
Approximation Algorithms For

Minimum-Cost Low-Degree Subgraphs

Jochen Könemann

A Dissertation submitted in partial fulfilment of the requirements for the Degree of Doctor of
Philosophy at the Graduate School of Industrial Administration, Carnegie Mellon University

Graduate School of Industrial Administration
Carnegie Mellon University

Schenley Park
Pittsburgh, PA 15213, U.S.A.

(Dissertation for the Degree of Doctor of Philosophy in Algorithms, Combinatorics and Optimization
presented at Carnegie Mellon University in 2003)

Abstract

In this thesis we address problems in minimum-cost low-degree network design. In the design of
communication networks we often face the problem of building a network connecting a large number
of end-hosts. Available hardware or software often imposes additional restrictions on the topology of
the network.

One example for such a requirement arises in the area of computer networks: We are given a number
of client hosts in a network that communicate with each other using a certain communication protocol
that limits the number of simultaneously open connections for each host. In graph theoretic terms,
where hosts correspond to nodes and network connections are represented by edges, this restriction
naturally translates to a bound on the maximum node-degree of the constructed network.

In this thesis we first address the problem of finding a spanning tree T for a given undirected graph
G = (V, E) with maximum node-degree at most a given parameter B > 1. Among all such trees, we
aim to find one that minimizes the total edge-cost for a given cost function c on the edges of G. We
develop an algorithm based on Lagrangean relaxation. We show how to compute a spanning tree with
maximum node-degree O(B + log(n)) and total cost at most a constant factor worse than the cost of
an optimum degree-B-bounded spanning tree in an n-node network.

We present a second algorithm that is also based on ideas from Lagrangean relaxation but does not rely
on computing a solution to a linear program. The new method can handle non-uniform degree-bounds,
i.e. we are given integers Bv > 1 for all v ∈ V and the degree of each node v ∈ V is constrained to be at
most Bv in any feasible solution. The algorithm uses a repeated application of Kruskal’s MST algorithm
interleaved with a combinatorial update of approximate Lagrangean node-multipliers maintained by
the algorithm. These updates cause subsequent repetitions of the spanning tree algorithm to run for
longer and longer times, leading to overall progress and a proof of the performance guarantee.

Finally, we show how to extend the second algorithm to the case of Steiner trees where we use a primal-
dual approximation algorithm due to Agrawal, Klein, and Ravi in place of Kruskal’s minimum-cost
spanning tree algorithm. The algorithm computes a Steiner tree of maximum degree O(B + log n)
and total cost that is within a constant factor of that of a minimum-cost Steiner tree whose maximum
degree is bounded by B. However, this method has quasi-polynomial running time.

Copyright c© 2003 by Jochen Könemann. All rights reserved.

This dissertation is dedicated to my family

Lydia, Wolfgang, and Katja Könemann

Contents

1 Introduction 1

1.1 Approximation algorithms . 2
1.1.1 Bicriteria approximation . 3

1.2 Low-degree network design . 3
1.2.1 An example: Multicast routing . 3
1.2.2 Algorithms for low-degree network design: Previous work 4

1.3 Notational conventions . 6
1.4 This work . 7

1.4.1 Part 1: Minimum-cost degree-bounded spanning trees via Lagrangean relaxation 7
1.4.2 Part 2: A new hybrid primal-dual, local search algorithm for the BMST problem 7
1.4.3 Part 3: Minimum-cost degree-bounded Steiner trees 8

1.5 A road-map of this thesis . 9

2 Witness Sets, Toughness and Minimum-Degree Spanning Trees 10

2.1 A local improvement algorithm . 10
2.1.1 Analysis and running time . 12

3 Minimum-Cost Degree-Bounded Spanning Trees

With Uniform Degree Bounds 15

3.1 Technique: Lagrangean Duality . 15
3.2 The BMST-Algorithm . 16
3.3 Analysis . 16

3.3.1 The cost of T . 16
3.3.2 The Maximum Degree of T . 19

4 Minimum-Cost Degree-Bounded Spanning Trees

With Non-Uniform Degree Bounds 20

4.1 A primal-dual algorithm to compute MST’s . 20
4.1.1 The spanning tree polyhedron . 20
4.1.2 A primal-dual interpretation of Kruskal’s MST algorithm 21

4.2 Minimum-cost degree-bounded spanning trees . 22
4.2.1 Choosing εi . 25
4.2.2 Analysis: Performance guarantee . 25
4.2.3 Proof of (4.4) . 27
4.2.4 Proof of (Inv) . 28
4.2.5 Analysis: Running time . 28

5 Minimum-Cost Degree-Bounded Steiner Trees 30

5.1 A linear programming formulation . 30
5.2 An algorithm for the Steiner tree problem . 31

i

5.2.1 Some useful properties of AKR . 32
5.2.2 An alternate view of AKR . 34

5.3 An algorithm for the B-ST problem . 35
5.3.1 Algorithm: Overview . 35
5.3.2 Algorithm: A detailed top-level description . 36
5.3.3 Algorithm: mod-AKR . 38
5.3.4 Algorithm: Choosing εi . 38
5.3.5 Analysis: Performance guarantee . 41
5.3.6 Analysis: Running time . 45

6 Conclusions and Open Issues 47

6.1 Open Issues . 47

Bibliography 49

ii

Chapter 1

Introduction

In algorithm design, we are concerned with devising efficient algorithms for solving a particular problem.
Here, a natural measure for efficiency is the algorithm’s running time: We are interested in the number
of atomic operations that the algorithm performs in order to compute a solution to an input instance
of a given problem. More precisely, we state the time complexity of an algorithm as a function of the
size of its input. This function then allows us to estimate the running time of our algorithm as the
sizes of the considered problem instances vary.

This said, an obvious goal is to find an algorithm for a posed problem whose running time can be
stated as a low-order polynomial in the input size. We refer to these procedures as polynomial-time
algorithms. In general, the lower the order of this polynomial the larger problem instances we can
hope to solve. Unfortunately, there is a large number of optimization and decision problems which are
unlikely to be solved in polynomial-time. There is a rich body of work devoted to the classification of
algorithmic problems into complexity classes. We refer the reader to the book of Papadimitriou [56]
for further information on complexity theory.

The relevant complexity classes for this work are P and NP. Roughly, a problem A is in P if there
is a polynomial time algorithm that computes an exact solution for any given input instance of A.
The class NP contains P but also contains a set of NP-complete problems, which are unlikely to be in
P. Currently, we do not know of the existence of a polynomial-time algorithm for any NP-complete
decision problem. Moreover, it is a consequence of the definition of completeness that the existence of
a polynomial-time procedure for any NP-complete problem would imply that all problems in NP admit
polynomial-time algorithms as well.

The reasons that determine whether a problem is in P or whether it is NP-complete often lie in the
combinatorial structure that it exhibits. Designing an algorithm for a problem in P requires unraveling
and characterizing its combinatorial properties as a first step. We then exploit the uncovered structure
and develop an algorithm. In this thesis, we will be concerned with NP-hard problems. Even though
these problems are unlikely to admit polynomial-time algorithms, many of them still exhibit a rich
combinatorial structure that we can use.

What can we do once a problem has been proven to be NP-hard? A natural immediate idea is to settle
for suboptimal, practical solutions to a given problem that can be computed in polynomial time. In
fact, there is a vast body of literature on so-called heuristic algorithms for a large number of different
applications (some examples are the Steiner tree problem [34], graph partitioning [19, 32, 36, 38, 39, 65],
and the traveling sales person problem [9, 31, 48, 50, 60]). The main point of criticism with these
heuristic algorithms is however, that there is no guarantee on the quality of the computed solution. In
fact, for each given heuristic there are usually examples on which it performs poorly: The computed
solution has a value which deviates from the optimum solution value by a large factor.

In the following sections we define and introduce the fundamental concepts underlying our work. We
first introduce approximation algorithms which address the main weakness of heuristics of not being
able to bound the quality of the computed solution. Subsequently, in Section 1.1.1 we define the
notion of bicriteria optimization since the problems addressed in our work will all have two competing

optimization criteria. In Section 1.2 we give a brief overview of network design with a special focus on
finding low-degree subgraphs. We end the introduction with a road-map for this thesis.

1.1 APPROXIMATION ALGORITHMS

The field of approximation algorithms was primarily founded to alleviate the above deficiency of heuris-
tics. Approximation algorithms are heuristic algorithms supplied with an upper bound on the worst
case ratio between the value of any approximate solution and that of an optimum solution. This thesis
is about approximation algorithms for a certain class of network design problems. We now introduce
the notion of approximation algorithms formally. Our notation will loosely follow the conventions used
in the recent book by Vazirani [63].

For an NP-optimization problem Π, let IΠ be the set of all input instances. For each I ∈ IΠ we are
then given a set SI of feasible solutions to I. Moreover, we have an objective function cI : SI → IR+

that assigns an objective function value to each feasible solution to I. An approximation algorithm
A for problem Π takes an arbitrary instance I ∈ IΠ and computes a feasible solution APX I ∈ SI

in time polynomial in the size of the input instance. Without loss of generality, assume that Π is a
minimization problem.

In the following we use apx I as an abbreviation for c(APX I), i.e. apx I is the objective function value
of the approximate solution APX I . Similarly, we let OPT I be an optimum solution to instance I and we
also let opt I be its objective function value. We then say, that algorithm A is an α-approximation if

max
I∈IΠ

apx I

opt I

≤ α.

The task of developing an approximation algorithm for an optimization problem Π is much like devel-
oping an exact algorithm for a problem in P. We need to exploit the combinatorial structure underlying
Π and use this to prove that the value of any solution that we compute is close to that of any opti-
mum solution. The way in which this is done can be roughly summarized as follows: We first use the
structure of any solution to a given instance to compute a lower-bound on the objective function value
of any solution. In a second step, we then use this lower-bound and construct an approximate solution
whose value is close to the lower-bound and hence also close to the optimum solution value.

For optimization problems in P, we often know from complexity theory that there is a fixed degree
polynomial p(n) of the input size n such that no algorithm can exist that solves this problem ex-
actly and whose running is o(p(n)). On the other hand, many problems which are in NP have been
characterized according to their approximability. There are optimization problems which admit an
(1+ ε)-approximation algorithm whose running is polynomial in the input size and in 1/ε for any fixed
ε. We refer to such an algorithm as a fully-polynomial-time approximation scheme (FPTAS).

Inapproximability results generally show for a given problem Π that there is a hardness factor f(n)
such that no o(f(n))-approximation exists assuming that NP 6= P. Problems which do not admit an
FPTAS can be classified according to their hardness-factors into the following three main classes:

1. f(n) = O(1)

2. f(n) = O(log n)

3. f(n) = O(nε) for a fixed ε > 0.

Apart from the theoretical desire of having an approximation ratio, i.e. a fixed upper bound on the
ratio between approximate and optimum solution values, there is hope that approximation algorithm
design leads to the discovery of new properties of a given problem that in turn lead to better practical
algorithms. It is often the case, for example, that approximation algorithms perform much better on
practical instances than what their approximation ratio promises (see e.g. [37, 68]).

2

1.1.1 Bicriteria approximation

The problems considered in this thesis fall into the class of bicriteria optimization problems. In a
bicriteria optimization problem Π we are given two objective functions c1

I and c2
I that assign values to

a solution S ∈ SI for instance I. We are now asked to find a solution that optimizes the value of both
functions. For simplicity, let us assume from now on that we are asked to minimize the value of both
objectives.

Usually the two objective functions interfere with each other in that lowering the value of one objective
might entail raising the other one. One approach for this kind of problem often compute the minimum-
cost solution under a linear combination of the two cost measures [51, 58]. However, in the case of
very disparate objectives these techniques usually do not produce useful solutions.

Our formulation assumes that one objective, say c2
I , is accompanied by a budget B. Our task then is

to compute a feasible solution S ∈ SI such that c1
I(S) is as small as possible and c2

I(S) ≤ B.

We now extend the definition of approximation ratio to bicriteria optimization problems. Let (Π, c1, c2, I, B)
be a bicriteria optimization problem where B is a budget on the c2

I-value of any solution. Let A be an
approximation algorithm for this problem and denote by APX I ∈ SI the solution computed by A. As
before, we use the abbreviations apx 1

I and apx 2
I for c1

I(APX I) and c2
I(APX I). In addition, we use opt 1

I

to denote the minimum c1
I value of any feasible solution S ∈ SI that satisfies c2

I(S) ≤ B. We then say
that an algorithm A is an (α, β)-approximation for the given problem if

max
I∈I

apx 1
I

opt 1
I

≤ α

and apx 2
I ≤ β ·B for all I ∈ I.

This way of formulating bicriteria optimization problems was first formalized in [51, 58]. Among other
things, the authors prove that working with the budgeted formulation does not lead to a reduction
in generality. Specifically, we can use a given (α, β)-approximation for the budgeted version of a
bicriteria problem as black box to design a max{α, β}-approximation for the problem of minimizing a
linear combination of c1

I and c2
I .

1.2 LOW-DEGREE NETWORK DESIGN

The problems considered in this thesis can broadly be classified as low-degree network design problems.
In a generic instance of a low-degree network design problem the goal would be to find a subgraph of
a given graph that satisfies certain connectivity properties and at the same time obeys given degree
requirements at the vertices.

Low-degree network design problems arise naturally in communication network design where one wants
connectivity of a given telecommunication system and the degree constraints reflect the goal of decen-
tralizing the total system. The following section provides an illustrative example from the realm of
computer networks.

1.2.1 An example: Multicast routing

Consider the following scenario: We are given a computer network connecting a server to a multitude
of client hosts using an infrastructure of switching nodes. An application that runs on the server would
like to send the same information from the server to each of the client hosts. A few examples for such
applications are:

Distributed databases A data-item is replicated a number of times and stored at various sites
throughout the network. When one copy the data-item is changed all other replicas need to be
updated (See e.g. [4, 14]).

3

Figure 1.1: The two figures show a computer network that connects

a server node at the top to a set of client hosts using intermediate

switches. The right side shows a tree that connects the server to all

clients. The directions of the arrows indicate how information is for-

warded through the network.

Video distribution over IP The central server runs a video distribution application that needs to
transmit a continuous video stream to all client applications (See e.g. [6]).

How can we transmit the information efficiently? In the obvious unicast solution we open a separate
connection between the server and each host. This entails that if there are k clients in the network,
the information that is stored at the server has to be transmitted k times.

Multicasting [13, 12] has been developed to cope with the deficiencies of the mentioned unicast approach.
In a nutshell, in multicasting, we compute a spanning tree in the underlying network that connects
the server node and all client hosts. The server then transmits the data along all its outgoing links in
the computed spanning tree. An intermediate node receives incoming data along its parent link in the
tree and copies it to each of its descendants. Figure 1.1 shows an example network and a possible tree
along which data is forwarded. It is obvious that this method reduces the total network load when
compared to the naive unicast solution.

Observe that the number of neighbors of a node in the computed spanning tree is proportional to the
computational work that the node has to accomplish. In other words a node with high node-degree
will have to duplicate and forward a large amount of data. In order to distribute load evenly among
the hosts in the network we could thus try to bound the maximum degree of any node in the multicast
spanning tree. The connection between node-degree in multicast trees and node performance has been
considered by Bauer and Varma [5] and more recently by Chu et al. [10].

While spanning trees in a network can be computed efficiently, it is NP-hard to compute a spanning
tree whose maximum degree is as small as possible. The following section surveys the known work on
low-degree network design in the unweighted and weighted settings.

1.2.2 Algorithms for low-degree network design: Previous work

The previous section motivates a fundamental graph-theoretic question in the realm of low-degree
network design: Compute an edge-subgraph of a given graph G = (V, E) that has minimum maximum
degree and in addition obeys certain connectivity properties.

Previous work: Unweighted problems The simplest to formulate problem in the area of un-
weighted low-degree network design is probably that of computing a spanning tree of minimum degree.

4

While the problem statement is deceptively simple, it is NP-complete to decide whether a given graph
has a spanning tree of maximum degree B for an integer B > 1 [25]: Asking whether a given graph G
has a spanning tree of maximum degree 2 is equivalent to asking whether there is a Hamiltonian path
in G.

