IR+, a degree bound B ≥ 2 and a parameter
ω > 1, computes a spanning tree T such that

1. ∆(T ) ≤ ω
ω−1
· bB + logb n for any arbitrary constant

b > 1, and

2. c(T ) < ω · opt .

The contributions of this paper are two-fold: First, we
present improved approximation algorithms for the minimum-
cost degree-bounded spanning tree problem in the presence
of non-uniform degree bounds. Second, our algorithm is di-
rect in the sense that we do not solve linear programs. The
algorithm in [9] uses Lagrangean relaxation and its starting
point is a solution to a large linear program. The analysis
of the algorithm’s performance guarantee relies crucially on
the fact that we solve the latter LP exactly.

On the other hand, our new algorithm integrates elements
from the primal-dual method for approximation algorithms
for network design problems with local search methods for
minimum-degree network problems [4]. The algorithm goes
through a series of spanning trees and improves the maxi-
mum deviation of any vertex degree from its respective de-
gree bound continuously. A practical consequence of this is
that we can terminate the algorithm at any point in time
and still obtain a spanning tree of the input graph (whose
node-degrees, of course, may not meet the worst-case guar-
antees we prove).

Theorem 2. There is a primal-dual approximation algo-
rithm that, given a graph G = (V, E), a nonnegative cost
function c : E → IR+, integers Bv > 1 for all v ∈ V and a
parameter ω > 1 computes a tree T such that

1. degT (v) ≤ max
{

ω
ω−1

, ω
}
· Bv + 2 · logb n + 1 for all

v ∈ V , and

2. c(T ) < ω · opt

where b > 1 is an arbitrary constant. The running time is
O(|V |6 log |V |).

We note that in the special case of Bv = B for all v ∈ V
our algorithm computes a tree of maximum degree at most
B + logb n + 1 and the running time is O(|V |5 log |V |).

The paper is organized as follows: First, we review the
primal-dual interpretation of the well-known algorithm for
minimum-cost spanning trees by Kruskal [11]. Subsequently,
we show how to use this algorithm for the nBMST problem
and present an analysis of performance guarantee and run-
ning time of our method.

2. A PRIMAL-DUAL ALGORITHM TO
COMPUTE MST’S

In this section we review Kruskal’s minimum-cost span-
ning tree algorithm. More specifically, we discuss a primal-
dual interpretation of this method that follows from [2]. We
start by giving a linear programming formulation of the con-
vex hull of incidence vectors of spanning trees.

2.1 The spanning tree polyhedron
In the following, we formulate the minimum-cost spanning

tree problem as an integer program where we associate a
0, 1-variable xe with every edge e ∈ E. In a solution x,

the value of xe is one if e is included in the spanning tree
corresponding to x and 0 otherwise. Our formulation relies
on a complete formulation of the convex hull of incidence
vectors of spanning trees (denoted by SPG ) given by Chopra
[2].

Chopra’s formulation uses the notion of a feasible partition
of vertex set V . A feasible partition of V is a set π =
{V1, . . . , Vk} such that the Vi are pairwise disjoint subsets
of V . Moreover, V = V1∪. . .∪Vk and the induced subgraphs
G[Vi] are connected. Let Gπ denote the (multi-) graph that
has one vertex for each Vi and edge (Vi, Vj) occurs with
multiplicity |{(vi, vj) : vi ∈ Vi, vj ∈ Vj}|. In other words,
Gπ results from G by contracting each of the Vi to a single
node. Define the rank r(π) of π as the number of nodes
of Gπ and let Π be the set of all feasible partitions of V .
Chopra showed that

SPG = {x ∈ IRm :
∑

e∈E(Gπ)

xe ≥ r(π)− 1 ∀π ∈ Π}.

We now let δ(v) denote the set of edges e ∈ E that are
incident to node v and, for a subset S ⊆ V , we define δ(S)
to be the set of edges that have exactly one endpoint in
S. We obtain an integer programming formulation for our
problem:

min
∑

e∈E

cexe (IP)

s.t
∑

e∈E[Gπ]

xe ≥ r(π)− 1 ∀π ∈ Π

x(δ(v)) ≤ Bv ∀v ∈ V (1)

x integer

The dual of the linear programming relaxation (LP) of (IP)
is given by

min
∑

π∈Π

(r(π)− 1) · yπ −
∑

v∈V

λvBv (D)

s.t
∑

π:e∈E[Gπ]

yπ ≤ ce + λu + λv ∀e = uv ∈ E (2)

y, λ ≥ 0

We also let (IP-SP) denote (IP) without constraints of type
(1). Let the LP relaxation be denoted by (LP-SP) and let
its dual be (D-SP).

