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Abstract An undirected graph G = (V,E) is stable if the cardinality of a
maximum matching equals the size of a minimum fractional vertex cover. We
call a set of edges F ⊆ E a stabilizer if its removal from G yields a stable
graph. In this paper we study the following natural edge-deletion question:
given a graph G = (V,E), can we find a minimum-cardinality stabilizer?

Stable graphs play an important role in cooperative game theory. In the
classic matching game introduced by Shapley and Shubik [19] we are given an
undirected graph G = (V,E) where vertices represent players, and we define
the value of each subset S ⊆ V as the cardinality of a maximum matching
in the subgraph induced by S. The core of such a game contains all fair
allocations of the value of V among the players, and is well-known to be non-
empty iff graph G is stable. The stabilizer problem addresses the question of
how to modify the graph to ensure that the core is non-empty.

We show that this problem is vertex-cover hard. We then prove that there
is a minimum-cardinality stabilizer that avoids some maximum matching of
G. We use this insight to give efficient approximation algorithms for sparse
graphs and for regular graphs.
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1 Introduction

Given an undirected graph G = (V,E), a subset of edges M ⊆ E is a matching
if every vertex v ∈ V is incident to at most one edge in M . Dually, a subset of
vertices U ⊆ V is called vertex cover if every edge has at least one endpoint
in U . The corresponding optimization problems of finding a matching and a
vertex cover of largest and smallest size, respectively, have a rich history in the
field of Combinatorial Optimization. Relaxing canonical integer programming
formulations for these problems yields the following primal-dual pair of linear
programs:

νf (G) := max{1Tx : x(δ(v)) ≤ 1 ∀v ∈ V, x ≥ 0} (P)

where δ(v) denotes the set of edges incident to v, and

τf (G) := min{1T y : yu + yv ≥ 1 ∀uv ∈ E, y ≥ 0}. (D)

We will henceforth refer to feasible solutions of (P) and (D) as fractional
matchings and vertex covers, respectively. An application of duality theory
easily yields

ν(G) ≤ νf (G) = τf (G) ≤ τ(G)

where ν(G) and τ(G) denote the size of a maximum matching and a minimum
vertex cover, respectively.

In this paper, we study graphs G with the property ν(G) = τf (G). We
denote the family of graphs satisfying this property to be stable graphs. Stable
graphs subsume the well-studied class of König-Egerváry (KEG) graphs (e.g.,
see [20,13,14,15]) for which ν(G) = τ(G). Stable graphs arise quite naturally in
the study of cooperative matching games introduced by Shapley and Shubik
in their seminal paper [19]. An instance of this game is associated with an
undirected graph G = (V,E) where vertices represent players. We define the
value of each subset S ⊆ V as the cardinality of a maximum matching in the
subgraph G[S] induced by S, and the core of the game consists of all stable
allocations of total value ν(G) among the vertices in V in which no coalition
of vertices has an incentive to deviate. This is formally defined as

core(G) :=

{
y ∈ RV

+ :
∑
v∈S

yv ≥ ν(G[S]) ∀S ⊆ V,
∑
v∈V

yv = ν(G)

}
.

It is well-known (e.g., see [7]) that core(G) is non-empty iff G is stable.
Matching games in turn are closely related to network bargaining, a natural,

recent generalization of Nash’s famous bargaining solution [16] to networks
due to Kleinberg and Tardos [11]. Here, we are given an undirected graph G =
(V,E) whose vertices correspond to players, and whose edges correspond to
potential unit-value deals between the incident players. Each player is allowed
to engage in at most one deal with one of its neighbors. Hence, a permissible
outcome is naturally associated with a matching M among the vertices of G,
as well as an allocation y ∈ RV

+ of |M | among M ’s endpoints. Kleinberg and
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Tardos define an allocation to be stable if yu + yv ≥ 1 for all uv ∈ E. The
authors further define an outside option αu for each vertex u ∈ V as

αu := max{1− yv : uv ∈ δ(u) \M},

and say that an outcome (M,y) is balanced if for every edge uv ∈ M , the
surplus 1 − αu − αv is split evenly among u and v. The main result in [11]
is that an instance of network bargaining has a stable outcome iff it has a
balanced one. One now realizes (see also [5]) that a stable outcome exists iff
the core of the underlying matching game instance is non-empty and hence iff
G is stable.