Furthermore, Gavish [26] solved the minimum-degree spanning tree problem exactly (albeit of course
not in polynomial time) using integer programming and Lagrangean relaxation techniques.

The first to develop approximation algorithms for the minimum-degree spanning tree problem were
Fürer and Raghavachari [21] who gave an O(log |V |) approximation. Their algorithm generalizes to
directed graphs where spanning trees are replaced by arborescences: An arborescence is a rooted
subgraph of the original graph such that its underlying undirected graph is a tree and where each edge
is directed away from the root. The work in [21] generalizes to the problem of finding an arborescence
of minimum maximum out-degree with approximation ratio O(log |V |).

Agrawal, Klein, and Ravi [1] were the first to develop a polynomial-time algorithm to find an approx-
imate Steiner tree (i.e. a tree spanning a given set R ⊆ V of required vertices) of minimum maximum
vertex degree. The approximation factor of this algorithm is O(log |R|).

Subsequently, Fürer and Raghavachari improve upon their previous result and show how to compute a
spanning tree that has degree within an additive one of the minimum possible degree [22]. In the same
paper, the authors also give a local search algorithm for the MDST problem. This approach yields a tree
with maximum degree at most b∆∗+logb |V | for any constant b > 1 where ∆∗ is the minimum possible
maximum degree of any spanning tree of G. The algorithm in [22] and its performance guarantees
extend to the Steiner case and hence improves upon [1].

Recently, Krishnan and Raghavachari [46] improve [21] in the directed setting by giving a quasi-
polynomial time algorithm that computes an out-arborescence with maximum out-degree at most
O(B + log |V |).

A further generalization of the above minimum-degree Steiner tree problem is the minimum-degree
f-join problem [29]. Here, in addition to an undirected graph G = (V, E), we are also given a proper
cut function f that specifies connectivity requirements between node sets. Proper functions have range
{0, 1} and satisfy

• f(V) = 0,

• f is symmetric, i.e. f(S) = f(V − S) for all S ⊆ V , and

• for all pairs of disjoint sets A, B ⊆ V , we must have f(A ∪B) ≤ max{f(A), f(B)}.

Let δ(S) denote the set of edges which have one endpoint in S and one in V \ S. We now require any
solution to the minimum-degree f-join problem to have an edge from all cuts δ(S) with f(S) = 1.

Ravi, Raghavachari and Klein [59] give a quasi-polynomial approximation algorithm that computes a
feasible solution for a given f-join problem with degree at most O(opt + log |V |) where opt is the
minimum possible degree of any feasible f-join. In [59], the authors also develop a quasi-polynomial
time algorithm to compute 2-edge-connected spanning subgraph of maximum degree b∆∗ + O(log |V |)
for any b > 1 where ∆∗ denotes the minimum maximum degree of any 2-edge connected spanning
subgraph.

Previous work: Weighted problems Special cases of the problem that are solvable exactly in
polynomial time have been exhibited by Lawler [49, 7] who showed that Edmond’s matroid intersection
algorithm [17] can be used to compute a spanning tree of minimum cost such that the degrees of the
nodes of an independent set I ⊆ V are bounded by a given parameter B > 0. The special case of
the problem with only one vertex-degree constraint has been considered by Gabow [23], Gabow and
Tarjan [24], and by Glover and Klingman [27].

5

Fischer [20] noted that the local-search procedure by Fürer and Raghavachari from [22] can be adapted
to find a minimum-cost spanning tree with maximum degree b∆∗ + logb |V | for any constant b > 1
where ∆∗ is the minimum maximum degree of any minimum-cost spanning tree.

Ravi et al. [58] are the first to address the problem of computing minimum-cost degree-bounded trees:
For a given parameter B > 1 and a non-negative cost function c on the edges of G, the authors show how
to compute a spanning tree T of maximum degree O(B log |V |) and total cost at most O(log |V |) optB .
Here optB denotes the minimum cost of any degree-B-bounded spanning tree of G. The authors also
generalize their ideas to Steiner trees, generalized Steiner forests and the node-weighted case. Klein
and Ravi [42] show that the O(log |V |)-approximation algorithm is essentially best possible for the
node-weighted case (via reductions from the set covering problem).

Fekete et al. [18] consider the case where edge-weights in the underlying graph are induced by a tree
metric: In addition to the undirected graph G = (V, E) we are also given a spanning tree T of G. Each
edge e in T has a given weight we and all edges e′ = (u, v) that are not in the tree have weight equal
to the weight of unique u, v-path in T . Given a degree bound Bv ≥ 2 for each node v ∈ V , the authors
show how to compute a spanning tree that obeys all degree constraints exactly and whose weight is at
most the weight of T times

2− min
v:degT (v)>2

Bv − 2

degT (v) − 2

where degT (v) denotes the degree of node v in tree T .

The problem of computing a minimum-weight spanning tree of maximum node-degree B for a given
parameter B > 1 remains NP-hard even if the nodes of our graph correspond to points in a given
Euclidean metric space and the weight of an edge (u, v) is given by the Euclidean distance between the
points corresponding to u and v, respectively [25, 35]. Following from a reduction from the Hamilton
Path problem it is clear that the problem is NP-hard in the special case of B = 2. Papadimitriou and
Vazirani [57] proved that the problem remains hard even in the special case of B = 3 and conjectured
that the case B = 4 is also NP-hard.

On the positive side, Papadimitriou and Vazirani show in [57] that any minimum-weight spanning tree
in IR2 has maximum node degree at most 5 if the given points have integer coordinates. Monma and
Suri [53] extended this result to points in IR2 with arbitrary coordinates.

Khuller, Raghavachari, and Young [41] showed how to compute a spanning tree in IR2 of maximum
degree at most 3 and of total weight at most 1.5 times the weight of a minimum-weight spanning
tree of the given points. They also give an algorithm to compute a spanning tree of weight at most
1.25 the weight of a minimum-weight spanning tree whose maximum degree is bounded by 4. Their
results generalize to Euclidean spaces of higher dimensions where the authors show how to compute a
spanning tree of maximum degree 3 and total weight at most 5/3 times the weight of a minimum-weight
spanning tree.

Finally, computational results concerning the degree-constrained minimum spanning tree can be found
in [54, 61, 64]. We also refer the reader to an excellent survey on low-degree network design due to
Raghavachari in Chapter 7 of [33].

1.3 NOTATIONAL CONVENTIONS

Most of the presentation in this thesis will use standard graph theoretical notation. For a general
introduction to graph theory we refer the reader to one of the standard texts in the area (see e.g.
[15, 66]).

All results in this work assume an n-node and m-edge undirected graph G = (V, E). We denote an
edge between vertices u and v by uv or by (u, v) interchangeably.

6

For a subgraph H of G, we will use V [H] and E[H] to denote the nodes and edges in H. We will also
use δH(v) to denote the set of edges in E that are incident to node v in graph H. We then let degH (v)
to denote the degree of node v in H, i.e.

degH(v) = |δH(v)|.

Furthermore, we will use ∆(H) to denote the maximum node degree of any node in H, i.e.

∆(H) = max
v∈V [H]

degH(v).

Finally, for a graph G = (V, E) and an edge e 6∈ E, we let G + e be the graph obtained from adding e
to E, i.e. G + e = (V, E ∪ {e}).

1.4 THIS WORK

Our contributions can be grouped into three parts each of which finds place in a separate chapter.

1.4.1 Part 1: Minimum-cost degree-bounded spanning trees via Lagrangean relaxation

In Chapter 3 we address the minimum-cost degree-bounded spanning tree problem where we are given
an undirected graph G = (V, E), non-negative costs ce for all edges e ∈ E, and a parameter B ≥ 2.
The goal is to find a tree T of minimum cost and maximum node-degree B. We prove the following
theorem:

Theorem 1 (see [43, 44]) There is a polynomial-time approximation algorithm that, given a graph
G = (V, E), a nonnegative cost function c : E → IR+, a degree bound B ≥ 2, and parameters ω > 0
and b > 1, computes a spanning tree T such that

1. ∆(T) ≤ (1 + ω)bB + logb n, and

2. c(T) < (1 + 1/ω) optB .

The techniques used in this work are linear programming based. We first give a natural integer
programming formulation for the problem where the constraint set consists of a full description of the
spanning tree polyhedron [8, 16] augmented by a degree constraint for each vertex in V .

The main idea in the proof of Theorem 1 is to use Lagrangean relaxation (see [55]) and to dualize
the slightly weakened degree constraints (from B to (1 + ω)B). For each constraint corresponding to
vertex v we introduce a Lagrangean multiplier λv. We then remove all degree constraints and add
corresponding penalty terms to the objective function.

Subsequently, we show that we can compute the optimum set of Lagrangean multipliers {λ∗
v}v∈V in

polynomial time. We define a cost function

cλ∗

uv = cuv + λ∗
u + λ∗

v

and show that there is a minimum-cλ∗

-cost spanning tree of G with maximum degree O(B + logn).
The proof is constructive and uses a local search algorithm proposed in [22]. Finally, we show that
the c-cost of the computed tree is close to the minimum c-cost of any degree-B-bounded spanning tree
using duality and the weakening in the degree constraints carefully.

1.4.2 Part 2: A new hybrid primal-dual, local search algorithm for the BMST problem

The prior algorithm from [44] has two main drawbacks: First, it relies on solving a large linear program-
ming to compute an optimum set of Lagrangean multipliers. Secondly, the approach and its analysis

7

inherently rely on the fact that we can compute an exact solution to a minimum-cost spanning tree
problem. Since the problem of computing minimum-cost Steiner trees is NP-hard, we have little hope
that the algorithm from [44] extends to this more general setting.

Therefore in Chapter 4 we develop a new direct algorithm for the degree-bounded minimum-cost
spanning tree problem in order to address the above concerns. This algorithm does not use linear
programming. Instead it uses a repeated application of Kruskal’s [47] minimum-cost spanning tree
algorithm interleaved with a combinatorial update of approximate Lagrangean node-multipliers main-
tained by the algorithm. These updates cause subsequent repetitions of the primal-dual algorithm to
run for longer and longer times, leading to overall progress and a proof of the performance guarantee.
A second useful feature of our algorithm is that, for the first time, it can handle non-uniform degree
bounds on the nodes. The main theorem is as follows:

Theorem 2 (see [45]) There is a primal-dual approximation algorithm that, given a graph G = (V, E),
a nonnegative cost function c : E → IR+, integer bounds Bv > 1 for all v ∈ V and parameters ω > 1
and b > 1 computes a tree T such that

1. degT (v) ≤ max
{

ω
ω−1

, ω
}
· bBv + 2 · logb n for all v ∈ V , and

2. c(T) < ω · opt .

The running time is O(n6 log n).

We believe that the analysis of the primal-dual algorithm in Theorem 2 is of independent interest. The
update steps of the Lagrangean node-multipliers can be viewed as local search steps. The algorithm is
hence a hybrid of local-search and primal-dual updates. We believe that our techniques are applicable
to other constrained network design problems where we take a network design problem for which
primal-dual approximation algorithms are known and augment it by additional constraints.

1.4.3 Part 3: Minimum-cost degree-bounded Steiner trees

Finally, in Chapter 5, we show how the previous algorithm extends to Steiner trees using the primal-
dual algorithm for approximate minimum-cost Steiner trees introduced by Agrawal, Klein, and Ravi [3]
in place of Kruskal’s minimum-cost spanning tree algorithm. Our main result there is as follows:

Theorem 3 There is a primal-dual approximation algorithm that, given a graph G = (V, E), a set of
terminal nodes R ⊆ V , a nonnegative cost function c : E → IR+, integers Bv > 1 for all v ∈ V , and
an arbitrary b > 1 computes a Steiner tree T that spans the nodes of R such that

1. degT (v) ≤ 12b ·Bv + d4 logb ne+ 1 for all v ∈ V , and

2. c(T) ≤ 3opt

where opt is the minimum cost of any Steiner tree whose degree at node v is bounded by Bv for all v.
Our method runs in O(n log(|R|)·|R|d4log ne) iterations each of which can be implemented in polynomial
time.

The algorithm combines ideas from the primal-dual algorithm for Steiner trees due to Agrawal et al. [3]
with local search elements from [22].

8

1.5 A ROAD-MAP OF THIS THESIS

The following Chapter 2 introduces the important ideas of graph toughness and witness sets, that
were introduced by Chvátal [11] and Fürer and Raghavachari [22], respectively. Based on the idea
of witness sets we review a local-search algorithm for minimum-degree spanning trees due to Fürer
and Raghavachari [22] and its extention to minimum-degree minimum-cost spanning trees due to
Fischer [20]. We also present a useful extention of the results in [20, 22] to fractional trees due to Éva
Tardos [62].

Chapter 3 has the proof of Theorem 1. Chapter 4 presents our primal-dual algorithm for minimum-cost
degree-bounded trees along with a proof of Theorem 2. Finally, Chapter 5 has our results for Steiner
trees and a proof of Theorem 3.

9

Chapter 2

Witness Sets, Toughness and

Minimum-Degree Spanning Trees

The work in this thesis is based on fundamental work on lower-bounds for the minimum maximum
degree of any node in any spanning tree of a given undirected graph.

Chvátal [11] defined the toughness of a given graph G = (V, E). For a vertex set S ⊆ V let c(S) be
the number of connected components of G[V \ S].

Definition 1 For a given undirected graph G = (V, E), the minimum ratio |S|/c(S) over all subsets
S of V with c(S) > 1 is called the toughness of G. We denote this quantity by τ (G).

The toughness of a given graph is closely connected to the minimum maximum degree of any spanning
tree of a given graph. Let ∆∗(G) denote the minimum possible maximum degree of any spanning tree
of an undirected graph G. It can now be seen without much effort that the minimum maximum degree
of any spanning tree of G must be at least 1/τ (G).

Win [69] showed the following relationship between τ (G) and ∆∗(G):

Theorem 4 An undirected graph G = (V, E) has a tree of maximum degree at most ∆ if for any
S ⊆ V ,

c(S) ≤ (∆− 2) · |S|+ 2.

This immediately implies the following corollary:

Corollary 1 An undirected graph G = (V, E) has a spanning tree of degree ∆ if τ (G) ≥ 1/(∆− 2).

The proof of Theorem 4 is by contradiction and assumes that we are given a graph G with c(S) ≤
(∆− 2) · |S|+ 2 for all S ⊆ V and that ∆ ∗ (G) > ∆. The main part of the proof then establishes the
existence of a witness set W ⊆ V such that G[V \W] has at least (k−2)|W |+3 connected components.

The interesting fact about the proof is that it constructs a vertex set W that serves as a certificate
for the non-existence of a spanning tree of maximum degree ∆. We call say that W witnesses the fact
that there is no tree of maximum degree ∆ and we call W a witness set.

We now review a local-search method that demonstrates how witness sets can be used to compute
approximate minimum-degree spanning trees.

2.1 A LOCAL IMPROVEMENT ALGORITHM

In this section we review a local-search procedure for the minimum-degree spanning tree problem due
to Fürer and Raghavachari [22]. The procedure starts with an arbitrary spanning tree T and improves

r

v w

e

(1)

r

v w

e

(2)

Figure 2.1: The figure shows a fragment of a spanning tree of a given

undirected graph. Solid edges are part of the tree and dashed edges are

not in the tree. The figure shows a swap step that swaps edge e that is

incident to vertex against a non-tree edge uw. Figure (1) and (2) show

the tree before and after the swap, respectively.

it by applying so called swaps. The degree of a node r is improved by replacing an edge eδT (r) with
an edge vw 6∈ E[T] such that r is on the unique cycle in T + vw. Figure 2.1 shows an example for a
swap.

We are interested in swaps that lower the maximum degree of the triple of vertices that are involved
in the swap.

Definition 2 Given a tree T and a non-tree edge uv 6∈ E[T], let C(uv) be the unique cycle in T +{uv}
and let wz ∈ C(e). We call the swap 〈uv, wz〉 an improvement for w if

max{degT (u), degT (v)} + 1 < degT (w).

If an edge swap 〈uv, wz〉 is an improvement step for either w or z then the maximum degree of the
nodes u, v, w and z decreases as a result of the swap; We call such a swap simply an improvement.