2.2 A primal-dual interpretation of Kruskal’s
MST algorithm

Kruskal’s algorithm can be viewed as a continuous process
over time: We start with an empty tree at time 0 and add
edges as we go along. The algorithm terminates at time t∗

with a spanning tree of the input graph G. In this section we
show that Kruskal’s method can be interpreted as a primal-
dual algorithm (see also [7]). At any time 0 ≤ t ≤ t∗ we
keep a pair (xt, yt), where xt is a partial (possibly infeasible)
primal solution for (LP-SP) and yt is a feasible dual solution
for (D-SP). Initially, we let xe,0 = 0 for all e ∈ E and
yπ,0 = 0 for all π ∈ Π.

Let Et be the forest corresponding to partial solution xt,
i.e. Et = {e ∈ E : xe,t = 1}. We then denote by πt the
partition induced by the connected components of G[Et]. At
time t, the algorithm then increases yπt

until a constraint



of type (2) for edge e ∈ E \Et becomes tight. Assume that
this happens at time t′ > t. The dual update is

yπt,t′ = t′ − t.

We then include e into our solution, i.e. we set xe,t′ = 1. If
more than one edge becomes tight at time t′, we can process
these events in any arbitrary order; Thus, note that we can
pick any such tight edge first in our solution. Subsequently,
we will use MST to refer to the above algorithm.

The proof of the following lemma is folklore. We supply
it for the sake of completeness.

Lemma 1. At time t∗, Algorithm MST finishes with a pair
(xt∗ , yt∗) of primal and dual feasible solutions to (IP-SP)
and (D-SP), respectively, such that

∑

e∈E

cexe,t∗ =
∑

π∈Π

(r(π)− 1) · yπ,t∗

Proof. Notice, that for all edges e ∈ Et∗ we must have
ce =

∑
π:e∈E[Gπ] yπ,t∗ and hence, we can express the cost of

the final tree as follows:

c(Et∗) =
∑

e∈Et∗

∑

π:e∈E[Gπ]

yπ,t∗ =
∑

π∈Π

|Et∗ ∩E[Gπ ]| · yπ,t∗ .

By construction Et∗ is a tree and we must have that the set
Et∗ ∩ π has cardinality exactly r(π) − 1 for all π ∈ Π with
yπ,t∗ > 0. We obtain that

∑
e∈E

cexe,t∗ =
∑

π∈Π(r(π)− 1) ·
yπ,t∗ and this finishes the proof of the lemma.

3. MINIMUM-COST DEGREE-BOUNDED
SPANNING TREES

In this section, we propose a modification of the above al-
gorithm for approximating degree-bounded spanning trees
of low total cost (for suitably weakened degree bounds).
Our algorithm goes through a sequence of spanning trees
E0, . . . , Et and associated pairs of primal (infeasible) and
dual feasible solutions xi, (yi, λi) for 0 ≤ i ≤ t. The idea is
to reduce the degree of nodes v ∈ V whose degree is substan-
tially higher than their associated bound Bv , as we proceed
through this sequence, while keeping the cost of the asso-
ciated primal solution (tree) bounded with respect to the
corresponding dual solution.

To begin, our algorithm first computes an approximate
minimum-cost spanning tree using the Algorithm MST. This
yields a feasible primal solution x0 for (LP-SP) and a feasible
dual solution y0 for (D-SP). Notice that y0 also induces a
feasible solution for (D) by letting λ0

v = 0 for all v ∈ V while
x0 potentially violates constraints of type (1).

We introduce the notion of normalized degree of a node V
in a tree T and denote it by

ndegT (v) = max{0, degT (v)− βv · Bv} (3)

where βv > 0 are constants for all v ∈ V to be specified later.
Our algorithm successively computes pairs of spanning trees
and associated dual solutions to (D), i.e.

(x1, {y1, λ1}), (x2, {y2, λ2}), . . . , (xt, {yt, λt}).

From one such pair to the next, we try to reduce the degree
of nodes of high normalized degree. Specifically, our algo-
rithm runs as long as there is a node in the current tree with
ndeg(v) ≥ 2 logb(n) for some constant b > 1.