In this paper, we focus on unstable instances of the matching game, where
the core is empty. Our motivating goal is to establish strategies for stabilizing
such instances in the least intrusive way ; i.e., we would like to alter the input
graph in few places and ideally maintain the value of the grand coalition
formed by the set of vertices V in the process. The following natural edge-
deletion stabilizer problem formalizes this: given a graph G = (V,E), find a
minimum-cardinality stabilizer, where a stabilizer is an edge set F ⊆ E such
that the subgraph G \ F := (V,E \ F ) is stable.

Stable graphs form a proper superclass of KEGs which in turn form a su-
perclass of bipartite graphs. Readers familiar with the literature of bipartite
graphs would immediately recognize that the stabilizer problem closely re-
sembles the optimization problems of deleting the minimum number of edges
to convert a given graph into a KEG or a bipartite graph, both of which
have been well studied (e.g., see [1,15]). The investigation of structural prop-
erties of unstable graphs has a long history (e.g., see [21,3,17]), but there
are few algorithmic results on how to convert an unstable graph to a stable
graph. Biró et al. [6] recently studied the minimum stabilizer problem in the
weighted setting, where maximum-weight matchings are considered instead of
maximum-cardinality matchings. The authors showed that the problem is NP-
hard in this case, and leave the complexity of the question in the unweighted
setting open.

1.1 Our results

We first show that removing a minimum stabilizer from a given graph G does
not reduce the cardinality of the maximum matching. Hence the value of the
grand coalition of the associated matching game remains the same.

Theorem 1 For every minimum stabilizer F , we have ν(G \ F ) = ν(G).

The proof of this theorem is algorithmic: given any stabilizer F , we can effi-
ciently find a maximum matching M in G and a stabilizer F ′ such that F ′ ⊆ F
and M∩F ′ = ∅. The last equality implies that M is still a maximum matching
in G \ F ′. The result motivates the following intermediate M -stabilizer prob-
lem: given a maximum matching M , find a minimum-cardinality stabilizer FM
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that is disjoint from M . In the network bargaining setting, this question asks
how to convert a specific maximum matching into one with a stable alloca-
tion through minimal edge deletions in the underlying network. Biró et al. [6]
previously showed that this problem is NP-hard. We strengthen the hardness
result and complement it with a tight algorithmic counterpart.

Theorem 2 The M -stabilizer problem is NP-hard, and no efficient (2 − ε)-
approximation algorithm exists for any ε > 0 assuming the Unique Games
Conjecture [10]. Furthermore, the M -stabilizer problem admits an efficient 2-
approximation algorithm.

The hardness proof employs an approximation preserving reduction from
vertex cover. The approximation algorithm uses linear programming, and one
shows that a suitable linear programming relaxation for the problem has a
half-integral optimal solution.

Turning to the stabilizer problem, Theorems 1 and 2 suggest that the crux
of the hardness of the stabilizer problem lies in finding the right maximum
matching that survives the removal of a minimum stabilizer. Once such a
matching is found one could indeed simply apply our 2-approximation algo-
rithm for the M -stabilizer problem. However, not every maximum matching
survives the removal of a minimum stabilizer. In fact, for two different max-
imum matchings M and M ′, the cardinality of FM and FM ′ can differ by a
factor of Ω(|V |) even on a planar factor-critical graph (Section 4.1). In Section
5.1, we present an approximation algorithm whose approximation factor de-
pends on the sparsity of the graph. We say that a graph G = (V,E) is ω-sparse
if |E(S)| ≤ ω |S| for all vertex subsets S ⊆ V .

Theorem 3 There exists an efficient O(ω)-approximation algorithm for the
stabilizer problem, where ω is the sparsity of the input graph.

We note that the above result implies a constant factor approximation
algorithm for graphs with constant sparsity, e.g., planar graphs. We do not
know whether a constant factor approximation algorithm can be developed for
arbitrary graphs. However, we give a 2-approximation algorithm for regular
graphs (graphs where all vertex degrees are equal). In the network bargaining
setting, this gives a 2-approximation algorithm to stabilize networks in which
every player has the same number of potential deals to make.

Theorem 4 There exists an efficient 2-approximation algorithm for the sta-
bilizer problem in regular graphs.