The algorithm in [22] performs improvement steps as long as possible. In fact, it is not hard to see
that starting with an arbitrary tree, the number of possible improvements is finite. We end up with a
locally optimal tree.

Definition 3 A tree T is called locally optimal (LOT) if no vertex degree can be decreased by applying
an improvement swap.

Computing a locally optimal tree might be too ambitious a goal however. In fact, it is not known how
to do this in polynomial time. However, the analysis in [22] shows that it is enough to compute a
pseudo-optimal tree.

Definition 4 A tree T of maximum degree ∆(T) is called pseudo-optimal (POT) if for all vertices
v with ∆(T) − dlogb ne ≤ degT (v) ≤ ∆(T), no improvement step for v is applicable. Here b is an
arbitrary constant bigger than one.

Fischer [20] considered weighted graphs where each edge e ∈ E has a non-negative cost ce associated
with it. His adaptation of the algorithm from [22] computes a minimum-cost spanning tree of ap-
proximately minimum maximum degree. To obtain his algorithm we have to make two small changes
to the procedure from [22]. First, instead of starting with an arbitrary spanning tree, we start with
a minimum-cost spanning tree. Second, an improvement step must be cost neutral. That is, for an
improvement step 〈uv, wz〉 to be applicable we must have cuv = cwz. Algorithm 1 states the procedure.

11

Algorithm 1 The algorithm PLocal computes a pseudo-optimal tree.

1: Given: graph G = (V, E) and cost function c : E → IR+

2: T ← MST(G, c)
3: while T is not pseudo optimal do
4: Identify cost neutral improvement 〈uv, wz〉
5: T ← T − wz + uv
6: end while

2.1.1 Analysis and running time

In what follows we highlight and strengthen the major ideas of the analysis from [20, 22]. The strength-
ening is due to Éva Tardos [62] and will turn out to be useful in a later part of this thesis.

The fundamental underlying proof idea for the unweighted problem [22] is based on an averaging
argument that we present here. Let a set W ⊆ V be such that for a given graph G = (V, E), the
graph G[V −W] has t connected components. A spanning tree of G has to connect these t components
and the nodes from W . We need exactly t + |W | − 1 edges going between the nodes of W and the t
connected components to accomplish this. Each of these edges must be incident to a node from W .
Hence averaging yields a lower bound of (t + |W | − 1)/|W | on the maximum degree ∆∗ of T .

Proposition 1 (see [22]) Let W be a set of size w whose removal splits G into t components. Then
∆∗ ≥

⌈
w+t−1

w

⌉
.

We now turn to the weighted case, i.e. the minimum-degree minimum-cost spanning tree problem. The
above mentioned strengthening of the results from [20] is based on the following definitions.

Definition 5 Given an undirected graph G = (V, E) and a non-negative cost function c on the edges,
let Oc be defined as

Oc = {T : T is an MST under cost c}.

In the following we will be talking about convex combinations of spanning trees. Hence we introduce
some further simplifying notation.

Definition 6 Let T α
c =

∑
T∈Oc αT T be a convex combination of minimum-cost spanning trees of G

with respect to cost function c, i.e. αT ≥ 0 for all T and
∑

T∈Oc αT = 1. We denote the fractional
degree of vertex v in T α

c by

degα
c (v) =

∑

T∈Oc

αT degT (v).

Finally we define the minimum maximum degree of convex combinations of spanning trees.

Definition 7 Given G = (V, E) and a non-negative cost function c on the edges, let ∆∗
c denote the

minimum maximum degree of any convex combination of minimum-cost spanning trees, i.e.

∆∗
c = min

convex comb. α
max
v∈V

degα
c (v).

The following easy proposition will be used in the later analysis. We provide its proof that originally
appeared in [22] for completeness.

Lemma 1 For any constant b > 1 and a tree T , let Sd be the set of nodes that have degree at least d
in T . Then, there is a

d ∈ {∆(T)− dlogb ne+ 1, . . . , ∆(T)}

such that |Sd−1| ≤ b|Sd|.

12

Proof: Suppose for a contradiction that for all d ∈ {∆(T)− dlogb ne+ 1, . . . , ∆(T)}, we have

|Sd−1| > b · |Sd|.

Repeated application of this inequality now yields

|S∆(T)−dlogb ne| > b · |S∆(T)−dlogb ne+1|

> b2 · |S∆(T)−dlogb ne+2|

> . . .

> bdlogb ne · |S∆(T)|

≥ n · |S∆(T)|.

Note that since S∆(T) has at least one vertex and our graph has n vertices this is a contradiction.

The main theorem is the following.

Theorem 5 (see [20, 22]) If T is a pseudo-optimal MST, then ∆(T) < b∆∗
c + dlogb ne for any con-

stant b > 1. Moreover, a pseudo-optimal MST can be computed in polynomial time.

Proof: Given a constant b > 1, choose d as in Proposition 1. That is, we have |Sd−1| ≤ b|Sd|. Recall
that Sd contains the nodes of degree at least d in the tree T .

Removing Sd from T leaves us with a forest F . Let Ĝ be obtained from G by contracting each connected
component of F . It is now easy to see that every minimum-cost spanning tree of G contains a minimum-
cost spanning tree of Ĝ (e.g., every edge added by Kruskal’s algorithm for finding a minimum-cost

spanning tree for G is feasible for a minimum-cost spanning tree of Ĝ if it were not contracted in the
formation of Ĝ).

Let (u, v) ∈ E − T be an edge that connects two components of F such that u, v 6∈ Sd−1, i.e. both u
and v have degree at most d − 2. We claim that such an edge cannot be included in any minimum

spanning tree of Ĝ. To see that, let P T
u,v be the edges of the unique u, v-path in T and let P̂ T

u,v be the

subset of the edges of P T
u,v that are in Ĝ.

It follows from the pseudo-optimality of T that the cost of edge (u, v) must be higher than the cost

of each edge from P̂ T
u,v. For otherwise, (u, v) can be swapped in place of another edge of the same

or higher cost in P̂ T
u,v and all such edges are incident to at least one node in Sd−1, leading to an

improvement. This means (u, v) cannot be a part of any minimum spanning tree of Ĝ. Equivalently,
a minimum-cost spanning tree of G must use edges incident to Sd−1 to connect the components of F
and the nodes of Sd.

By the definition of Sd, we know that F has at least

|Sd|d− 2(|Sd| − 1) = |Sd|(d− 2) + 2

trees. This follows from an easy counting argument after observing that every node in Sd has degree
at least d in T and there are at most |Sd| − 1 edges going between nodes of Sd.

This means that we need at least

|Sd|(d− 2) + 2 + |Sd| − 1 = |Sd|(d− 1) + 1

edges to connect up the components of F and the nodes of Sd in any spanning tree. By the preceeding
argument each of these edges has to be incident to at least one node of degree at least d − 1 in an
MST. Hence the the average degree of a node of Sd−1 in any MST is

|Sd|(d− 1) + 1

|Sd−1|
>

d− 1

b
.

13

Moreover, the average degree of a node in Sd−1 in any convex combination of MST’s is also at least
the above ratio. Since ∆∗

c denotes the minimum possible maximum degree of any fractional MST, it
follows using our choice of index d from Proposition 1 that

∆∗
c >

d− 1

b
.

Using the range of d we obtain ∆(T) < b∆∗
c + dlogb ne. The results in [20, 22] show a lower-bound on

the degree of any MST. The extention to fractional MST’s is the mentioned strengthening [62] of the
previous ideas.

For the running time we follow [22]. Note that each improvement step can be implemented in polyno-
mial time. We need to bound the number of iterations. The proof uses a potential function argument.
Define the potential of a vertex v as

Φ(v) = 3degT (v)

where T is the current tree. The total potential is the sum over all vertex potentials, that is

Φ(T) =
∑

v∈V

Φ(v).

Now, an improvement step in Algorithm 1 improves the degree of a vertex v ∈ Sd with degT (v) = d
and d ≥ ∆(T)− dlogb ne + 1. Hence, the reduction in the potential is going to be at least

(3d + 2 · 3d−2)− 3 · 3d−1 = 2 · 3d−2.

Using the range of d we can lower bound the right hand side of the last equality by

3∆(T)−logb n−1 = Ω

(
3∆(T)

n

)
.

The potential Φ(T) of the tree T is at most n3∆(T). This implies that the overall decrease of the
potential due to the improvement step is

Ω

(
Φ(T)

n2

)

In other words, we reduce the potential by at least a polynomial factor in each iteration. In O(n2)
iterations the reduction is by a constant factor. Hence, the algorithm needs O(n3) improvement steps
in total.

14

Chapter 3

Minimum-Cost Degree-Bounded

Spanning Trees

With Uniform Degree Bounds

In this chapter we present the proof of Theorem 1. The degree-B-bounded minimum-cost spanning
tree problem can be modeled by an integer linear program in a straight forward way.

optB = min
∑

e∈E

cexe (IP1)

s.t x(δ(v)) ≤ B ∀v ∈ V (3.1)

x ∈ SPG

x integer

Here, δ(v) denotes the set of all edges of E that are incident to v and SPG is the spanning tree
polyhedron, that is, the convex hull of edge-incidence vectors of spanning trees of G. We note that
complete descriptions of SPG are known in the literature (See [8, 16] and also Section 4.1).

3.1 TECHNIQUE: LAGRANGEAN DUALITY

Our algorithm builds on the Lagrangean dual of (IP1) resulting from dualizing the degree constraints.
We denote its value by optLD(B) .

optLD(B) = max
λ≥0

min
T∈ SPG

{c(T) +
∑

v∈V

λv(degT (v) −B)}. (LD(B))

For any fixed λ ≥ 0, an optimum integral solution to (IP1) is a feasible candidate for attaining the
inner minimum above. Since the maximum degree of such a solution is at most B and λ ≥ 0, it follows
that optLD(B) is a lower bound on optB .

Proposition 2 (see [55]) optLD(B) ≤ optB

The interesting fact is that optLD(B) can be computed in polynomial time since the vector λB of
optimum Lagrangean multipliers on the nodes can be obtained by computing an optimum solution to
the dual of the linear programming relaxation of (IP1) (see the proof of Theorem 6). We also obtain
a set of optimum trees OB, all of which achieve the inner minimum for λB . In other words, every tree
T B ∈ OB minimizes the following objective:

c(T B) +
∑

v∈V

λB
v (degTB (v) − B).

Given λB , the task of finding a tree T that minimizes the above objective function is called the
Lagrangean subproblem of LD(B).

Using cλB

(uv) = c(uv) + λB
u + λB

v the last expression can be restated as

cλB

(T B)−B
∑

v∈V

λB
v (3.2)

Notice that for a given λB and B, the second term is a constant. Hence, any minimum spanning tree

of G under cost cλB

, denoted by MST(G, cλB

), is a solution for T .

An important feature of our algorithm is to relax the degree constraints slightly from B to (1+ω)B for
some fixed ω > 0 and show that there is a tree T ∈ O(1+ω)B that satisfies the conditions of Theorem
1.

We now present our first algorithm for the minimum-cost degree-bounded spanning tree problem. It
uses the local-search procedure for minimum-degree spanning trees from Chapter 2 crucially.

3.2 THE BMST-ALGORITHM

In this section, we describe our algorithm for the BMST problem. It uses the Lagrangean formulation
LD(B) from the introduction and Algorithm 1. We use PLocal(T) to denote an application of the
local-search procedure from Chapter 2 to the tree T .

The input to our algorithm consists of a graph G, a non-negative cost function c, a degree bound B
and a non-negative parameter ω. Let B∗ = (1 + ω)B.

Algorithm 2 Our algorithm for the BMST problem

1: Given: graph G = (V, E), a cost function c : E → IR+, a degree bound B ≥ 2 and a parameter
ω > 0.

2: B∗ ← (1 + ω)B
3: λ∗ ← Solve(LD(B∗))
4: T ← PLocal(G, cλ∗

)

Since the optimum Lagrange multipliers and pseudo-optimal MST’s can be computed in polynomial
time [22, 55], Algorithm 2 runs in polynomial time.

Recall that cλ∗

denotes the original cost function c augmented by the Lagrangean multipliers λ∗, i.e.
cλ∗

uv = cuv + λ∗
u + λ∗

v. We use O∗ to denote the set of all minimum-cost spanning trees of G for cost
function cλ∗

.

3.3 ANALYSIS

In this section we prove Theorem 1. First we show that the cost c(T) of the tree output by Algorithm
2, T , is small. Then, we prove that T has low maximum degree. Our proofs rely on techniques from
Lagrangean duality.

3.3.1 The cost of T

Recall that optLD(B) ≤ optB from Proposition 2. Unfortunately, optLD(B) = optB is not true in
general. There might be a duality gap. However, it can be shown that optLD(B) equals the optimum
objective function value of the relaxation of (IP1). The proof is insightful and hence we present it here.

Theorem 6 (see [55]) optLD(B) = min{c(T) : T ∈ SPG , ∀v ∈ V : degT (v) ≤ B}

16

Proof: We can restate (LD(B)) as the following linear program in variables η and λ. Recall that we
denote its maximum objective function value by optLD(B) .

max η (3.3)

s.t. η ≤ c(T) −
∑

v∈V

λv(B − degT (v)) ∀T ∈ SPG

λ ≥ 0

The first block of constraints states that η is at most the cost of any spanning tree T of G with respect
to the Lagrangean function (3.2). The maximization objective of (3.3) forces η to attain the best
possible cost. Writing down the dual of the last program yields

min c(
∑

T∈ SPG

αT T) (3.4)

s.t.
∑

T∈ SPG

αT = 1

∑

T∈ SPG

αT degT (v) ≤ B
∑

T∈ SPG

αT = B ∀v ∈ V

α ≥ 0

Note that T α =
∑

T∈ SPG
αT T is a convex combination of trees in SPG . Also, observe that

∑

T∈ SPG

αT degT (v)

is precisely the degree degα(v) of this fractional tree at node v. These observations yield the theorem.

The theorem has two nice corollaries that we use. In the following, let λ∗ denote the vector of optimum
Lagrangean multipliers for (LD(B∗)). Recall that O∗ is the set of minimum-cost spanning trees under
cλ∗

.

Corollary 2 There exists a convex combination T α =
∑

T∈O∗ αT T such that

1. ∀v ∈ V : degα
cλ∗ (v) ≤ B∗ and

2. λ∗
v > 0 only if degα

cλ∗ (v) = B∗.

Proof: This follows from complementary slackness applied to the optimum solutions of the dual linear
programs (3.3) and (3.4) with B and λ replaced by B∗ and λ∗.

The second corollary gives a bound on ∆∗
cλ∗ .

Corollary 3 ∆∗
cλ∗ ≤ B∗

Proof: By Corollary 2, we know that there is a convex combination T α of trees from O∗ such that
degα

cλ∗ (v) ≤ B∗ for all v. Hence

∆∗
cλ∗ = min

α
max
v∈V

degα
cλ∗ (v) ≤ B∗.

We now prove that c(T) is small.

17

Lemma 2 For all trees T ∈ O∗ we have c(T) < (1 + 1/ω) optB .

Proof: Recall that we defined B∗ = (1 + ω)B

The following inequality holds for every T ∈ O∗:

∑

v∈V

λ∗
v(degT (v) −B) ≤ c(T) +

∑

v∈V

λ∗
v(degT (v) − B) (3.5)

≤ opt LD(B)

In the first inequality we just added c(T). Note, that the right hand side of the first line is just the
Lagrangean objective function (3.2) for B. Recall that T is a minimum spanning tree with respect to
cλ∗

. Moreover, λ∗ is a feasible set of multipliers for (LD(B)). Hence, the second inequality follows.

We also have

c(T) = c(T) +
∑

v∈V

λ∗
v(degT (v) −B) +

∑

v∈V

λ∗
v(B − degT (v))

≤ optLD(B) +
∑

v∈V

λ∗
v(B − degT (v))

where the inequality follows from (3.5). Applying Proposition 2 and the fact that degT (v) ≥ 1 for all
v ∈ V leads to

c(T) < optB + B
∑

v∈V

λ∗
v.

In the remainder of this proof we will derive the inequality B
∑

v∈V λ∗
v ≤ optB/ω. This yields the

lemma. From Corollary 2, we know that there is a convex combination

T α =
∑

T∈O∗

αT T

such that λ∗
v > 0 only if degα

cλ∗ (v) = B∗.