We let Ei be the spanning tree corresponding to xi and let
∆i be the maximum normalized degree of any node in the
tree Ei. The central piece of our algorithm is a recompute
step where we raise the λ values of a carefully chosen set Sd

of nodes with high normalized degree. This introduces slack
in many of the constraints of type (2). Subsequently, we
rerun MST and ensure that it generates a feasible dual pack-
ing that takes advantage of the newly created slack around
nodes of high normalized degree. At the same time MST com-
putes a new tree and we ensure at all times that its cost is
close to the objective function value of the associated dual.
We are able to show that the number of recompute steps is
polynomial, by arguing that we make substantial progress
in the normalized degree sequence of all nodes.

As mentioned, each recompute step takes a pair of primal
infeasible and dual feasible solutions (xi, (yi, λi)) and com-
putes a new pair of primal (infeasible) and dual feasible so-
lutions (xi+1, (yi+1, λi+1)). In the following we use ndegi(v)
as a short for ndegEi(v). We then adapt the notation from
[3, 4] and let

Si
d = {v ∈ V : ndegi(v) ≥ d}

be the set of all nodes whose normalized degree is at least d
in the ith solution.

Algorithm 1 The algorithm for the nBMST problem at-
tempts to reduce the maximum normalized degree of any
node in a given spanning tree.

1: λ0
v ← 0, ∀v ∈ V ; c̃0

e ← ce, ∀e ∈ E
2: (x0, y0)← MST(G, c̃0)
3: i← 0
4: while ∆i > 2 logb(n) do

5: Choose di ∈ {∆i − 2 logb(n), . . . , ∆i} s.t.∑
v∈Si

di
−1

Bv ≤ b ·
∑

v∈Si

di

Bv

6: Choose εi > 0
7: For all v ∈ V let

λi+1
v ←

{
λi

v + εi : v ∈ Si
di−1

λi
v : otherwise

8: c̃i+1(e) ← c̃i(e) + εi if either e ∈ Ei and e ∩ Si
di 6= ∅

or e 6∈ Ei and e ∩ Si
di−1 6= ∅

9: (xi+1, yi+1)← MST(G, c̃i+1)
10: i← i + 1
11: end while

A detailed description of the procedure is given in Algo-
rithm 1. Recall that MST(G, c̃) returns a pair of primal and
dual optimal solutions to (LP) and (D) for cost function c̃.
In step 5 of Algorithm 1, we choose a suitable set of nodes
whose λ-values we increase. A simple argument in [3] can
be extended to show the following.

Lemma 2. There is a di ∈ {∆i − 2 logb(n), . . . , ∆i} such
that

∑

v∈Si

di
−1

Bv ≤ b ·
∑

v∈Si

di

Bv

for a given constant b > 1.

Proof. Suppose for a contradiction that for all di ∈



{∆i − 2 logb(n), . . . , ∆i}, we have
∑

v∈Si

di
−1

Bv > b ·
∑

v∈Si

di

Bv.

Note that since we may assume Bv ≤ (n − 1) for all ver-
tices, we must have

∑
v∈V Bv ≤ n(n − 1). However, since∑

v∈Si

∆i

Bv ≥ 1, we have in this case that

∑

v∈Si

∆i
−2 log

b
(n)

Bv ≥ b2 logb(n) = n2

a contradiction.

The low expansion of Si
di turns out to be crucial in the

analysis of the performance guarantee of our algorithm.
Intuitively, increasing λv for a node v ∈ V lengthens edges

of the form uv ∈ E; In this way, in the current packing
{yi

π}π∈Π, we create extra slack in constraints of type (2) for
edges incident to v. The hope is to increase the length of
edges incident to nodes of high normalized degree until other
edges that are incident to nodes of lower normalized degree
are used in their place in the spanning tree.

Step 6 of Algorithm 1 hides the details of choosing an
appropriate εi by which edges in the current tree that are
incident to nodes of normalized degree at least di are length-
ened. Our choice of εi will ensure that there exists at least
one point in time during the execution of MST in step 9 at
which we now have the choice to connect two connected com-
ponents using edges ei and ei where ei ∈ Ei and ei 6∈ Ei.
We now break ties such that ei is chosen instead of ei and
obtain a new tree Ei+1 that differs in exactly one edge from
Ei.