The analysis of our algorithm combines some classic results about match-
ings and vertex covers such as the structure of basic solutions of (P) and (D)
and the Edmonds-Gallai decomposition.

Regarding hardness, we extend the hardness result obtained forM -stabilizers
answering the open question in [6]. Interestingly, our hardness result holds for
factor-critical graphs (see next subsection for the definition).
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Theorem 5 The stabilizer problem is NP-hard. Furthermore, no efficient (2−
ε)-approximation algorithm exists for any ε > 0 assuming the Unique Games
Conjecture [10].

Organization. We begin by proving the relation between maximum match-
ings and minimum stabilizer (Theorem 1) in Section 2. We show in Section
3 certain properties of the Edmonds-Gallai decomposition of graphs and de-
rive a lower bound for the size of the minimum stabilizer. Next, we address
the M -stabilizer problem in Section 4 and prove the hardness and approxi-
mation result for this problem (Theorem 2). We present the approximation
algorithms (Theorems 3 and 4) in Section 5. In this section, we also observe
that our lower bound to prove the 2-approximation result in Theorem 4 uses
a linear program, and that a natural integer programming formulation of the
stabilizer problem can be obtained by adding more constraints to this linear
program. However, we show an example that exhibits an integrality gap of
Ω(n) for this linear program. We show the hardness result for the stabilizer
problem (Theorem 5) in Section 6.

1.2 Related work

The problem of removing vertices or edges from a graph in order to attain
a certain graph property is natural, and thus not surprisingly, its variants
have been studied extensively. Much of the work on deletion problems ad-
dresses monotone graph properties (e.g., see [22,2]) that are invariant under
edge-removal or vertex-removal. Crucially, graph stability is not a monotone
property as one easily verifies: the triangle is not stable, and adding a single
pendant edge to one of its vertices yields a stable graph.

Our work is closely related to that of Mishra et al. [15] on edge-deletion
problems to attain the König-Egerváry graph property. Similar to stability,
KEG is not a monotone property. Mishra et al. showed that it is NP-hard to
approximate the corresponding edge-deletion problem within a factor of 2.88.
Assuming the Unique Games Conjecture, no constant-factor approximation
algorithm may exist for the problem. We note that the reduction used in [15]
will likely not be helpful for proving hardness of the stabilizer problem as
the graphs constructed in the reduction are stable. On the positive side, the
authors show that, for a given graph G = (V,E) one can efficiently find a KEG
(and hence stable) subgraph with at least 3|E|/5 edges.

The recent paper by Könemann et al. [12] addressed the related, NP-hard
problem of finding a minimum-cardinality blocking set in an input graph G =
(V,E). Here one wants to find a set of edges F ⊆ E such that G \ F has a
fractional vertex cover of size at most ν(G). Importantly, the resulting graph
G\F is not required to be stable; indeed, the cardinality of a minimum blocking
set can differ from the cardinality of a minimum stabilizer by a factor ofΩ(|V |).
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1.3 Preliminaries

Given an undirected graph G and a matching M in G, a path is called M -
alternating if it alternates edges from M and those from E \M . An odd cycle
of length 2k+ 1 in which exactly k edges are in M is called an M -blossom. An
M -flower consists of an M -blossom and an even-length M -alternating path
from a vertex in the blossom to a vertex that is exposed by M . For a subset of
vertices S ⊆ V , we use E(S) to denote the set of edges in the graph induced
by S and G[S] to denote the subgraph induced by S. A graph G = (V,E) is
called factor-critical if for all v ∈ V , G[V \ {v}] has a perfect matching; i.e., a
matching that does not expose any vertex. We will use the following odd-ear
decomposition characterization of factor-critical graphs.

Lemma 1 ([25]) A graph H is factor-critical if and only if the edges of the
graph can be decomposed into a sequence of disjoint subgraphs C,P1, . . . , Pt,
where (i) C is an odd cycle, (ii) P1, . . . , Pt are odd-length paths or cycles, (iii)
each path Pi has both end vertices in C ∪

(
∪i−1j=1Pj

)
and no interior vertices in

C∪
(
∪i−1j=1Pj

)
, and (iv) each cycle Pi has exactly one end vertex in C∪

(
∪i−1j=1Pj

)
and no interior vertices in C ∪

(
∪i−1j=1Pj

)
.