We derive a new inequality by summing over all T ∈ O∗, αT times the inequality (3.5) for each T . We
obtain

∑

T∈O∗

αT

(∑

v∈V

λ∗
v(degT (v) − B)

)
≤ optLD(B)

∑

T∈O∗

αT (3.6)

The right hand side is equivalent to opt LD(B) because
∑

T∈O∗ αT = 1. Reordering the left hand side
yields

∑

v∈V

λ∗
v

((∑

T∈O∗

αT degT (v)

)
− B

)

Instead of summing over all v ∈ V it suffices to sum over v, where λ∗
v > 0. For such v, we have

degα
cλ∗ =

∑

T∈O∗

αT degT (v) = B∗

by Corollary 2. Using B∗ = (1 + ω)B it follows that the left hand side of (3.6) is equivalent to

ωB
∑

v∈V

λ∗
v

and this finishes the proof of the lemma.

18

3.3.2 The Maximum Degree of T

Lemma 3 ∆(T) ≤ (1 + ω)bB + dlogb ne for constants b > 1 and ω.

Proof: T is a pseudo-optimal minimum-cost spanning tree with respect to cost function cλ∗

. From
Theorem 5 we know that

∆(T) ≤ b∆∗
cλ∗ + dlogb ne.

An application of Corollary 3, noting B∗ = (1 + ω)B yields the lemma.

19

Chapter 4

Minimum-Cost Degree-Bounded

Spanning Trees

With Non-Uniform Degree Bounds

In this chapter, we present a proof of Theorem 2. Given an undirected graph G = (V, E), a cost
function c : E → IR+ and positive integers {Bv}v∈V all greater than 1, the goal is to find a spanning
tree T of minimum total cost such that for all vertices v ∈ V the degree of v in T is at most Bv .

In the light of the results presented in the previous Chapter 3 the results in this chapter are novel in
two ways: First, we present improved approximation algorithms for the minimum-cost degree-bounded
spanning tree problem in the presence of non-uniform degree bounds. Second, our algorithm is direct in
the sense that we do not solve linear programs. The algorithm in Chapter 3 uses Lagrangean relaxation
and thus needs to solve a linear program. Moreover, the analysis relies crucially on the fact that we
compute an exact solution to this LP.

Our new algorithm integrates elements from the primal-dual method for approximation algorithms for
network design problems with local search methods for minimum-degree network problems [22]. The
algorithm goes through a series of spanning trees and improves the maximum deviation of any vertex
degree from its respective degree bound continuously. A practical consequence of this is that we can
terminate the algorithm at any point in time and still obtain a spanning tree of the input graph (whose
node-degrees, of course, may not meet the worst-case guarantees we prove).

This chapter is organized as follows: First, we review the primal-dual interpretation of the well-known
algorithm for minimum-cost spanning trees by Kruskal [47]. Subsequently, we show how to use this
algorithm for the nBMST problem and present an analysis of performance guarantee and running time
of our method.

4.1 A PRIMAL-DUAL ALGORITHM TO COMPUTE MST’S

In this section we review Kruskal’s minimum-cost spanning tree algorithm. More specifically, we
discuss a primal-dual interpretation of this method that follows from [8]. We start by giving a linear
programming formulation of the convex hull of incidence vectors of spanning trees.

4.1.1 The spanning tree polyhedron

In the following, we formulate the minimum-cost spanning tree problem as an integer program where
we associate a 0, 1-variable xe with every edge e ∈ E. In a solution x, the value of xe is one if e
is included in the spanning tree corresponding to x and 0 otherwise. Our formulation relies on a
complete formulation of the convex hull of incidence vectors of spanning trees (denoted by SPG) given
by Chopra [8].

Chopra’s formulation uses the notion of a feasible partition of vertex set V . A feasible partition of V is
a set π = {V1, . . . , Vk} such that the Vi are pairwise disjoint subsets of V . Moreover, V = V1 ∪ . . .∪Vk

and the induced subgraphs G[Vi] are connected. Let Gπ denote the (multi-) graph that has one vertex
for each Vi and edge (Vi, Vj) occurs with multiplicity |{(vi, vj) : vi ∈ Vi, vj ∈ Vj}|. In other words, Gπ

results from G by contracting each of the Vi to a single node. Define the rank r(π) of π as the number
of nodes of Gπ and let Π be the set of all feasible partitions of V . Chopra showed that

SPG = {x ∈ IRm :
∑

e∈E(Gπ)

xe ≥ r(π) − 1 ∀π ∈ Π}.

We now let δ(v) denote the set of edges e ∈ E that are incident to node v and, for a subset S ⊆ V ,
we define δ(S) to be the set of edges that have exactly one endpoint in S. We obtain an integer
programming formulation for our problem:

min
∑

e∈E

cexe (IP)

s.t
∑

e∈E[Gπ]

xe ≥ r(π)− 1 ∀π ∈ Π

x(δ(v)) ≤ Bv ∀v ∈ V (4.1)

x integer

The dual of the linear programming relaxation (LP) of (IP) is given by

max
∑

π∈Π

(r(π)− 1) · yπ −
∑

v∈V

λvBv (D)

s.t
∑

π:e∈E[Gπ]

yπ ≤ ce + λu + λv ∀e = uv ∈ E (4.2)

y, λ ≥ 0

We also let (IP-SP) denote (IP) without constraints of type (4.1). Let the LP relaxation be denoted
by (LP-SP) and let its dual be (D-SP).

4.1.2 A primal-dual interpretation of Kruskal’s MST algorithm

Kruskal’s algorithm can be viewed as a continuous process over time: We start with an empty tree at
time 0 and add edges as we go along. The algorithm terminates at time t∗ with a spanning tree of
the input graph G. In this section we show that Kruskal’s method can be interpreted as a primal-dual
algorithm (see also [30]). At any time 0 ≤ t ≤ t∗ we keep a pair (xt, yt), where xt is a partial (possibly
infeasible) primal solution for (LP-SP) and yt is a feasible dual solution for (D-SP). Initially, we let
xe,0 = 0 for all e ∈ E and yπ,0 = 0 for all π ∈ Π.

Let Et be the forest corresponding to partial solution xt, i.e. Et = {e ∈ E : xe,t = 1}. We then
denote by πt the partition induced by the connected components of G[Et]. At time t, the algorithm
then increases yπt

until a constraint of type (4.2) for edge e ∈ E \Et becomes tight. Assume that this
happens at time t′ > t. The dual update is

yπt,t′ = t′ − t.

We then include e into our solution, i.e. we set xe,t′ = 1. If more than one edge becomes tight at time
t′, we can process these events in any arbitrary order; Thus, note that we can pick any such tight edge
first in our solution. Subsequently, we will use MST to refer to the above algorithm.

The proof of the following lemma is folklore. We supply it for the sake of completeness.

21

Lemma 4 At time t∗, Algorithm MST finishes with a pair (xt∗ , yt∗) of primal and dual feasible solutions
to (IP-SP) and (D-SP), respectively, such that

∑

e∈E

cexe,t∗ =
∑

π∈Π

(r(π)− 1) · yπ,t∗

Proof: Notice, that for all edges e ∈ Et∗ we must have ce =
∑

π:e∈E[Gπ] yπ,t∗ and hence, we can
express the cost of the final tree as follows:

c(Et∗) =
∑

e∈Et∗

∑

π:e∈E[Gπ]

yπ,t∗ =
∑

π∈Π

|Et∗ ∩E[Gπ]| · yπ,t∗ .

By construction Et∗ is a tree and we must have that the set Et∗∩E[Gπ] has cardinality exactly r(π)−1
for all π ∈ Π with yπ,t∗ > 0. We obtain that

∑
e∈E cexe,t∗ =

∑
π∈Π(r(π) − 1) · yπ,t∗ and this finishes

the proof of the lemma.

4.2 MINIMUM-COST DEGREE-BOUNDED SPANNING TREES

In this section, we propose a modification of the above algorithm for approximating degree-bounded
spanning trees of low total cost (for suitably weakened degree bounds). Our algorithm goes through
a sequence of spanning trees E0, . . . , Et and associated pairs of primal (infeasible) and dual feasible
solutions xi, (yi, λi) for 0 ≤ i ≤ t. The idea is to reduce the degree of nodes v ∈ V whose degree
is substantially higher than their associated bound Bv, as we proceed through this sequence, while
keeping the cost of the associated primal solution (tree) bounded with respect to the corresponding
dual solution.

To begin, our algorithm first computes an approximate minimum-cost spanning tree using the Algo-
rithm MST. This yields a feasible primal solution x0 for (LP-SP) and a feasible dual solution y0 for
(D-SP). Notice that y0 also induces a feasible solution for (D) by letting λ0

v = 0 for all v ∈ V while x0

potentially violates constraints of type (4.1).

We introduce the notion of normalized degree of a node V in a tree T and denote it by

ndegT (v) = max{0, degT (v) − βv ·Bv} (4.3)

where βv > 0 are constants for all v ∈ V to be specified later. Our algorithm successively computes
pairs of spanning trees and associated dual solutions to (D), i.e.

(x1, {y1, λ1}), (x2, {y2, λ2}), . . . , (xt, {yt, λt}).

From one such pair to the next, we try to reduce the degree of nodes of high normalized degree.
Specifically, our algorithm runs as long as there is a node in the current tree with ndeg(v) ≥ 2 logb(n)
for some constant b > 1.

We let Ei be the spanning tree corresponding to xi and let ∆i be the maximum normalized degree
of any node in the tree Ei. The central piece of our algorithm is a recompute step where we raise
the λ values of a carefully chosen set Sd of nodes with high normalized degree. This introduces slack
in many of the constraints of type (4.2). Subsequently, we rerun MST and ensure that it generates a
feasible dual packing that takes advantage of the newly created slack around nodes of high normalized
degree. At the same time MST computes a new tree and we ensure at all times that its cost is close to
the objective function value of the associated dual. We are able to show that the number of recompute
steps is polynomial, by arguing that we make substantial progress in the normalized degree sequence
of all nodes.

As mentioned, each recompute step takes a pair of primal infeasible and dual feasible solutions
(xi, (yi, λi)) and computes a new pair of primal (infeasible) and dual feasible solutions (xi+1, (yi+1, λi+1)).

22

In the following we use ndegi(v) as a short for ndegEi(v). We then adapt the notation from [21, 22]
and let

Si
d = {v ∈ V : ndegi(v) ≥ d}

be the set of all nodes whose normalized degree is at least d in the ith solution. Furthermore, let ∆i

be the maximum normalized degree of any node in Ei, i.e.

∆i = max
v∈V

ndegi(v).

Algorithm 3 The algorithm for the nBMST problem attempts to reduce the maximum normalized
degree of any node in a given spanning tree.

1: λ0
v ← 0, ∀v ∈ V ; c̃0

e ← ce, ∀e ∈ E
2: (x0, y0)← MST(G, c̃0)
3: i← 0
4: while ∆i > d2 logb ne do
5: Choose di ∈ {∆i − d2 logb(n)e + 1, . . . , ∆i} s.t.

∑
v∈Si

di−1

Bv ≤ b ·
∑

v∈Si

di
Bv

6: Choose εi > 0
7: For all v ∈ V let

λi+1
v ←

λi
v + εi : v ∈ Si

di−1

λi
v : otherwise

8: c̃i+1(e)← c̃i(e) + εi if either e ∈ Ei and e ∩ Si
di 6= ∅ or e 6∈ Ei and e ∩ Si

di−1 6= ∅

9: (xi+1, yi+1)← MST(G, c̃i+1)
10: i← i + 1
11: end while

A detailed description of the procedure is given in Algorithm 3. Recall that MST(G, c̃) returns a pair
of primal and dual optimal solutions to (LP) and (D) for cost function c̃. In step 5 of Algorithm 3, we
choose a suitable set of nodes whose λ-values we increase. The arguments used to prove Lemma 1 can
be extended to show the following.

Lemma 5 There is a di ∈ {∆i − d2 logb ne+ 1, . . . , ∆i} such that

∑

v∈Si

di−1

Bv ≤ b ·
∑

v∈Si

di

Bv

for a given constant b > 1.

Proof: Suppose for a contradiction that for all di ∈ {∆i − d2 logb ne+ 1, . . . , ∆i}, we have

∑

v∈Si

di−1

Bv > b ·
∑

v∈Si

di

Bv.

Note that since we may assume Bv ≤ (n − 1) for all vertices, we must have
∑

v∈V Bv ≤ n(n − 1).
However, since

∑
v∈Si

∆i
Bv ≥ 1, we have in this case that

∑

v∈Si

∆i−2 logb n

Bv ≥ bd2 logb(n)e ≥ n2

a contradiction.

23

c

(1)

c

(2)

c

(3)

Figure 4.1: The figure shows the intuition behind our algorithm. Figure

(1) shows a spanning tree with a high-degree node c. Figure (2) shows

how raising λc creates slack for all the edges that are incident to c and

finally Figure (3) shows the new tree after running MST again.

The low expansion of Si
di turns out to be crucial in the analysis of the performance guarantee of our

algorithm.

Intuitively, increasing λv for a node v ∈ V lengthens edges of the form uv ∈ E; In this way, in the
current packing {yi

π}π∈Π, we create extra slack in constraints of type (4.2) for edges incident to v. The
hope is to increase the length of edges incident to nodes of high normalized degree until other edges
that are incident to nodes of lower normalized degree are used in their place in the spanning tree.
Figure 4.1 exemplifies this intuition.

Step 6 of Algorithm 3 hides the details of choosing an appropriate εi by which edges in the current
tree that are incident to nodes of normalized degree at least di are lengthened. Our choice of εi will
ensure that there exists at least one point in time during the execution of MST in step 9 at which we
now have the choice to connect two connected components using edges ei and ei where ei ∈ Ei and
ei 6∈ Ei. We now break ties such that ei is chosen instead of ei and obtain a new tree Ei+1 that differs
in exactly one edge from Ei.

We show that we can choose εi and hence a pair of edges 〈ei, ei〉 such that ei is not incident on any
node from Si

di−1. The main idea here is to increase λv for nodes v ∈ Si
di−1 by εi and increase the

lengths of non-tree edges that are incident to nodes v ∈ Si
di−1 by εi as well. In other words, the length

of non-tree edges incident to nodes of normalized degree at least di − 1 increases by the same amount
as the length of tree edges incident to nodes of normalized degree at least di. This way, we enforce
that the edge we swap in touches nodes of normalized degree at most di − 2. Once we accomplish
this, adapting a potential function argument from [21] we can put a polynomial upper bound on the
number of such iterations (see Section 4.2.5).

Suppose, that our algorithm terminates after t iterations. Our goal is then to prove

∑

e∈Ei

ce ≤ ω
∑

π∈Π

(r(π) − 1) · yi
π − ω ·

∑

v∈V

Bv · λ
i
v (4.4)

for all 1 ≤ i ≤ t. The right-hand side of (4.4) is ω times the dual objective function value of the feasible
dual solution (yi, λi). Therefore, using weak duality, (4.4) implies that

∑
e∈Ei ce ≤ ω · opt . We now

describe how to choose εi so that the above conditions are satisfied.

24

4.2.1 Choosing εi

In this section we elaborate on the choice of εi in step 6 of Algorithm 3. Note that we maintain

cuv ≤ c̃uv ≤ cuv + λu + λv

for all edges uv at all times during the run of Algorithm 3. In step 8 of Algorithm 3, we increase c̃uv

by εi for all tree edges uv that are incident to nodes of degree at least di and for all non-tree edges
that are incident to nodes of degree at least di − 1. Note that our algorithm increases the λi-value of
at least one endpoint of all the edges whose c̃-cost increases.

We want to choose εi such that the subsequent update of c̃i and the following run of MST yields a new
tree Ei+1 that differs from Ei by a single edge swap: Ei+1 = Ei \ {ei} ∪ {ei}. Here, the edge ei ∈ Ei

is a tree edge that is incident to a node from Si
di . On the other hand ei ∈ E \ Ei is a non-tree edge

that is not incident to any node from Si
di−1. We want that c̃i(ei) ≤ c̃i(ei) and c̃i(ei) + εi = c̃i(ei). In

other words, the update of λv for v ∈ Si
di−1 creates one more beneficial swap.