We show that we can choose εi and hence a pair of edges
〈ei, ei〉 such that ei is not incident on any node from Si

di−1.

The main idea here is to increase λv for nodes v ∈ Si
di−1 by εi

and increase the lengths of non-tree edges that are incident
to nodes v ∈ Si

di−1 by εi as well. In other words, the length
of non-tree edges incident to nodes of normalized degree at
least di − 1 increases by the same amount as the length of
tree edges incident to nodes of normalized degree at least di.
This way, we enforce that the edge we swap in touches nodes
of normalized degree at most di − 2. Once we accomplish
this, adapting a potential function argument from [3] we
can put a polynomial upper bound on the number of such
iterations (see Section 3.5).

Suppose, that our algorithm terminates after t iterations.
Our goal is then to prove

∑

e∈Ei

ce ≤ ω
∑

π∈Π

(r(π)− 1) · yi
π − ω ·

∑

v∈V

Bv · λ
i
v (4)

for all 1 ≤ i ≤ t. The right-hand side of (4) is ω times
the dual objective function value of the feasible dual solu-
tion (yi, λi). Therefore, using weak duality, (4) implies that∑

e∈Ei ce ≤ ω · opt . We now describe how to choose εi so
that the above conditions are satisfied.

3.1 Choosing εi

In this section we elaborate on the choice of εi in step 6
of Algorithm 1. Note that we maintain

cuv ≤ c̃uv ≤ cuv + λu + λv

for all edges uv at all times during the run of Algorithm 1.
In step 8 of Algorithm 1, we increase c̃uv by εi for all tree

edges uv that are incident to nodes of degree at least di and
for all non-tree edges that are incident to nodes of degree
at least di − 1. Note that our algorithm increases the λi-
value of at least one endpoint of all the edges whose c̃-cost
increases.

We want to choose εi such that the subsequent update of
c̃i and the following run of MST yields a new tree Ei+1 that
differs from Ei by a single edge swap: Ei+1 = Ei\{ei}∪{ei}.
Here, the edge ei ∈ Ei is a tree edge that is incident to a
node from Si

di . On the other hand ei ∈ E \Ei is a non-tree

edge that is not incident to any node from Si
di−1. We want

that c̃i(ei) ≤ c̃i(ei) and c̃i(ei) + εi = c̃i(ei). In other words,
the update of λv for v ∈ Si

di−1 creates one more beneficial
swap.

We let Ki be the set of connected components of the forest
Ei \ Si

di , i.e. the forest that results from removing nodes of

normalized degree at least di from Ei. We say that an edge
e = uv ∈ E is a cross-edge if

1. e is a non-tree edge, i.e. e ∈ E \Ei, and

2. u ∈ K1, v ∈ K2 for K1, K2 ∈ K
i and K1 6= K2.

We denote the set of cross-edges in iteration i by Ci.
It is now clear that Ei + e contains a unique cycle Ci

e for
each cross-edge e ∈ Ci. Furthermore, there must be at least
one vertex v on Ci

e that has normalized degree at least di.
For each cross-edge e ∈ Ci, we now let

εi
e = min

e′∈Ci
e
,e′∩Si

di
6=∅

(
c̃i(e)− c̃i(e′)

)
.

We then let εi = mine∈Ci εi
e.

In the following, we let 〈ei, ei〉 be the witness pair for εi. In
other words, for all edges e′ ∈ Ci

ei such that e′ is incident to

a node of normalized degree at least di, we have c̃i
e′ +εi ≤ c̃i

ei

and equality holds for e′ = ei.
Note that εi can be 0. Such a step can be viewed as a local-

improvement step along the lines of [4]. We do not modify
the dual solution but decrease the normalized degree of a
node of high normalized degree.

We now show that (4) is maintained throughout the exe-
cution of our algorithm.

3.2 Analysis: Performance guarantee
Assume that Algorithm 1 terminates after iteration t∗. In

this section we prove that (4) must hold for all 0 ≤ i ≤
t∗. Observe that (4) holds for i = 0 by Lemma 1. We
concentrate on the case i ≥ 1.

Growing λi
v by εi at nodes v ∈ Si

di−1 decreases the right-

hand side of (4) by ωεi ·
∑

v∈Si

di
−1

Bv. Still the cost of the

spanning tree Ei+1 is potentially higher than the cost of the
old tree Ei. We must show that the first term on the right
hand-side of (4), i.e. ω ·

∑
π∈Π(r(π)−1)yi

π grows sufficiently
to compensate for the decrease in the second term and the
increased spanning tree cost.