A vertex v is called inessential for G if there exists a maximum matching
M that exposes v, and essential otherwise. In this paper, we will also use the
following characterization of stable graphs.

Theorem 6 ([11]) The following are equivalent: (i) G is stable, (ii) The set
of inessential vertices of G forms a stable set, (iii) G contains no M -flower
for any maximum matching M . Moreover, if G is not stable, then G contains
an M -flower for every maximum matching M .

Given a graph G, the Edmonds-Gallai decomposition is a partition of
its vertex set into three parts B(G), C(G), D(G), where B(G) is the set
of inessential vertices, the set C(G) consists of the neighbors of B(G) and
D(G) = V \ (B(G)∪C(G)). We list several useful properties of this decompo-
sition.

Theorem 7 ([18]) Given a graph G, its Edmonds-Gallai decomposition
B(G), C(G), D(G) can be computed in polynomial time. Further, we have the
following properties.

1. Each component of G[B(G)] is factor-critical.
2. Every maximum matching M in G exposes at most one vertex in each

component K of G[B(G)].
3. If U is a non-trivial factor-critical component in G[B(G)] (i.e., a factor-

critical component with more than one vertex), then ν(G \ E(U)) < ν(G).

Finally, we will need the following two well-known classic results on the
structure of fractional and integral matchings.



Finding small stabilizers for unstable graphs 7

Theorem 8 [4] Every basic feasible solution to (P) has components equal to
0, 1 or 1

2 , and the edges with half integral components induce vertex disjoint
cycles.

Theorem 9 [3,21] Let x̂ be a maximum fractional matching in a graph G
having half integral fractional components for a minimum number of odd cycles
C1, . . . , Cq. Let M̂ := {e ∈ E : x̂e = 1} and Mi be a maximum matching in

Ci. Then M = M̂ ∪M1 ∪ · · · ∪Mq is a maximum matching in G. Moreover,
such x̂ and M can be found in time polynomial in the number of vertices.

2 Maximum matchings and minimum stabilizers

In this section, we show that the deletion of any minimum stabilizer does not
decrease the size of the maximum matching in the graph.

Proof (of Theorem 1) Let F be a minimum stabilizer. Find a maximum match-
ing M in G such that |M ∩ F | is minimum. Suppose |M ∩ F | 6= 0.

Consider G′ := G \ (F \M), the graph obtained by removing all the edges
of F \M from G. Clearly M is still a maximum matching in G′. However,
since F is minimum, G′ is not stable. By Theorem 6, this implies that there
exists an M -flower in G′ starting at an M -exposed vertex w.

Suppose the M -flower contains an edge uv ∈ F . Then, uv ∈ M , since
all other edges from F have been removed in G′. Therefore, we can find an
even M -alternating path P from w to either u or v. Switching along the edges
of this path, we obtain another maximum matching M ′ = M∆P in G with
|F ∩M ′| < |F ∩M |, a contradiction.

It follows that the M -flower does not contain any edge from F , and there-
fore the M -flower also exists in G \ F . However, since G \ F is stable, this
implies that M \ F is not a maximum matching in G \ F . Apply Edmonds’
maximum matching algorithm on the graph G \F initialized with the match-
ing M \F , and construct an M \F -alternating tree starting with the exposed
vertex w (we refer to [8] for the terminology we use in the description of Ed-
monds’ algorithm). There are two possibilities: either we find an augmenting
path P or a frustrated tree rooted at w. In the first case, the path P starts
with w and ends with a M \ F -exposed vertex, say w′. However, such a path
cannot exist in G because M is a maximum matching, and therefore w′ must
have been incident to an edge f ∈ M ∩ F . Also, note that the path P is
in G \ F . Hence, P + f is an even M -alternating path in G containing ex-
actly one edge in M ∩ F . Switching along the edges of this path, we obtain
another maximum matching M ′ = M∆P in G with |F ∩M ′| < |F ∩M |, a
contradiction. The only remaining possibility is that we find a frustrated tree
T rooted at w. Let G[T ] = (VT , ET ) be the graph induced by all vertices in
the frustrated tree T (after expanding pseudonodes). In this case, M ∩ET is a
maximum matching in G[T ], and the M -flower is contained in ET . However,
if we continue Edmonds’ algorithm, it would remove the vertices of the frus-
trated tree, and continue running in the resulting subgraph to find a maximum
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matching. Therefore it ends by computing a maximum matching M∗ in G \F
with M∗ ∩ ET = M ∩ ET . Therefore, we have a M∗-flower in G \ F , again a
contradiction. ut