We let Ki be the set of connected components of the forest Ei \ Si
di , i.e. the forest that results from

removing nodes of normalized degree at least di from Ei. We say that an edge e = uv ∈ E is a
cross-edge if

1. e is a non-tree edge, i.e. e ∈ E \Ei, and

2. u ∈ K1, v ∈ K2 for K1, K2 ∈ Ki and K1 6= K2.

We denote the set of cross-edges in iteration i by Ci.

It is now clear that Ei + e contains a unique cycle Ci
e for each cross-edge e ∈ Ci. Furthermore, there

must be at least one vertex v on Ci
e that has normalized degree at least di.

For each cross-edge e ∈ Ci, we now let

εi
e = min

e′∈Ci
e,e′∩Si

di
6=∅

(
c̃i(e) − c̃i(e′)

)
.

We then let εi = mine∈Ci εi
e.

In the following, we let 〈ei, ei〉 be the witness pair for εi. In other words, for all edges e′ ∈ Ci
ei such

that e′ is incident to a node of normalized degree at least di, we have c̃i
e′ + εi ≤ c̃i

ei and equality holds
for e′ = ei.

Note that εi can be 0. In this case we have

c̃i(ei) = c̃i(ei)

and the swap can be viewed as a local-improvement step along the lines of the local-search algorithm
for the minimum-degree spanning tree problem from Chapter 2. We do not modify the dual solution
but decrease the normalized degree of a node of high normalized degree.

We now show that (4.4) is maintained throughout the execution of our algorithm.

4.2.2 Analysis: Performance guarantee

Assume that Algorithm 3 terminates after iteration t∗. In this section we prove that (4.4) must hold
for all 0 ≤ i ≤ t∗. Observe that (4.4) holds for i = 0 by Lemma 4. We concentrate on the case i ≥ 1.

Growing λi
v by εi at nodes v ∈ Si

di−1 decreases the right-hand side of (4.4) by ωεi ·
∑

v∈Si

di−1

Bv. Still

the cost of the spanning tree Ei+1 is potentially higher than the cost of the old tree Ei. We must
show that the first term on the right hand-side of (4.4), i.e. ω ·

∑
π∈Π(r(π)− 1)yi

π grows sufficiently to
compensate for the decrease in the second term and the increased spanning tree cost.

25

To do this, we maintain the following invariant inductively for all 0 ≤ i ≤ t∗:

ω ·
∑

v∈V

Bvλi
v ≤ (ω − 1) ·

∑

π∈Π

(r(π) − 1) · yi
π . (Inv)

Since, λ0
v = 0 for all v ∈ V by definition, (Inv) holds for i = 0.

The following claim that proves the inductive step of (Inv) is the essential insight that ultimately yields
(4.4).

Claim 1 Choosing βv ≥ bα for all v ∈ V in the definition of normalized degree yields
∑

π∈Π

(r(π) − 1) · yi+1
π ≥

∑

π∈Π

(r(π)− 1) · yi
π + εiα ·

∑

v∈Si

di−1

Bv

for all 0 ≤ i ≤ t∗.

Proof: Let Ei = {ei
1, . . . , e

i
n−1} and let tij be the time at which MST included edge ei

j. W.l.o.g., assume

that ti1 ≤ · · · ≤ tin−1. From the description of MST we can rewrite

∑

π∈Π

(r(π) − 1) · yi
π =

n−1∑

j=1

(tij − tij−1) · (n− j) (4.5)

=

n−1∑

j=1

tij ((n− j + 1)− (n− j))

=

n−1∑

j=1

tij

where we define ti0 = 0.

In fact, we can use (4.5) to quantify the change in dual in iteration i:

∑

π∈Π

(r(π)− 1) ·
(
yi+1

π − yi
π

)
=

n−1∑

j=1

(
ti+1
j − tij

)
(4.6)

In iteration i, we lengthen all edges e ∈ Ei that are incident to nodes of normalized degree at least di

by εi. Hence, all of these edges become tight εi time units later. Together with (4.6) we obtain
∑

π∈Π

(r(π) − 1) ·
(
yi+1

π − yi
π

)
≥ εi ·

∣∣E
(
Si

di

)
∩Ei

∣∣ (4.7)

where E
(
Si

di

)
denotes the set of edges in E that are incident to nodes from Si

di . (Note that we include
in E(S) edges with both endpoints in S).

Recall the definition of normalized degree in (5.8). Notice that it follows from the termination condition
in step 4 of Algorithm 3 that di > 0. Hence, we must have that the real degree of any node v ∈ Si

di is
at least

βv ·Bv + di ≥ βv ·Bv + 1.

Finally, notice that it follows from the fact that Ei is a tree that there are at most |Si
di | − 1 edges in

E
(
Si

di

)
that are incident to two nodes from Si

di . We can use these observation to lower-bound the
right-hand side of (4.7):

∑

π∈Π

(r(π) − 1) ·
(
yi+1

π − yi
π

)
≥ εi ·

∑

v∈Si

di

βv ·Bv + 1

− (|Si

di | − 1)

 .

26

Now, we choose βv ≥ αb for all v ∈ V and obtain

∑

π∈Π

(r(π) − 1) ·
(
yi+1

π − yi
π

)
≥ εiαb ·

∑

v∈Si

di

Bv.

Lemma 5 now yields the claim.

We are now ready to prove (4.4).

4.2.3 Proof of (4.4)

As MST finishes we obtain from Lemma 4 that

c̃i+1(Ei+1) =
∑

e∈Ei+1

c̃i+1
e =

∑

π∈Π

(r(π) − 1) · yi+1
π . (4.8)

Observe that the real cost of the spanning tree Ei+1 can be much smaller than c̃i+1(Ei+1). In fact,
notice that we have

c(Ei+1) = c(ei) + c(Ei \ {ei}) ≤ c̃i+1(ei) + c̃i(Ei \ {ei}) (4.9)

where the first step follows from the fact that Ei+1 = Ei \ {ei} ∪ {ei} by the definition of εi and the
way we break ties in MST. The second inequality uses the fact that we always have ce ≤ c̃i

e for all
1 ≤ i ≤ t and for all e ∈ E.

Also, observe that

c̃i+1(Ei \ {ei}) = c̃i(Ei \ {ei}) +
(∣∣E

(
Si

di

)
∩Ei

∣∣− 1
)
· εi (4.10)

since exactly one edge from Ei that is incident to a node of normalized degree at least di is swapped
out.

We can lower-bound
∣∣E
(
Si

di

)
∩Ei

∣∣ using the arguments from the proof of Claim 1:

∣∣E
(
Si

di

)
∩Ei

∣∣ ≥

∑

v∈Si

di

βv ·Bv + 1

 − (|Si

di | − 1)

≥ α ·
∑

v∈Si

di−1

Bv + 1

where the second inequality again follows from Lemma 5 and from our choice of βv for all v ∈ V . The
last inequality together with (4.10) implies

c̃i+1(Ei \ {ei}) ≥ c̃i(Ei \ {ei}) + αεi ·
∑

v∈Si

di−1

Bv . (4.11)

We now obtain

c(Ei+1) ≤ c̃i(Ei \ {ei}) + c̃i+1(ei)

≤ c̃i+1(Ei)− αεi ·
∑

v∈Si

di−1

Bv

=
∑

π∈Π

(r(π)− 1) · yi+1
π − αεi ·

∑

v∈Si

di−1

Bv

27

where the first inequality follows from (4.9), the second inequality follows from (4.11), and the last
equality follows from (4.8).

Adding (Inv) to the last inequality we get

c(Ei+1) ≤
∑

π∈Π

(r(π)− 1) · yi+1
π + (ω − 1) ·

∑

π∈Π

(r(π)− 1) · yi
π − ωεi ·

∑

v∈Si

di−1

Bv − α ·
∑

v∈V

Bvλi
v

≤ ω ·
∑

π∈Π

(r(π) − 1) · yi+1
π − ωεi ·

∑

v∈Si

di−1

Bv − α ·
∑

v∈V

Bvλi
v

where the last inequality follows from the fact that

∑

π∈Π

(r(π) − 1)yi
π ≤

∑

π∈Π

(r(π) − 1)yi+1
π .

Finally notice that λi+1
v = λi

v +εi if v ∈ Si
di−1 and λi+1

v = λi
v otherwise. Additionally, we choose α ≥ ω

and get

c(Ei+1) ≤ ω ·
∑

π∈Π

(r(π) − 1) · yi+1
π − ω ·

∑

v∈V

Bvλi+1
v .

as required. This proves the inductive step of (4.4).

4.2.4 Proof of (Inv)

It remains to show that (Inv) is maintained as well. Observe that the left hand side of (Inv) increases
by

ωεi
∑

v∈Si

di−1

Bv .

We obtain from Claim 1 that

∑

π∈Π

(r(π) − 1) · (yi+1
π − yi

π) ≥ εiα ·
∑

v∈Si

di−1

Bv

Therefore, the right hand side of (Inv) increases by (ω − 1) · αεi ·
∑

v∈Si

di−1

Bv which is sufficient if

(ω − 1)α ≥ ω or equivalently, if α ≥ ω/(ω − 1).

The proof of the performance guarantee claimed in Theorem 2 follows by choosing α ≥ max
{
ω, ω

ω−1

}
.

4.2.5 Analysis: Running time

In this section, we show that Algorithm 3 terminates in polynomial time. We accomplish this by
showing that there will be only a polynomial number of iterations of the main loop in Algorithm 3.

Claim 2 Algorithm 3 terminates after O(n4) iterations.

Proof: Following [21], we define the potential of spanning tree Ei as

Φi =
∑

v∈V

3ndegi
(v)

where ndegi(v) denotes again the normalized degree of node v in the tree Ei.

28

Notice that an iteration of Algorithm 3 swaps out a single edge ei that is incident to at least one node
of normalized degree at least di. On the other hand we swap in one edge ei that is incident to two
nodes of normalized degree at most di − 2. The reduction in the potential hence is at least

(3di

+ 2 · 3di−2)− 3 · 3di−1 ≥ 2 · 3di−2

Using the range of di, we can lower-bound the right hand side of the last inequality by

2 · 3∆i−2 logb(n)−2 = Ω

(
3∆i

n2

)
.

The initial potential Φ0 is at most n · 3∆0

and the decrease in the potential Φi in iteration i is at least
Ω
(

Φi

n3

)
.

In other words, in O(n3) iterations, we reduce Φ by a constant factor. Hence, the algorithm runs for
O(n4) iterations total. Observing that each iteration can be implemented in time O(n2 log n) [29], we
see that the whole algorithm runs in time O(n6 logn).

29

Chapter 5

Minimum-Cost Degree-Bounded

Steiner Trees

In this chapter we address the minimum-degree Steiner tree problem (B-ST) where we are given an
undirected graph G = (V, E), a non-negative cost ce for each edge e ∈ E and a set of terminal nodes
R ⊆ V . Additionally, the problem input also specifies positive integers {Bv}v∈V . The goal is to find a
minimum-cost Steiner tree T covering R such each node v in T has degree at most Bv , i.e.

degT (v) ≤ Bv

for all v ∈ V .

We present an algorithm for the problem and give a proof of Theorem 3. The basic framework resembles
the primal-dual algorithm from Chapter 4.

In the following, we review a linear programming formulation for the problem and subsequently discuss
the Steiner tree algorithm from [3].

5.1 A LINEAR PROGRAMMING FORMULATION

The following natural integer programming formulation models the problem. Let U = {U ⊆ V :
U ∩R 6= ∅, R \ U 6= ∅}.

min
∑

e∈E

cexe (IP)

s.t x(δ(U)) ≥ 1 ∀U ∈ U (5.1)

x(δ(v)) ≤ Bv ∀v ∈ V (5.2)

x integer

The dual of the linear programming relaxation (LP) of (IP) is given by

max
∑

U∈U

yU −
∑

v∈V

λv ·Bv (D)

s.t
∑

U :e∈δ(U)

yU ≤ ce + λu + λv ∀e = uv ∈ E (5.3)

y, λ ≥ 0

We also let (IP-ST) denote (IP) without constraints of type (5.2). This is the usual integer programming
formulation for the Steiner tree problem. Let the LP relaxation be denoted by (LP-ST) and let its
dual be (D-ST).

5.2 AN ALGORITHM FOR THE STEINER TREE PROBLEM

Our algorithm is based upon previous work on the generalized Steiner tree problem by Agrawal et
al. [3]. In the following, we present their algorithm to compute an approximate Steiner tree. We refer
to this algorithm by AKR.

At each step during the algorithm we maintain a partial Steiner tree. More specifically, we have a set
of edges E′ ⊆ E. We use C(E′) to denote the set of connected components of G[E′] and let

V(E′) = {S ∈ C(E′) : S ∈ U}

denote the set of minimally violated components for edge set E ′. Sets S ∈ V(E′) are violated in the
sense the inequality (5.1) in (LP-ST) is violated for set S and partial solution E ′. S is minimal in the
sense that there is no proper subset S′ ⊂ S such that (5.1) is violated for set S′ and partial solution
E′. We sometimes refer to sets S ∈ V(E′) as moats.

The algorithm also maintains a feasible dual solution y for (D-ST) and let yS = 0 initially for all S ∈ U .

The construction of the final Steiner tree is now viewed as a continuous process. With each time
t ∈ [0, t∗], we associate a partial primal solution xt for (LP-ST) and a feasible dual solution yt for
(D-ST). At time t, let Et be the set of edges that we have included so far and let Vt = V(Et) be the
set of minimally violated components. We let yt be the dual solution a time t.

At any given point t ∈ [0, t∗] such that xt is not the incidence vector of a feasible Steiner tree, we
increase yS for all S ∈ Vt simultaneously until a constraint of type (5.3) for edge e ∈ E \ Et becomes
tight. Assume that this happens at time t′ ≥ t. The dual update is

yt′

S =

yt
S + (t′ − t) : S ∈ Vt

yt
S : otherwise.

If the tightness of e is caused by two colliding active moats S1, S2 ∈ Vt, we merge them and create a
new moat S = S1 ∪ S2. In this case, there must exist a minimum-c-cost path P connecting terminal
nodes s1 ∈ S1 and s2 ∈ S2 such that every edge e′ ∈ P is tight and e ∈ P . Moreover, all internal nodes
v of P (we write v ∈ int(P)) are Steiner nodes. We then say, that P is an s1, t1-Steiner path and we
let PS1 ,T1

be the set of all Steiner paths that connect terminals in S1 and T1, respectively.

We include the edges of P into our solution:

xt′

e′ =

1 : e′ ∈ P

xt
e′ : otherwise.

Notice, that we do not update the primal solution in the case that the tightness of edge e is caused
by one moat alone. This must mean that e connects S to a Steiner node. In this way, our view of the
primal-dual algorithm is closer to that of Agrawal, Klein, and Ravi [3] rather than the treatment in
[29] where all tight edges are added and unnecessary ones are deleted in a reverse delete step at the
end.

In the following, let P be the set of Steiner nodes that Algorithm AKR uses to connect all terminals
in R and denote by PS the subset of paths from P that use only nodes from S ⊆ V . We obtain the
following lemma:

Claim 3 For any t ∈ [0, t∗] and any active component S ∈ Vt we must have

∑

P∈PS

c(P) ≤ 2
∑

S′⊆S

yt
S − 2t

31

Proof: The claim is trivially true for t = 0.

Now, let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tq ≤ t∗ be those points in time when active moats collide and the partial
primal solution changes. We first show that the claim is true for t 6= ti for all all 1 ≤ i ≤ q.

Let t′ = ti = maxj:tj≤t tj . By induction, we have that

∑

P∈PS

c(P) ≤ 2
∑

S′⊆S

yt′

S − 2t′ (5.4)

Notice, that no Steiner paths are added in the time interval (t′, t] and that yt
S − yt′

S = (t− t′). It then
follows easily that (5.4) holds even for t′ replaced by t.