To do this, we maintain the following invariant inductively
for all 0 ≤ i ≤ t∗:

ω ·
∑

v∈V

Bvλi
v ≤ (ω − 1) ·

∑

π∈Π

(r(π)− 1) · yi
π. (Inv)

Since, λ0
v = 0 for all v ∈ V by definition, (Inv) holds for

i = 0.



The following claim that proves the inductive step of (Inv)
is the essential insight that ultimately yields (4).

Claim 1. Choosing βv ≥ bα + 1/Bv for all v ∈ V in the
definition of normalized degree yields
∑

π∈Π

(r(π)− 1) · yi+1
π ≥

∑

π∈Π

(r(π)− 1) · yi
π + εiα ·

∑

v∈Si

di
−1

Bv

for all 0 ≤ i ≤ t∗.

Proof. Let Ei = {ei
1, . . . , e

i
n−1} and let ti

j be the time

at which MST included edge ei
j . W.l.o.g., assume that ti

1 ≤

· · · ≤ ti
n−1. From the description of MST we can rewrite

∑

π∈Π

(r(π)− 1) · yi
π =

n−1∑

j=1

(ti
j − ti

j−1) · (n− j) (5)

=

n−1∑

j=1

ti
j ((n− j + 1) − (n − j))

=

n−1∑

j=1

ti
j

where we define ti
0 = 0.

In fact, we can use (5) to quantify the change in dual in
iteration i:

∑

π∈Π

(r(π)− 1) ·
(
yi+1

π − yi
π

)
=

n−1∑

j=1

(
ti+1
j − ti

j

)
(6)

In iteration i, we lengthen all edges e ∈ Ei that are incident
to nodes of normalized degree at least di by εi. Hence, all of
these edges become tight εi time units later. Together with
(6) we obtain

∑

π∈Π

(r(π)− 1) ·
(
yi+1

π − yi
π

)
≥ εi ·

∣∣∣E
(
Si

di

)
∩ Ei

∣∣∣ (7)

where E
(
Si

di

)
denotes the set of edges in E that are incident

to nodes from Si
di . (Note that we include in E(S) edges with

both endpoints in S).
Recall the definition of normalized degree in (3). Notice

that it follows from the termination condition in step 4 of
Algorithm 1 that di > 0. Hence, we must have that the
real degree of any node v ∈ Si

di is at least βv · Bv . Finally,

notice that it follows from the fact that Ei is a tree that
there are at most |Si

di |−1 edges in E
(
Si

di

)
that are incident

to two nodes from Si
di . We can use these observation to

lower-bound the right-hand side of (7):

∑

π∈Π

(r(π)− 1) ·
(
yi+1

π − yi
π

)
≥

εi ·






∑

v∈Si

di

βv ·Bv


 − (|Si

di | − 1)


 . (8)

Now, we choose βv ≥ bα + 1/Bv for all v ∈ V and obtain
∑

π∈Π

(r(π)− 1) ·
(
yi+1

π − yi
π

)
≥ εiαb ·

∑

v∈Si

di

Bv.

Lemma 2 now yields the claim.

We are now ready to prove (4).

3.3 Proof of (4)
As MST finishes we obtain from Lemma 1 that

c̃i+1(Ei+1) =
∑

e∈Ei+1

c̃i+1
e =

∑

π∈Π

(r(π)− 1) · yi+1
π . (9)

Observe that the real cost of the spanning tree Ei+1 can be
much smaller than c̃i+1(Ei+1). In fact, notice that we have

c(Ei+1) = c(ei)+c(Ei\{ei}) ≤ c̃i+1(ei)+ c̃i(Ei\{ei}) (10)

where the first step follows from the fact that Ei+1 = Ei \
{ei} ∪ {ei} by the definition of εi and the way we break ties
in MST. The second inequality uses the fact that we always
have ce ≤ c̃i

e for all 1 ≤ i ≤ t and for all e ∈ E.
Also, observe that

c̃i+1(Ei \ {ei}) =

c̃i(Ei \ {ei}) +
(∣∣∣E

(
Si

di

)
∩Ei

∣∣∣− 1
)
· εi (11)

since exactly one edge from Ei that is incident to a node of
normalized degree at least di is swapped out.