We remark here that the above proof is algorithmic, therefore given a stabilizer
F , we can find in polynomial time a maximum matching M in G and another
stabilizer F ′ ⊆ F such thatM∩F ′ = ∅. The first step of computing a maximum
matching M in G with minimum intersection with F can be done by assigning
a cost of one to the edges in F , zero to the rest of the edges, and computing
a min-cost matching in G of cardinality ν(G).

3 Edmonds-Gallai decomposition and a lower bound

In this section, we state a consequence of the Edmonds-Gallai decomposition
theorem. This will be used to derive a lower bound for the cardinality of a
stabilizer. The consequence of interest to us is stated in the proposition below.

Proposition 1 Let M be a maximum matching in G that also matches the
maximum possible number of isolated vertices in G[B(G)]. Let k be the number
of non-trivial factor-critical components with at least one vertex exposed by M .
Then k = 2(νf (G)− ν(G)).

The proof relies crucially on the following result of Pulleyblank.

Theorem 10 (Theorem 4 in [17]) Let x be a fractional matching with
x(e) ∈ {0, 1/2, 1} for all e ∈ E. Suppose x satisfies the following:

1. whenever x(e) = 1
2 for some edge e ∈ E then e ∈ E(B(G)),

2. the edges {e : x(e) = 1} induce a perfect matching on G[D(G)],
3. for each vertex v ∈ C(G), there exists a vertex u ∈ B(G) such that

x(uv) = 1,
4. each component K = (VK , EK) of G[B(G)] is such that EK ∩ Support(x)

contains at most one cycle; if K contains such a cycle, then x induces a
fractional perfect matching (each vertex has fractional degree one) of K; if
not, then x induces a perfect (integer) matching in K \ u for some vertex
u ∈ VK and if K is non-trivial, then there exists v ∈ C(G) such that
x(uv) = 1, and

5. let S ⊆ B(G) be the set of isolated vertices in G[B(G)], and let N(S) ⊆
C(G) be their neighbors, then x induces a maximum integer matching on
G[S ∪N(S)].

Then x is a maximum fractional matching in G.

Proof (Proof of Proposition 1) Let U1, . . . , Uk denote the non-trivial factor-
critical components of B(G) that have at least one vertex exposed by M .
Since M is a maximum matching in G, by Theorem 7, M exposes exactly one
vertex in U1, . . . , Uk.
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An odd cycle C in G is said to be separated by a maximum matching N if
N ∩ δ(C) = ∅. We consider the following quantities.

σ(G,N) := Maximum number of vertex-disjoint odd cycles separated by N,

σ(G) := max
max matchings N in G

σ(G,N),

γ(G, x) := Number of vertex-disjoint odd cycles in the support of fractional

matching x,

γ(G) := min
max fractional matchings x in G

γ(G, x).

By a result of Balas [3], we know that 2(νf (G)− ν(G)) = σ(G) = γ(G). Next
we will show that σ(G) ≥ k and γ(G) ≤ k to complete the proof. For each
Ui, let (Ci, P

i
1, . . . , P

i
ti) be an odd-ear decomposition of Ui given by Lemma 1,

where Ci is the starting odd cycle and odd-length paths/cycles P i
1, . . . , P

i
ti are

added in sequence to obtain Ui.
Consider the matching Mi in Ui obtained as follows: pick a maximum

matching in Ci and for each odd-length P i
j , pick every even edge in P i

j . Such a
matchingMi is a maximum matching in Ui since Ui is factor-critical and all but
one vertex in Ui is matched by Mi. Now for each i = 1, . . . , k, replace the edges
of M in Ui by Mi. Let N denote the resulting matching. Since |N | = |M |,
the matching N is still a maximum matching in G. Moreover, the isolated
vertices in G[B(G)] that are matched by M are also matched by N . Thus, N
also matches the maximum possible number of isolated vertices in G[B(G)].
The number of non-trivial factor-critical components with at least one vertex
exposed by N is still k. Since the cycles Ci, i = 1, . . . , k are separated by N ,
we have that σ(G,N) ≥ k. Hence, σ(G) ≥ σ(G,N) ≥ k.