Now, let t = ti for some 1 ≤ i ≤ q. Let S1 and S2 be the two moats colliding at time ti and let P be
the S1, S2 Steiner path that is used to merge S1 and S2. It is not hard to see that

c(P) =
∑

e∈P

ce ≤ 2t. (5.5)

Hence,

∑

P∈PS1∪S2

c(P) ≤
∑

P∈PS1

c(P) +
∑

P∈PS2

c(P) + 2t

≤
∑

S′⊆S1

yt
S′ +

∑

S′⊆S2

yt
S′ − 4t + 2t

=
∑

S′⊆S

yt
S′ − 2t

where the second inequality follows from our induction hypothesis.

This immediately implies the following corollary.

Corollary 4 The preceeding algorithm computes a (2 − 2/k)-approximate Steiner tree.

Proof: Assume that the last moat collision in AKR happens at time t∗. We then must have

∑

S∈U

yt∗

S ≤ k · t∗ (5.6)

and hence we must have
∑

e

cex
t∗

e ≤
∑

P∈P

c(P)

≤ 2
∑

S∈U

yt∗

S − 2t∗

≤ (2− 2/k) ·
∑

S∈U

yt∗

S

≤ (2− 2/k) · opt .

The third inequality uses (5.6) and the last inequality uses weak duality.

In the following section, we derive a few useful properties of algorithm AKR.

5.2.1 Some useful properties of AKR

The first observation characterizes the set of Steiner paths that is used to connect terminal nodes from
R.

32

k1

k2

v

r

S1

S2

Sr

Figure 5.1: The figure shows a moat configuration during the execution

of AKR. A Steiner path (solid lines) connecting two terminal nodes k1 ∈

S1 and k2 ∈ S2 is loaded by three moats S1, S2 and Sr.

Claim 4 Let t ∈ [0, t∗] be a point in time at which AKR merges sets S1 ∈ Vt and S2 ∈ Vt using path
P . Let Pj be the set of all Steiner paths that originate at a terminal node in Sj and end in a terminal
node in R \ Sj . We then must have that

c(P) ≤ min
P ′∈P1∪P2

c(P ′).

Moreover, we must have t = c(P)/2.

Proof: The proof is by contradiction. Let

P1, . . . , Pk

be the paths of P in the order they are added. Assume that P = Pi is the first path in this ordering
for which the claim does not hold. W.l.o.g. assume that for some k ∈ R \ S1 there is an S1, k-Steiner
path P ′ with

c(P ′) < c(P).

Still P is used to merge S1 and S2 before P ′ is used to merge S1 and r.

The only way in which P can become tight earlier than P ′ is that at some point in time t′ < t there
are at least three active moats S1, S2 and Sr intersecting P (refer to Figure 5.1). Suppose that v is a
Steiner node in Sr ∩ P and r is the terminal in Sr which is at minimum-c-distance from v. Let

P = 〈Pk1,v, Pv,k2
〉

and let Pv,r ∈ Et be a minimum-c-cost v, r-path in G.

It must be the case that either S1 and r or S2 and r merge before S1 and S2 do. W.l.o.g., assume that
S1 and r merge first. By assumption we know that this happens at time c(〈Pk1,v, Pv,r〉)/2. This also
implies that c(Pv,r) < c(Pk1,v) and hence,

c(〈Pr,v, Pv,k2
) < c(〈Pk1,v, Pv,k2

)

which contradicts the choice of P as a minimum-c-cost path connecting terminals in the two moats
that are involved in the merge.

33

Finally, suppose that P becomes tight at time tP during the execution of AKR. The above argument
shows that at all times 0 ≤ t ≤ tP there are exactly two active moats that intersect P . It immediately
follows that P becomes tight at time c(P)/2.

Before proceeding with the description of an algorithm for minimum-cost degree-bounded Steiner trees,
we present an alternate view of Algorithm AKR which simplifies the following developments in this paper.

5.2.2 An alternate view of AKR

Executing AKR on an undirected graph G = (V, E) with terminal set R ⊆ V and costs {ce}e∈E is – in
a certain sense – equivalent to executing AKR on the complete graph H with vertex set R where the
cost of edge e = uv ∈ R× R is equal to the minimum cost of any u, v-path in G.

Recall that PS,T denotes the set of s, t-Steiner paths for all s ∈ R∩S and t ∈ R∩T . For an s, t-Steiner
path P , we define

cλ(P) = c(P) + λs + λt + 2 ·
∑

v∈int(P)

λv

and finally, let
distcλ (S, T) = min

P∈PS,T

cλ(P)

be the minimum cλ-cost for any S, T -Steiner path. We now work with the following dual:

max
∑

U⊂R

yU −B0

∑

v∈V

λv (D2)

s.t
∑

U⊂R,s∈U,t6∈U

yU ≤ cλ(P) ∀s, t ∈ R, P ∈ Ps,t ∈ E (5.7)

y, λ ≥ 0

Let H be a complete graph on vertex set R. We let the length of edge (s, t) ∈ E[H] be distcλ(s, t).
Running AKR on input graph H with length function distcλ yields a tree in H that corresponds to a
Steiner tree spanning the nodes of R in G in a natural way. We also obtain a feasible dual solution for
(D2). The following lemma shows that (D) and (D2) are equivalent.

Claim 5 (D) and (D2) are equivalent.

Proof: Let {yU}U be a dual solution to (D). Define

yS =
∑

U∈U ,U∩R=S

yU .

It is now easy to check that y is feasible for (D2) and that
∑

U⊂R yU =
∑

U∈U yU .

We now show how to convert a feasible solution {yU}U⊂R to (D2) into a feasible solution {yS}S∈U for
(D). In order to do this, we keep a budget buv for each edge uv ∈ E and let

buv = cuv + λu + λv

for all uv ∈ E initially. For a subset S ⊂ R and a budget vector {be}e∈E , we let

B(S, b) = {u ∈ V \R : ∃S, u-path P s.t. be = 0 for all e ∈ P} ∪ S.

In other words, B(S, b) contains S and all Steiner vertices u that are connected to S by at least one
path of 0-budget edges.

34

Algorithm 4 An algorithm to convert a solution {yU}U⊂R for (D2) into a solution {yS}S∈U for (D).

1: Given: feasible solution {yU}U⊂R for (D2).
2: be ← ce for all e ∈ E
3: y′U ← yU for all U ⊂ R
4: yS ← 0 for all S ∈ U
5: while ∃U ⊂ R with y′U > 0 do
6: ε← min{mine∈δ(B(U,b)) be, y

′
U}

7: yB(U,δ) ← yB(U,δ) + ε
8: y′U ← y′U − ε
9: be ← be − ε for all e ∈ δ(B(U, b))

10: end while

The algorithm starts with y′U = yU for all U ⊂ R and then incrementally constructs {yS}S∈U . At any
point in time, we look at a subset U of the terminals such that y′

U ′ = 0 for all U ′ ⊂ U . Given such a
subset, we then increase yB(U,b) by the maximum ε > 0 such that the resulting set of dual variables is
still feasible for (D). The maximum such ε equals the minimum budget among the edges in δ(B(U, b)).
If ε > y′U then let ε = y′u.

Afterwards, we decrease the budget be of all edges e ∈ δ(B(U, b)) as well as variable yU by ε. We
continue this process until y′U = 0 for all U ⊂ R. Algorithm 4 has the pseudo code for the conversion
procedure.

It can be shown by induction that at any point during the algorithm and for any s, t-Steiner path P
we must have ∑

S∈U ,|S∩{s,t}|=1

yS +
∑

U⊂R,|U∩{s,t}|=1

y′U =
∑

U⊂R,|U∩{s,t}|=1

yU .

We leave the details to the reader.

This implies the termination of Algorithm 4. An immediate consequence is the feasibility of {yS}S∈U

for (D) and ∑

S∈U

yS =
∑

U⊂R

yU .

This finishes the proof of the claim.

5.3 AN ALGORITHM FOR THE B-ST PROBLEM

In this section, we propose a modification of AKR in order to compute a feasible degree-bounded Steiner
tree of low total cost. We start by giving a rough overview over our algorithm.

5.3.1 Algorithm: Overview

Recall that we defined the normalized degree ndegT (v) of a node v in a Steiner tree T as

ndegT (v) = max{0, degT (v) − βv} (5.8)

where {βv}v∈V are parameters to be defined later.

Algorithm B-ST goes through a sequence of Steiner trees E0, . . . , Et and associated pairs of primal
(infeasible) and dual feasible solutions xi, (yi, λi) for 0 ≤ i ≤ t. The goal is to reduce the maximum
normalized degree of at least one node in V in the transition from one Steiner tree to the next.

In the ith iteration our algorithm passes through two main steps:

35

Compute Steiner tree. Compute an approximate Steiner tree spanning the nodes of R for our graph
G = (V, E) using a modified version of AKR. Roughly speaking, this algorithm implicitly assumes
a cost function c̃ that satisfies

c(P) ≤ c̃(P) ≤ cλi

(P) (5.9)

for all Steiner paths P .

When the algorithm finishes, we obtain a primal solution xi together with a corresponding dual
solution yi. In the following we use Pi to denote the set of paths used by AKR to connect the
terminals in iteration i.

Notice that using the cost function c̃ that satisfies (5.9) ensures that (yi, λi) is a feasible solution
for (D2). The primal solution xi may induce high normalized degree at some of the vertices of
V and hence may not be feasible for (IP).

Update node multipliers. The main goal here is to update the node multipliers λi such that another
run of AKR yields a tree in which the normalized degree of at least one node decreases. Specifically,
we continue running our algorithm as long as the maximum normalized node-degree induced by
xi is at least 2 logb n where b > 1 is a positive constant to be specified later.

As in the last chapter, let ∆i be the maximum normalized degree of any node in the tree induced
by xi. The algorithm then picks a threshold di ≥ ∆i − d4 logb ne + 2. Subsequently we raise the
λ values of all nodes that have normalized degree at least di − 2 in the tree induced by xi by
some εi > 0. We also implicitly increase the c̃ cost of two sets of Steiner paths:

1. those paths P ∈ Pi that contain nodes of degree at least di and

2. those paths P 6∈ Pi that contain nodes of degree at least di − 2.

We denote to the set of all such paths by Li.

A subsequent rerun of AKR replaces at least one Steiner path whose c̃-cost increased with a Steiner
path whose length stayed the same. In other words, a path that touches a node of normalized
degree at least di is replaced by some other path that has only nodes of normalized degree less
than di − 2.

Throughout the algorithm we will maintain that the cost of the current tree induced by xi is within
a constant factor of the dual objective function value induced by (yi, λi). By weak duality, this
ensures that the cost of our tree is within a constant times the cost of any Steiner tree that satisfies
the individual degree bounds. However, we are only able to argue that the number of iterations is
quasi-polynomial.

In the following, we will give a detailed description of the algorithm. In particular, we elaborate on the
choice of εi and di in the node-multiplier update and on the modification to AKR that we have alluded
to in the previous intuitive description.

5.3.2 Algorithm: A detailed top-level description

We first present the pseudo-code of our B-ST-algorithm. In the description of the algorithm we use the
abbreviation ndegi(v) in place of ndegEi(v) for the normalized degree of vertex v in the Steiner tree
Ei. We also let ∆i denote the maximum normalized degree of any vertex in Ei, i.e.

∆i = max
v∈R

ndegi(v).

Furthermore, we again adopt the notation of [21, 22] and let

Si
d = {v ∈ V : ndegi(v) ≥ d}

be the set of all nodes whose normalized degrees are at least d in the ith solution.

The following lemma is a straight forward consequence of Lemma 1.

36

Lemma 6 There is a di ∈ {∆i − d4 logb ne+ 2, . . . , ∆i} such that

∑

v∈Si

di−2

Bv ≤ b ·
∑

v∈Si

di

Bv

for a given constant b > 1.

Proof: Suppose for a contradiction that for all di ∈ {∆i − d4 logb ne+ 2, . . . , ∆i}, we have

∑

v∈Si

di−2

Bv > b ·
∑

v∈Si

di

Bv.

Note that since we may assume Bv ≤ (n − 1) for all vertices, we must have
∑

v∈V Bv ≤ n(n − 1).
However, since

∑
v∈Si

∆i
Bv ≥ 1, we have in this case that

∑

v∈Si

∆i−d4 logb ne

Bv ≥ bd2 logb(n)e ≥ n2

a contradiction.

Lemma low expansion of Si
di−2 turns out to be crucial in the analysis of the performance guarantee of

our algorithm.

Finally, we let mod-AKR denote a call to the modified version of the Steiner tree algorithm AKR. Algo-
rithm 5 has the pseudo code for our method.

Algorithm 5 An algorithm to compute an approximate minimum-cost degree-bounded Steiner tree.

1: Given: primal feasible solution x0,P0 to (LP-ST) and dual feasible solution y0 to (D-ST)
2: λ0

v ← 0, ∀v ∈ V
3: i← 0
4: while ∆i > 4dlogb ne do
5: Choose di ≥ ∆i − d4 logb ne + 2 s.t.

∑
v∈Si

di−2

Bv ≤ b ·
∑

v∈Si

di
Bv

6: Choose εi > 0 and identify swap pair 〈P i, P
i
〉.

7: λi+1
v ← λi

v + εi if v ∈ Si
di−2 and λi+1

v ← λi
v otherwise

8: yi+1 ← mod-AKR(Pi, εi, yi, 〈P i, P
i
〉)

9: Pi+1 ← Pi \ {P i} ∪ {P
i
}

10: i← i + 1
11: end while

Step 6 of Algorithm 5 hides the details of choosing an appropriate εi. We lengthen all Steiner paths in
Li. Our choice of εi will ensure that there exists at least one point in time during the execution of a
slightly modified version of AKR in step 8 at which we now have the choice to connect two moats using

paths P i and P
i
, respectively. We show that there is a way to pick εi such that

P i ∩ Si
di 6= ∅ and P

i
∩ Si

di−2 = ∅.

We now break ties such that P
i
is chosen instead of P i and hence, we end up with a new Steiner tree

Ei+1.

In mod-AKR, we prohibit including alternate paths that contain nodes from Si
di−2 and argue that the

dual load that such a non-tree path P ′ sees does not go up by more than εi. Hence, we preserve dual
feasibility.

We first present the details of Algorithm mod-AKR and discuss how to find εi afterwards.

37

5.3.3 Algorithm: mod-AKR

Throughout this section and the description of mod-AKR we work with the modified dual (D2) as
discussed in Section 5.2.2.

We first introduce some simplifying notation. For a r1, r2-Steiner path P with r1, r2 ∈ R, we let
RP ⊆ 2R denote all sets S ⊂ R such that

{r1, r2} ∩ S 6= ∅ and {r1, r2} 6⊆ S.

For a dual solution y, λ we then define the cut-metric

ly(P) =
∑

S∈RP

ys.

From here it is clear that (y, λ) is a feasible dual solution iff

ly(P) ≤ cλ(P)

for all Steiner paths P . We use li(P) as an abbreviation for lyi(P).

At all times during the execution of Algorithm 5 we want to maintain dual feasibility, i.e. we maintain

li(P) ≤ cλi

(P) (5.10)

for all Steiner paths P and for all i. Moreover, we want to maintain that for all i, the cost of any path
P ∈ Pi is bounded by the dual load that P sees. In other words, we want to enforce that

c(P) ≤ li(P) (5.11)

for all P ∈ Pi and for all i. It is easy to see that both (5.10) and (5.11) hold for i = 0 from the
properties of AKR.

First, let Pi = Pi
1 ∪P

i
2 be a partition of the set of Steiner paths used to connect the terminal nodes in

the ith iteration. Here, a path P ∈ Pi is added to Pi
1 iff P ∩ Si

di 6= ∅ and we let Pi
2 = Pi \ Pi

1.

mod-AKR now first constructs an auxiliary graph Gi with vertex set R. We add an edge (s, t) to Gi for
each s, t-path P ∈ Pi \ {P i}. The length li+1

st assigned to an edge (s, t) is

li+1
st = li(P) + εi

if (s, t) corresponds to a Steiner path from P i
1 and li+1

st = li(P) otherwise.

Assume that P
i
is an s′, t′-path. We then also add an edge connecting s′ and t′ to Gi and let its length

be the maximum of li(P
i
) and c(P

i
). Observe, that since Pi \ {P i}∪ {P

i
} is tree, Gi is a tree as well.