We can lower-bound
∣∣E
(
Si

di

)
∩Ei

∣∣ using the arguments
from the proof of Claim 1:

∣∣∣E
(
Si

di

)
∩ Ei

∣∣∣ ≥



∑

v∈Si

di

βv · Bv


− (|Si

di | − 1)

≥ α ·
∑

v∈Si

di
−1

Bv + 1

where the second inequality again follows from Lemma 2
and from our choice of βv for all v ∈ V . The last inequality
together with (11) implies

c̃i+1(Ei \ {ei}) ≥

c̃i(Ei \ {ei}) + αεi ·
∑

v∈Si

di
−1

Bv. (12)

We now obtain

c(Ei+1) ≤ c̃i(Ei \ {ei}) + c̃i+1(ei)

≤ c̃i+1(Ei)− αεi ·
∑

v∈Si

di
−1

Bv

=
∑

π∈Π

(r(π)− 1) · yi+1
π − αεi ·

∑

v∈Si

di
−1

Bv

where the first inequality follows from (10), the second in-
equality follows from (12), and the last equality follows from
(9).



Adding (Inv) to the last inequality we get

c(Ei+1) ≤
∑

π∈Π

(r(π)− 1) · yi+1
π +

(ω − 1) ·
∑

π∈Π

(r(π)− 1) · yi
π −

ωεi ·
∑

v∈Si

di
−1

Bv − α ·
∑

v∈V

Bvλi
v

≤ ω ·
∑

π∈Π

(r(π)− 1) · yi+1
π −

ωεi ·
∑

v∈Si

di
−1

Bv − α ·
∑

v∈V

Bvλi
v

where the last inequality follows from the fact that
∑

π∈Π

(r(π)− 1)yi
π ≤

∑

π∈Π

(r(π)− 1)yi+1
π .

Finally notice that λi+1
v = λi

v+εi if v ∈ Si
di−1 and λi+1

v = λi
v

otherwise. Additionally, we choose α ≥ ω and get

c(Ei+1) ≤ ω ·
∑

π∈Π

(r(π)− 1) · yi+1
π − ω ·

∑

v∈V

Bvλi+1
v .

as required. This proves the inductive step of (4).

3.4 Proof of (Inv)
It remains to show that (Inv) is maintained as well. Ob-

serve that the left hand side of (Inv) increases by

ωεi
∑

v∈Si

di
−1

Bv .

We obtain from Claim 1 that
∑

π∈Π

(r(π)− 1) · (yi+1
π − yi

π) ≥ εiα ·
∑

v∈Si

di
−1

Bv

Therefore, the right hand side of (Inv) increases by (ω −
1) · αεi ·

∑
v∈Si

di
−1

Bv which is sufficient if (ω − 1)α ≥ ω or

equivalently, if α ≥ ω/(ω − 1).
The proof of the performance guarantee claimed in The-

orem 2 follows by choosing α ≥ max
{

ω, ω
ω−1

}
.

3.5 Analysis: Running time
In this section, we show that Algorithm 1 terminates in

polynomial time. We accomplish this by showing that there
will be only a polynomial number of iterations of the main
loop in Algorithm 1.

Claim 2. Algorithm 1 terminates after O(n4) iterations.

Proof. Following [3], we define the potential of spanning
tree Ei as

Φi =
∑

v∈V

3ndegi
(v)

where ndegi(v) denotes again the normalized degree of node
v in the tree Ei.

Notice that an iteration of Algorithm 1 swaps out a single
edge ei that is incident to at least one node of normalized
degree at least di. On the other hand we swap in one edge ei

that is incident to two nodes of normalized degree at most
di − 2. The reduction in the potential hence is at least

(3di

+ 2 · 3di−2)− 3 · 3di−1 ≥ 2 · 3di−2

Using the range of di, we can lower-bound the right hand
side of the last inequality by

2 · 3∆i−2 logb(n)−2 = Ω

(
3∆i

n2

)
.

The initial potential Φ0 is at most n · 3∆0

and the decrease
in the potential Φi in iteration i is at least Ω

(
Φi

n3

)
.

In other words, in O(n3) iterations, we reduce Φ by a con-
stant factor. Hence, the algorithm runs for O(n4) iterations
total. Observing that each iteration can be implemented in
time O(n2 log n) [6], we see that the whole algorithm runs
in time O(n6 log n).
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