In order to show that γ(G) ≤ k, we will identify a maximum fractional
matching x with γ(G, x) = k. For each component Ui, we use the same odd-
ear decomposition (Ci, P

i
1, . . . , P

i
ti) of Ui to obtain a fractional perfect matching

xi in Ui: set xi(e) = 1/2 for each e ∈ Ci and xi(e) = 1 for each even edge e in
P i
j . Now take

x(e) =


xi(e) if e ∈ Ui for i ∈ {1, . . . , k},
1 if e ∈M \

(
∪ki=1Ui

)
,

0 if e 6∈M ∪
(
∪ki=1Ui

)
.

Since each xi, i = 1, . . . , k has exactly one odd cycle in its support and these
are the only odd cycles in the support of x, we have that γ(G, x) = k. It
remains to verify that x is a maximum fractional matching in G. We verify
the conditions in Theorem 10.

1. Since x(e) = 1/2 only for edges e ∈ Ci ⊆ Ui ⊆ G[B(G)], the first condition
holds.

2. Since M is a maximum matching in G, it follows that M induces a per-
fect matching in G[D(G)]. Therefore, x also induces a perfect matching in
G[D(G)].
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3. Since M is a maximum matching, it follows that for each vertex v ∈ C(G),
there exists a vertex u ∈ B(G) such that uv ∈M . Hence, x(uv) = 1.

4. Let K be a component of G[B(G)]. If K = Ui for some i = 1, . . . , k,
then EK ∩ Support(x) contains exactly one cycle, namely Ci. Moreover, x
restricted to Ui is a fractional perfect matching xi in Ui. If K 6= Ui for all
i = 1, . . . , k, then EK ∩ Support(x) does not contain a cycle. Moreover, x
induces a perfect (integer) matching in K \ u for some vertex u ∈ K, since
M induces a perfect (integer) matching in K \ u for some vertex u ∈ K. If
K is non-trivial, since K 6= Ui for all i = 1, . . . , k, the matching M does not
have an exposed vertex in K. This implies that M matches u to a vertex
v ∈ C(G). Hence, x(uv) = 1.

5. Since M matches the maximum possible number of isolated vertices in
G[B(G)], it follows that M induces a maximum matching on G[S ∪N(S)].
Now, x restricted to G[S ∪N(S)] is the indicator vector of M restricted to
G[S∪N(S)]. Consequently, x induces a maximum matching onG[S∪N(S)].

ut

We next prove a lower bound on the cardinality of a stabilizer.

Theorem 11 For every stabilizer F , we have |F | ≥ 2(νf (G)− ν(G)).

Proof Let B(G), C(G), D(G) denote the Edmonds-Gallai decomposition and
let M be a maximum matching in G that also matches the maximum possible
number of isolated vertices in G[B(G)]. Let U1, . . . , Uk denote the non-trivial
components in G[B(G)] with at least one vertex exposed by M . Let F be a
minimum stabilizer and H = G \ F . For each component U1, . . . , Uk, at least
one vertex vi ∈ Ui becomes essential in H. Suppose not, then all vertices
of some Ui are inessential in H. Theorem 6.(ii) now implies that F contains
all edges in G[Ui], and thus, by Theorem 7 we have that ν(H) < ν(G), a
contradiction to Theorem 1.

Pick a maximum matching N in H. Then, N will cover all these vertices
v1, . . . , vk that are essential in H. Since G[Ui] is factor-critical and M matches
all but one vertex in Ui using edges in G[Ui], we may assume without loss
of generality, that M misses all these vertices. The graph M∆N is a disjoint
union of even cycles and even paths since |M | = |N | = ν(G). Consider the k
disjoint paths starting at the vertices v1, . . . , vk in M∆N . We observe that at
least one of the M edges in each of these paths should belong to F , otherwise
we can obtain a maximum matching in H that exposes the starting vertex vi,
thus contradicting vi being an essential vertex in H. Hence |F | ≥ k. The result
follows by Proposition 1. ut

4 The M-Stabilizer problem

In this section, we address the M -stabilizer problem. We prove the hardness
result and give a 2-approximate algorithm. We also exhibit an example to
highlight that the size of the M -stabilizer highly depends on the choice of the
maximum matching M .
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Proposition 2 The M -stabilizer problem is NP-hard, and no polynomial-time
(2 − ε)-approximation algorithm exists for any ε > 0 assuming the Unique
Games Conjecture [10].