Subsequently, mod-AKR runs AKR on the graph Gi and returns the computed dual solution. We will
show that this solution together with λi+1 is feasible for (D2). A formal definition of mod-AKR is given
in Algorithm 6.

We defer the proof of invariants (5.10) and (5.11) to the end of the next section.

5.3.4 Algorithm: Choosing εi

In this section, we show how to choose εi. Remember that, intuitively, we want to increase the cost of
currently used Steiner paths that touch nodes of normalized degree at least di. The idea is to increase
the cost of such paths by the smallest possible amount such that other non-tree paths whose length
we did not increase can be used at their place. We make this idea more precise in the following.

38

Algorithm 6 mod-AKR(Pi, εi, yi, 〈P i, P
i
〉): A modified version of AKR.

1: Assume P
i

is an s′, t′-Steiner path
2: Gi = (R, Ei) where

Ei = {(s, t) : ∃s, t − path P ∈ Pi \ {P i}} ∪ {(s′, t′)}
3: For all s, t Steiner paths P ∈ Pi \ {P i} :

li+1
st =

li(P) + εi : P ∈ Pi
1

li(P) : otherwise

4: li+1
s′t′ = max{c(P

i
), li(P

i
)}

5: yi+1 ← AKR(Gi, li+1)
6: return yi+1

We first define Ki to be the set of connected components of

G

 ⋃

P∈Pi
2

P

 .

Let Hi be an auxiliary graph that has one node for each set in Ki. Moreover, Hi contains edge (K ′, K ′′)
iff there is a K ′, K ′′-Steiner path in the set Pi

1. It can be seen that each path P ∈ Pi
1 corresponds to

unique edge in Hi. It then follows from the fact that G[Ei] is a tree that Hi must also be a tree.

In order to compute εi that satisfies the properties mentioned in the previous section we need the
following distance function for each pair K ′, K ′′ ∈ Ki:

di(K ′, K ′′) = min
P∈PK′ ,K′′

P∩Si

di−2
=∅

c(P). (5.12)

Here PK′,K′′ again denotes the set of Steiner paths that originates at a terminal node k′ ∈ K ′ and
ends in a terminal node k′′ ∈ K ′′, respectively. For a pair of components K ′, K ′′ ∈ Ki we denote the
path that achieves the above minimum by PK′,K′′ .

Definition 8 We say that a path P is ε-swappable against P in iteration i if the following holds:

1. P ∈ Pi
1

2. P 6∈ Pi and P ∩ Si
di−2 = ∅

3. P ∈ Pi(C) where C is the unique cycle created in H i by adding the edge corresponding to P

4. c(P) ≤ li(P) + ε

We are now looking for the smallest εi such that there exists a witness pair of paths 〈P i, P
i
〉 where P

i

is εi-swappable against P i.

Formally consider all pairs K ′, K ′′ ∈ Ki. Inserting the edge corresponding to PK′,K′′ into Hi creates a
unique cycle C. Let Pi(C) ⊆ Pi

1 be the subset of Steiner paths that correspond to edges on the cycle
C. For each such path P ∈ Pi(C), let εi

K′,K′′(P) be the smallest non-negative value of ε such that

di(K ′, K ′′) ≤ li(P) + ε. (5.13)

39

We then let
εi
K′,K′′ = min

P∈Pi (C)
εi
K′,K′′(P)

and
εi = min

K′,K′′∈Ki
εi
K′,K′′ .

We let 〈P i, P
i
〉 be the pair of Steiner paths that defines εi, i.e. P

i
is a K ′, K ′′-Steiner path such that

1. inserting edge (K ′, K ′′) into Hi creates a cycle C and P i ∈ Pi(C), and

2. c(P
i
) = li(P i) + εi.

We are now in the position to show that (5.10) and (5.11) are maintained for our choice of (P i, P
i
)

and εi. Specifically, we first show that mod-AKR produces a feasible dual solution (yi+1, λi+1) for (D2)
provided that (yi, λi) was dual feasible.

Claim 6 Algorithm 6 produces a feasible dual solution (yi+1, λi+1) for (D2) given that (yi, λi) is dual
feasible for (D2).

Proof: The proof is by contradiction. Assume there is a Steiner path P such that li+1(P) > cλi+1

(P).
First of all, notice that this Steiner path must have endpoints s ∈ K ′ and t ∈ K ′′ for K ′, K ′′ ∈ Ki such
that K ′ 6= K ′′. The reason for this is that

li+1(P) = li(P)

for all Steiner paths in Pi that connect terminals s, t ∈ K for some K ∈ Ki. This also implies that
li+1(P) = li(P) for all s, t-Steiner paths P 6∈ Pi such that s, t ∈ K and K ∈ Ki.

Secondly, notice that P must be different from P
i

since the way we choose the length of the edge

corresponding to P
i

in step 4 of mod-AKR ensures that the dual load on this path does not exceed the
maximum of the previous load and the cost of the path.

We consider two main cases:

Case 1: (P ∈ Pi+1 \ {P
i
}) In this case, step 3 of mod-AKR determines the dual load of P . We have

li+1(P) = li(P) + εi.

Now, observe that

cλi+1

(P) = cλi

(P) + |P ∩ Si
di−2|ε

i ≥ cλi

(P) + εi

which shows that we must have li+1(P) ≤ cλi+1

(P).

Case 2: (P 6∈ Pi+1) In this case, we can assume that εi > 0 since li+1(P) = li(P) for all Steiner
paths P otherwise.

We subdivide into two sub cases. Let’s first assume that P ∩ Si
di−2 = ∅. Let C be the cycle in

Hi + P . Then, there must be some path P ′ ∈ Pi(C) such that

li+1(P) = li+1(P ′).

It follows from the choice of εi in (5.13) and the fact that P ∩ Si
di−2 = ∅ that

li+1(P ′) ≤ c(P).

40

The right hand side of this inequality is clearly at most cλi

(P) = cλi+1

(P).

Assume now that P ∩ Si
di−2 6= ∅. In this case, we must have that

li+1(P) ≤ li(P) + εi.

The claim follows since li(P) ≤ cλi

(P) and

cλi+1

(P) ≥ cλi

(P) + εi

since P contains nodes from Si
di−2.

This shows (5.10). It is clear from the choice of εi that we do only include a Steiner path P
i

into

Pi+1 if li+1(P
i
) ≥ c(P

i
). (5.11) now follows since the dual load on any path is non-decreasing as we

progress.

5.3.5 Analysis: Performance guarantee

In this section we show that the cost of the tree computed by Algorithm 5 is within a constant factor
of any Steiner tree satisfying all degree bounds. We ensure this by way of weak duality. In particular,
our goal is to prove the inequality

∑

P∈Pi

c(P) ≤ 3
∑

S⊂R

yi
S − 3

∑

v∈V

Bv · λ
i
v (5.14)

for all iterations i of our algorithm.

First, we observe a consequence of Claim 3 and Claim 4.

Corollary 5 Assume that Algorithm 5 terminates after t iterations. For iteration 0 ≤ i ≤ t, let
limax = maxP∈Pi li(P). We then must have

∑

P∈Pi

li(P) = 2
∑

S⊂R

yi
S − limax.

Proof: Let r = |R| and let Pi = {P i
1, . . . , P

i
r−1} be the paths computed by mod-AKR in iteration i− 1.

Also let yi be the corresponding dual solution returned by mod-AKR. W.l.o.g. we may assume that

li(P i
1) ≤ . . . ≤ li(P i

r−1).

Using Claim 4 it is not hard to see that

∑

S⊂R

yi
S =

1

2
·

r−1∑

j=1

(li(P i
j) − li(P i

j−1)) · (r − j + 1) (5.15)

=
1

2
·

r−1∑

j=1

li(P i
j) ((r − j + 1)− (r − j)) +

1

2
li(P i

r−1)

=
1

2
·

r−1∑

j=1

li(P i
j) +

1

2
li(P i

r−1)

where we define li(P i
0) = 0. The last equality (5.15) can be restated as

∑

P∈Pi

li(P) = 2
∑

S⊂R

yi
S − limax

41

and that yields the correctness of the corollary.

We now proceed with proving (5.14) for all 1 ≤ i ≤ t. Notice that Corollary 5 together with (5.11)
implies (5.14) for i = 0. We concentrate on the case i ≥ 1.

The proof is based on the following invariant that we maintain inductively for all 0 ≤ i ≤ t:

3 ·
∑

v∈V

Bvλi
v ≤

∑

S⊂R

yi
S . (Inv2)

Since, λ0
v = 0 for all v ∈ V by definition, (Inv2) holds for i = 0.

Growing λi
v by εi at nodes v ∈ Si

di−2 decreases the right hand side of (5.14) by ε ·
∑

v∈Si

di−2

Bv . Still

the cost of the Steiner tree Ei+1 is potentially higher than the cost of the old tree Ei. We must show
that the first term on the right hand-side of (5.14), i.e.

∑
S⊂R yi

S grows sufficiently to compensate for
the decrease in the second term and the increased Steiner tree cost. In order to show this we need the
following technical lemma that lower-bounds the number of paths that contain nodes of degree at least
di in terms of the number of nodes of normalized degree at least di − 2.

Lemma 7 In each iteration 1 ≤ i ≤ t we must have

|Pi
1| ≥ α ·

∑

v∈Si

di−2

Bv

for an arbitrary parameter α > 0 by setting

βv ≥ 2αb + 1/Bv

for all v ∈ V in the definition of ndegT (v) in (5.8).

Proof: We first define a set of marked edges

M ⊆
⋃

v∈Si

di

δ(v)

and then show that each Steiner path that contains nodes from Si
di has at most two marked edges.

This shows that the cardinality of the set of marked edges is at most twice the number of paths in P i
1,

i.e.
|M | ≤ 2 · |Pi

1|. (5.16)

In the second part of the proof we argue that M is sufficiently large.

First, we include all edges that are incident to terminal nodes from Si
di into M . Secondly, we also

mark edges uv ∈ Ei that are incident to non-terminal nodes in Si
di and that in addition satisfy that

there is no Steiner path
P = 〈P1, uv, P2〉 ∈ P

i

such that both P1 and P2 contain nodes from Si
di .

It is immediately clear from this definition that each Steiner path P ∈ P i has at most two edges from
M .

We now claim that M contains at least
bα ·

∑

v∈Si

di

Bv (5.17)

edges. To see this, we let T be the tree on node set Si
di that is induced by Ei: For s, t ∈ Si

di we insert
the edge st into T iff the unique s, t-path in Ei has no other nodes from Si

di . We let Pe ⊆ Ei be the
path that corresponds to an edge e ∈ E[T].

42

s t

(1)

s s’ t

l

r

(2)

Figure 5.2: Figure (1) shows a Steiner tree where circles represent ter-

minals and squares represent Steiner nodes. We assume that there are

exactly two nodes of high normalized degree: s and t. Figure (2) shows

the set M of marked edges in red. Notice that the edge between Steiner

nodes s and s′ is not marked since there must be a Steiner path con-

necting a terminal node l on the left side and a terminal node r on

the right side. This Steiner path has the form 〈Pls, ss
′, Ps′r〉 and Pls

contains node s which has high normalized degree.

In the following, we let Ei
di ⊆ Ei be the set of tree edges that are incident to nodes of normalized

degree at least di, i.e.

Ei
di =

⋃

v∈Si

di

δ(v).

Now let U ⊆ Ei be the set of unmarked tree edges that are incident to nodes of normalized degree at
least di, i.e. U = Ei

di \M .

First observe that, by definition of M , for each unmarked edge e ∈ U there must be an edge et ∈ E[T]
such that e is an edge on the path Pet. Moreover, for all et ∈ E[T] there are at most two unmarked
edges on the path Pet. Since T has |Si

di | − 1 edges we obtain

|U | ≤ 2 · (|Si
di | − 1). (5.18)

Each node in Si
di has at least βvBv + di edges incident to it. On the other hand, since Ei is a tree, at

most (|Si
di | − 1) of the edges in Ei

di are incident to exactly two nodes from Si
di . Hence, we obtain

|Ei
di | ≥

∑

v∈Si

di

βvBv + di

 − (|Si

di | − 1) (5.19)

=

2αb ·

∑

v∈Si

di

Bv

 + di · |Si

di |+ 1

where the last equality uses the definition of βv.

Now observe that |M | = |Ei
di | − |U | and hence

|M | ≥

2αb ·

∑

v∈Si

di

Bv

+ |Si

di |(di − 2)− 1. (5.20)

43

using (5.18) and (5.19). Notice that di ≥ ∆i − d4 logb ne + 2 and ∆i > d4 logb ne and hence di ≥ 3.
This together with (5.20) and the fact that Si

di is non-empty implies

|M | ≥ 2αb ·
∑

v∈Si

di

Bv. (5.21)

Finally we combine (5.16) and (5.21) and obtain

|Pi
1| ≥ αb ·

∑

v∈Si

di

Bv.

Using the fact that
∑

v∈Si

di−2

Bv ≤ b ·
∑

v∈Si

di
Bv finishes the proof of the lemma.

The following claim now presents the essential insight that ultimately yields the validity of (5.14).

Claim 7 Let α be as in Lemma 7. We then must have

∑

S⊂R

yi+1
S ≥

∑

S⊂R

yi
S +

α

2
εi ·

∑

v∈Si

di−2

Bv

for all 0 ≤ i ≤ t.

Proof: We can use (5.15) to quantify the change in dual in iteration i.

∑

S⊂R

(yi+1
S − yi

S) =
1

2
·

r−1∑

j=1

(li+1(P i
j) − li(P i

j)) +
1

2
(li+1(P i

r−1) − li+1(P i
r−1))

≥
εi

2
· |Pi

1|

where the inequality follows from the fact that we increase the length of all paths in P i
1 by εi and the

length of all other paths are non-decreasing as we progress.

We can now use Lemma 7 and conclude that
∑

S⊂R

yi+1
S ≥

∑

S⊂R

yi
S +

α

2
εi ·

∑

v∈Si

di

Bv .

This finishes the proof of the claim.

As mod-AKR finishes with cut metric li+1, we obtain

li+1(Pi+1) =
∑

P∈Pi+1

li+1(P) ≤ 2
∑

S⊂R

yi+1
S (5.22)

from Claim 3. Observe that the real cost of the Steiner tree Ei+1 is much smaller than li+1(Pi+1). In
fact, notice that we have

c(Pi+1) ≤ li+1(P
i
) + c(Pi \ {P i})

≤ li+1(P
i
) + li(Pi \ {P i}) (5.23)

where the inequalities follow from (5.11), i.e. the l-cost of a Steiner path in P i always dominates its
c-cost. Also, observe that

li+1(Pi \ {P i}) = li(Pi \ {P i}) + εi · |P1
i | ≥ li(Pi \ {P i}) + αεi ·

∑

v∈Si

di−2

Bv (5.24)

44

using Lemma 7.

Combining (5.22), (5.23) and (5.24) yields

c(Pi+1) ≤ li+1(Pi+1)− αεi ·
∑

v∈Si

di−2

Bv ≤ 2 ·
∑

S⊂R

yi+1
S − αεi ·

∑

v∈Si

di−2

Bv .

We can now add (Inv2) to the last inequality and get

c(Pi+1) ≤ 3
∑

S⊂R

yi+1
S − 3 ·

∑

v∈V

Bvλi
v − αεi ·

∑

v∈Si

di−2

Bv.

Finally notice that λi+1
v = λi

v + εi if v ∈ Si
di−2 and λi+1

v = λi
v otherwise. Now choose α ≥ 3 and it

follows that
c(Pi+1) ≤ 3

∑

S⊂R

yi+1
S − 3 ·

∑

v∈V

Bvλi+1
v .

We have to show that (Inv2) is maintained as well. Observe that the left hand side of (Inv2) increases
by 3εi ·

∑
v∈Si

di−2

Bv. We obtain from Claim 7 that

∑

S⊂R

yi+1
S − yi

S ≥
α

2
· εi ·

∑

v∈Si

di−2

Bv.

Choosing α ≥ 6 shows that the right hand side of (Inv2) increases sufficiently and (Inv2) holds in
iteration i + 1 as well.

5.3.6 Analysis: Running time

In this section, we show that Algorithm 5 terminates within a quasi-polynomial number of steps. We
accomplish this by showing that there will be only a quasi-polynomial number of iterations of the main
loop in Algorithm 5.

Claim 8 Algorithm 5 terminates after O(n log(|R|) · |R|d4 log ne)) iterations.

Proof: For a Steiner tree P in path representation, we define its potential value as

Φ(P) =
∑

P∈P

|R|maxv∈P ndeg
P

(v)

where ndegP(v) is the normalized degree of node v in the Steiner tree defined by P.

Now notice that an iteration of Algorithm 5 swaps out a path P i ∈ Pi
1 that has at least one node of

normalized degree at least di. Hence, the maximum normalized degree of any node on P i must be at

least di. The path P
i

on the other hand does not touch any node of normalized degree more than
di − 3.

This means that a swap may potentially raise the maximum normalized node-degree of at most |R|−1
Steiner paths to di − 1. The reduction in the potential is hence at least

(|R|d
i

− (|R| − 1)|R|d
i−1) ≥ |R|d

i−1

Using the fact that di ≥ ∆i−d4 logb ne+2, we can lower-bound the right hand side of the last inequality
by

|R|∆
i−d4 logb ne+1 = Ω

(
|R|∆

i+1

|R|d4 log ne

)
.

45

The initial potential Φi is at most

|R| · |R|∆
i

and the decrease in the potential is at least

Ω

(
Φi

|R|d4 log ne

)
.

In other words, in O(|R|d4 log ne) iterations, we reduce Φ by a constant factor. Hence, the algorithm
needs

O(|R|d4 log ne · lnΦ0) = O(n log(|R|) · |R|d4 log ne)

iterations total.

46

Chapter 6

Conclusions and Open Issues

In this thesis we make a first step towards developing general techniques to approximate fundamen-
tal network design problems in the presence of side constraints. More precisely, we first study the
minimum-cost spanning tree problem for which efficient algorithms are known but once we add con-
straints limiting the degree of the nodes in the graph, the problem becomes NP-hard.

The first part of this thesis shows how we can use Lagrangean relaxation techniques in order to compute
an approximate minimum-cost degree-bounded spanning tree. For an integer B and an n-node graph
G, our method computes a spanning tree T of G whose cost is at most a constant factor worse than
that of a minimum-cost degree-B-bounded spanning tree. The maximum node-degree of any node in
T is O(B + log n).

The result improves previous work by Ravi et al. [58]. Moreover, to the best of our knowledge, we
are the first to analyze a Lagrangean relaxation-based approximation algorithm that simultaneously
dualizes a large number of constraints. We believe that the technique is of independent interest and
that it can be generalized to a wider class of multicriteria optimization problems.

The second part of this thesis develops an iterated primal-dual approach to tackle the degree-bounded
spanning and Steiner tree problems. Our algorithm achieves essentially the same performance guaran-
tees as our Lagrangean relaxation based method but generalizes the previous result in that it can be
extended to the setting of individual degree bounds. The technique also leads to a quasi-polynomial-
time approximation algorithm for the minimum-cost degree-bounded Steiner tree problem.

In contrast to the first Lagrangean method, this algorithm is direct in the sense that it does not use
linear programming. The analysis shows that, at any point during the execution of our algorithm,
we have a spanning tree (Steiner tree) whose cost is at most a constant factor worse than that of
any spanning tree (Steiner tree) that obeys all degree bounds. The maximum degree of this tree is
reduced as the algorithm progresses. Hence, a practical benefit of this method is that we can stop the
algorithm at any point and obtain a low-cost tree whose maximum node-degree may be higher than
our theoretical bounds, however.

The iterated primal-dual approach is interesting in its own right. We are the first to analyze a method
that repeatedly runs a primal-dual algorithm and – in between two such runs – refines parts of the
dual solution. Many fundamental network-design problems possess primal-dual algorithms (e.g. see
Chapter 4 of [33]). The hope is that our new iterative primal-dual approach gives rise to new algorithms
for these problems in the presence of additional side constraints.

6.1 OPEN ISSUES

While our work is a first step towards a more complete body of techniques to approximate constrained
network design problems, many open issues remain. In this section we list some of the questions that
we encountered in the process of writing this thesis and that still need to be resolved.

• We believe that the Lagrangean techniques from Chapter 3 can be generalized to apply to a
broader class of multicriteria problems. A central point in the development of a more general

framework is the identification of key properties of suitable optimization problems; in the BMST
problem, the dualization of the degree constraints yields a tractable subproblem. Furthermore,
the compact form of the objective function of this subproblem proved to be a key for the analysis.

• A fundamental fact used in the analysis of the Lagrangean algorithm in Chapter 3 is that the
subproblem resulting from dualizing degree constraints needs to be in P. This requirement pro-
hibits us from using this approach to obtain an approximation algorithm for the minimum-cost
degree-bounded Steiner tree problem. Can we extend the techniques from Chapter 3 to apply
also when the Lagrangean subproblems are NP-hard?

• In Chapter 5 we prove that our approximation algorithm for the minimum-degree Steiner tree
problem needs a quasi-polynomial number of iterations to terminate. We conjecture that the
algorithm has polynomial running time and that our analysis is not exhibiting the right potential
function to prove this fact.

• We believe that the iterated primal-dual framework leads to improved approximation algorithms
for minimum-cost in-degree-bounded arborescences. The two main reasons for our belief are the
existence of a primal-dual algorithm for minimum-cost arborescences [16] and a recent local-
search method due to Krishnan and Raghavachari [46] for the minimum in-degree arborescence
problem.

• In [20], Fischer shows how to adapt the local search method from [22] to compute minimum-
cost spanning trees in a given weighted undirected graph such that the maximum degree is at
O(opt + log n) where opt denotes the minimum possible maximum degree of any minimum-
cost spanning tree. In [22], Fürer and Raghavachari also present a more complex algorithm that
computes a spanning tree of the input graph G with maximum degree at most opt + 1. Is there
an algorithm that computes a minimum-cost spanning tree with degree opt + 1?

• This question is along the same lines as the previous one: We think that the additive log(n) that
appears in all of the degree-bounds that our algorithms achieve is an artefact of the way we select
witness sets. Is there a better way of finding witness sets that does not require low expansion
properties? A more difficult question is: Can we compute a spanning tree (Steiner tree) whose
cost is at most a constant factor times that of a spanning tree (Steiner tree) that obeys all degree
constraints and in addition has maximum degree at most B + 1 for a given degree target B?

• Minimum-degree spanning trees in planar graphs. Can we improve the results of our work in the
special case of planar graphs?

• Can we use an iterated primal-dual approach to deal with other constrained network design
questions?

48

Bibliography

1. A. Agrawal, P. Klein, and R. Ravi. How tough is the minimum-degree steiner tree? A new
approximate min-max equality. Technical Report CS-91-49, Brown University, 1991.

2. A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the gener-
alized Steiner problem on networks. In Proceedings of the Twenty Third Annual ACM Symposium
on Theory of Computing, pages 134–144, 1991.

3. A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the
generalized Steiner problem in networks. SIAM J. Comput., 24:440–456, 1995.

4. D. Agrawal, A. El Abbadi, and R. C. Steinke. Epidemic algorithms in replicated databases. In
Proceedings, ACM Symposium on Principles of Database Systems, pages 161–172, 1997.

5. F. Bauer and A. Varma. Degree-constrained multicasting in point-to-point networks. In Proceed-
ings, IEEE INFOCOM, pages 369–376, 1995.

6. J. Bolot, T. Turletti, and I. Wakeman. Scalable feedback control for multicast video distribution
in the internet. In Proceedings of SIGCOMM, pages 58–67, 1994.

7. C. Brezovec, G. Cornuéjols, and F. Glover. A matroid algorithm and its application to the efficient
solution of two optimization problems on graphs. Math. Programming, 42, 1988.

8. S. Chopra. On the spanning tree polyhedron. Operations Research Letters, 8:25–29, 1989.

9. N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Technical
Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh,
PA, 1976.

10. Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling conferencing applications on the internet
using an overlay multicast architecture. In Proceedings of SIGCOMM, pages 55–68, 2001.

11. V. Chvátal. Tough graphs and Hamiltonian circuits. Discrete Math., 5:215–228, 1973.

12. S. Deering, D. Estrin, and D. Farinacci. An architecture for wide-area multicast routing. In
Proceedings of SIGCOMM, 1994.

13. S. E. Deering and D. R. Cheriton. Multicast routing in datagram internetworks and extended
LANs. ACM Transactions on Computer Systems, 8(2):85, May 1990.

14. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for replicated database maintenance. In Proceedings, ACM
Symposium on Principles of Distributed Computing, pages 1–12, 1987.

49

15. Reinhard Diestel. Graph theory. Springer-Verlag, New York, 2nd edition, 2000.

16. J. Edmonds. Optimum branchings. J. Res. Nat. Bur. Standards, B71:233–240, 1967.

17. J. Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanam, and
J. Schonheim, editors, Combinatorial structures and their applications, pages 69–85, New York,
1970. Gordon and Breach.

18. S. P. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari, and N. Young. A network-flow technique
for finding low-weight bounded-degree spanning trees. J. Algorithms, 24(2):310–324, 1997.

19. C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions.
In In Proceedings, ACM IEEE Nineteenth Design Automation Conference, pages 175–181, June
1982.

20. T. Fischer. Optimizing the degree of minimum weight spanning trees. Technical Report TR
93-1338, Dept. of Computer Science, Cornell University, Ithaca, NY 14853, 1993.

21. M. Fürer and B. Raghavachari. An NC approximation algorithm for the minimum degree span-
ning tree problem. In Proc. of the 28th Annual Allerton Conf. on Communication, Control and
Computing, pages 274–281, 1990.

22. M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within one of
optimal. Journal of Algorithms, 17(3):409–423, November 1994.

23. H. N. Gabow. A good algorithm for smallest spanning trees with a degree constraint. Networks,
8:201–208, 1978.

24. H. N. Gabow and R. E. Tarjan. Efficient algorithms for a family of matroid intersection problems.
J. Algorithms, 5(1):80–131, March 1984.

25. M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the theory of NP-
completeness. W. H. Freeman and Company, San Francisco, 1979.

26. B. Gavish. Topological design of centralized computer networks- formulations and algorithms.
Networks, 12:355–377, 1982.

27. F. Glover and D. Klingman. B.Roy (ed.): Combinatorial Programming: Methods and Applications,
chapter pp. 191–201. D. Reidel Publishing Company, Dodrecht, Holland, 1975.

28. M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest
problems. In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’92), pages 307–316, 1992.

29. M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest
problems. SIAM J. Comput., 24:296–317, 1995.

30. M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms and
its applications to network design problems. In D.S. Hochbaum, editor, Approximation Algorithms
for NP-hard Problems, pages 144–191. PWS publishing, Boston, 1997.

31. M. Held and R. M. Karp. The traveling-salesman and minimum cost spanning trees. Operations
Research, 18:1138–1162, 1970.

32. B. Hendrickson and R. Leland. A multi-level algorithm for partitioning graphs. In Sidney Karin,
editor, Proceedings of the 1995 ACM/IEEE Supercomputing Conference, December 3–8, 1995, San
Diego Convention Center, San Diego, CA, USA, 1995.

33. D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing Com-
pany, 1997.

50

34. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Number 53 in Annals of
Discrete Mathematics. Elsevier Science Publishers B. V., 1992.

35. A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs. SIAM Journal
on Computing, 11(4):676–686, 1982.

36. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated anneal-
ing; part I, graph partitioning. Operations Research, 37:865–892, 1989.

37. D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting steiner tree problem: theory and
practice. In Proceedings, ACM-SIAM Symposium on Discrete Algorithms, pages 760–769, 2000.

38. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1999.

39. B. W. Kernighan and S. Lin. An efficient heuristic for partitioning graphs. Bell Systems Technical
J., 49:291–307, 1970.

40. S. Khuller, B. Raghavachari, and N. Young. Low degree spanning trees of small weight. In
Proceedings, ACM Symposium on Theory of Computing, pages 412–421, 23–25 1994.

41. S. Khuller, B. Raghavachari, and N. Young. Low-degree spanning trees of small weight. SIAM
Journal on Computing, 25(2):355–368, April 1996.

42. P. N. Klein and R. Ravi. A nearly best-possible approximation for node-weighted steiner trees.
J. Algorithms, 19:104–115, 1995.

43. J. Könemann and R. Ravi. A matter of degree: Improved approximation algorithms for degree-
bounded minimum spanning trees. In Proceedings, ACM Symposium on Theory of Computing,
pages 537–546, 2000.

44. J. Könemann and R. Ravi. A matter of degree: Improved approximation algorithms for degree-
bounded minimum spanning trees. SIAM J. Comput., 31(6):1783–1793, 2002.

45. J. Könemann and R. Ravi. Primal-dual algorithms come of age: Approximating MST’s with
nonuniform degree bounds. To appear in proceedings, ACM Symposium on Theory of Computing,
2003.

46. R. Krishnan and B. Raghavachari. The directed minimum-degree spanning tree problem. FSTTCS:
Foundations of Software Technology and Theoretical Computer Science, 21, 2001.

47. J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings, American Mathematical Society, 7:48–50, 1956.

48. E. L. Lawler, J. K. Lenstra, A. Rinnooy-Kan, and D. B. Shmoys. The Travelling Salesman Problem.
Wiley, New York, 1985.

49. Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Saunders College Publish-
ing, Fort Worth, 1976.

50. J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm for the traveling salesman
problem. Operations Res., 11:972–989, 1963.

51. Madhav V. Marathe, R. Ravi, Ravi Sundaram, S. S. Ravi, Daniel J. Rosenkrantz, and Harry B.
Hunt III. Bicriteria network design problems. Journal of Algorithms, 28(1):142–171, July 1998.

52. C. Monma and S. Suri. Transitions in geometric minimum spanning trees. In Proceedings, ACM
Symposium on Computational Geometry, pages 239–249, 1991.

51

53. C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete & Computa-
tional Geometry, 8(3):265–293, 1992.

54. S.C. Narula and C.A. Ho. Degree-constrained minimum spanning tree. Comput. Ops. Res., 7:239–
249, 1980.

55. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.

56. C. H. Papadimitriou. Computatational Complexity. Addison-Wesley, Reading, Mass., 1994.

57. C. H. Papadimitriou and U. V. Vazirani. On two geometric problems related to the travelling
salesman problem. J. Algorithms, 5(2):231–246, June 1984.

58. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt. Many birds with one
stone: Multi-objective approximation algorithms. In Proceedings, ACM Symposium on Theory of
Computing, pages 438–447, 1993.

59. R. Ravi, B. Raghavachari, and P. Klein. Approximation through local optimality: Designing
networks with small degree. In Proceedings, Conference on Foundations of Software Technology
and Theoretical Computer Science, volume 652 of LNCS, pages 279–290. Springer, 1992.

60. D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II. An analysis of several heuristics for the
traveling salesman problem. SIAM Journal on Computing, 6(3):563–581, 1977.

61. M. Savelsbergh and A. Volgenant. Edge exchanges in the degree-constrained minimum spanning
tree problem. Comput. Ops. Res., 12:341–348, 1985.

62. E. Tardos. Personal communication. April 2000.

63. V. V. Vazirani. Approximation Algorithms. Springer, 2001.

64. A. Volgenant. A Lagrangean approach to the degree-constrained minimum spanning tree problem.
Europ. J. Ops. Res., 39:325–331, 1989.

65. C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and refinement algorithm.
SIAM Journal on Scientific Computing, 22(1):63–80, January 2000.

66. D. B. West. Introduction to Graph Theory. Prenctice Hall, Upper Saddle River, 2nd edition, 2001.

67. D. P. Williamson and M. X. Goemans. Computational experience with an approximation algorithm
on large-scale euclidean matching instances. In Proceedings, ACM-SIAM Symposium on Discrete
Algorithms, pages 355–364, 1994.

68. D. P. Williamson and M. X. Goemans. Computational experience with anapproximation algorithm
on large-scale Euclidean matching instances. INFORMS Journal on Computing, 8:29–40, 1996.

69. S. Win. On a connection between the existence of k-trees and the toughness of a graph. Graphs
and Combinatorics, 5:201–205, 1989.

52