Proof Let G = (V,E) be a vertex cover instance. Without loss of generality,
we may assume that G has no isolated vertices. The approach is to extend the
graph by connecting every vertex of V by a two-edge-path to a super-source
v0. We observe that every edge in G induces a cycle of length 5 including v0
in the new graph. We choose the maximum matching M such that each of
the 5-cycle forms an M -flower with the exposed vertex v0. Two of these M -
flowers are edge-disjoint if and only if the two corresponding edges in G are
vertex-disjoint. We show that in order to ensure that there are no M -flowers,
the stabilizer should remove as many edges in the new graph as the number
of vertices needed to cover all edges in G.

Formally, we construct the new graph G′ = (V ′, E′) as follows:

V ′ := {v0} ∪ {v′, v′′ : v ∈ V } and

E′ = {v0v′, v′′v′ : v ∈ V } ∪ {u′′v′′ : uv ∈ E}.
We set the matching M := {v′′v′ : v ∈ V }. Since G has no isolated vertices,
we observe that G′ is factor-critical and M is a maximum matching exposing
v0. See figure 1 for the graph G′ and the matching M .

Fig. 1 Minimum M -stabilizer instance G′ constructed from vertex cover instance G. The
double edges are present in M .

Every edge uv ∈ E in G corresponds to an M -flower {v0v′, v′v′′, u′′v′′,
u′u′′, v0u

′} in G′. We further observe that by the choice of M , all M -flowers
in G′ are necessarily of this kind.

We will show that (a) any vertex cover in G induces an M -stabilizer in
G′ of the same size, and (b) any M -stabilizer F in G′ induces a vertex cover
in G of size at most |F |. This implies that the reduction is approximation
preserving and the inapproximability results for the vertex cover problem [23,
24] carry over to the problem of finding a minimum M -stabilizer.

For (a), let W be a vertex cover in G. Consider the set F = {v0v′ : v ∈W}.
We observe that G \F has no M -flowers since any M -flower corresponding to
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an edge uv ∈ E in G contains at least one edge from F . This is because W is
a vertex cover. Thus, G\F is stable by Theorem 6 and hence F is a stabilizer.

For (b), suppose that F is an M -stabilizer that contains an edge e ∈ E′
that is of the type u′′v′′ for some edge uv ∈ E. Then, the set of edges F ′ =
(F \ {e}) ∪ {v0u′} is still an M -stabilizer since e intersects only with the M -
flower corresponding to the edge uv ∈ E. Repeating this for every edge u′′v′′ in
F , we obtain an M -stabilizer F ′ such that |F ′| ≤ |F | and F ′ consists of edges
only of the type v0v

′ for some vertices v ∈ V . This allows us to construct a
vertex cover from such an M -stabilizer F ′ as follows: For every edge v0v

′ in the
M -stabilizer F ′, we take the corresponding vertex v into the vertex cover. By
construction, the resulting set of vertices is a vertex cover, since an uncovered
edge in G would induce an M -flower in G′ \F ′ thus contradicting the stability
of G′ \ F ′ (Theorem 6). We further note that the cardinality of the resulting
vertex cover is the same as that of |F ′| ≤ |F |.

This concludes the proof of inapproximability. ut

Next, we obtain a 2-approximation algorithm for finding a minimum M -
stabilizer for a given maximum matching M in graph G by showing that a
suitable linear program has a half-integral optimum solution. We first prove
that the formulation has an integral optimum solution for bipartite graphs.
Then we construct a suitable new bipartite graph G′ from our original instance
G whose LP solution allows us to derive a M -stabilizer for G that is at most
twice as large as the minimum M -stabilizer.

Proposition 3 The M -stabilizer problem admits an efficient 2-approximation
algorithm.

Proof Let V (M) ⊆ V denote the set of vertices that are incident to an edge in
the given matching M . We introduce a variable xv for every vertex v ∈ V (M).
We consider the following covering linear program:

min
∑

e∈E\M

ze (P̄ )

s.t. yu + yv = 1 ∀uv ∈M
yu + yv + ze ≥ 1 ∀e = uv ∈ E \M and u, v ∈ V (M)

yv + ze ≥ 1 ∀e = uv ∈ E \M and v ∈ V (M), u /∈ V (M)

y, z ≥ 0

The first set of constraints enforces that |M | =
∑

v∈V (M) yv. The subse-
quent two sets of constraints imply that every edge not in M is covered by
the corresponding z-variable or the y-variables of its end points. We note that
at least one of the end points u, v of any edge uv ∈ E is in V (M) since M is
a maximal matching. Consequently, every edge in G has exactly one covering
constraint in (P̄ ).

We observe that if a feasible solution (y, z) of (P̄ ) satisfies z ∈ {0, 1}E\M ,
then F := {e ∈ E : ze = 1} is an M -stabilizer. This is because we have a
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fractional vertex cover y in G \ F of the same size as the maximum matching
in G \ F .

In the other direction, suppose we have an M -stabilizer F , then, we can
construct a solution (y, z) of (P̄ ) satisfying z ∈ {0, 1}E\M as follows: Take
ze = 1 if e ∈ F and ze = 0 for every e ∈ E \ (M ∪F ). Take y to be a minimum
fractional vertex cover in G \ F . Since G \ F is stable, we have that y and M
form a primal-dual optimal pair to the fractional vertex cover and fractional
matching linear programs in G\F . Hence, by complementary slackness yv = 0
for every vertex v that is exposed by M and hence Support(y) ⊆ V (M). Thus,
(y, z) is a feasible solution to (P̄ ).

Claim For a bipartite graph G = (V,E) and a maximal matching M in G, the
linear program (P̄ ) has an integral optimum solution (y∗, z∗).

Proof Let A denote the coefficient matrix of the constraints in (P̄ ) for G. Then
the matrix A has the form

A =
[
A′ I

]
where A′ is a |E| × |V (M)| sub matrix of the edge-vertex incidence matrix
AG of G and I is a |E| × |E \M | sub matrix of the |E| × |E| identity matrix
I|E| after removing the columns corresponding to the edges in M . Now, we

observe that the matrix
[
AG I|E|

]
is totally unimodular since G is bipartite

and thus AG is totally unimodular. Since A is a (column-indexed) sub matrix
of
[
AG I|E|

]
, we conclude that A is totally unimodular as well. This implies

that there is an integral optimum solution (y∗, z∗) of (P̄ ). ut

We will use the above claim to find an M -stabilizer in G that is at most
twice as large as the optimum by constructing a bipartite graph as follows.
Let G′ = (V ′, E′) denote the new bipartite graph with V ′ := V1 ∪ V2 for
Vi := {vi : v ∈ V } and E′ := {u1v2, u2v1 : uv ∈ E}.

We set M ′ := {u1v2, u2v1 : uv ∈M}. We note that M ′ is a maximal match-
ing in G′, but may not necessarily be maximum (M -flowers in G correspond
to M ′-augmenting paths in G′). Let (P̄ ′), (P̄ ) denote the corresponding linear
programs for G′ and G, respectively.

We first show that the minimum M -stabilizer F in G induces a solution
(y′, z′) for (P̄ ′) with cost 2|F | such that z′ is integral. To see this, let y de-
note the fractional vertex cover of G \ F with size

∑
v∈V (M) yv = |M |. Such

a fractional vertex cover exists because G \ F is stable. Since G \ F is sta-
ble, we have that y and M form a primal-dual optimal pair to the fractional
vertex cover and fractional matching linear programs in G\F . Hence, by com-
plementary slackness yv = 0 for every vertex v that is exposed by M and
hence Support(y) ⊆ V (M). We set y′ui

:= yu for all u ∈ V, i = 1, 2, and
z′u1v2 = z′u2v1 = 1 for all uv ∈ F . Now, (y′, z′) is a feasible solution of (P̄ ′) of
cost 2|F | with integral z′.

Next, we show that the optimum integral solution of (P̄ ′) can be used to
find a half-integral solution of (P̄ ). Let (y′, z′) be the optimal integral solution
of (P̄ ′). Then yu := (1/2)(y′u1

+ y′u2
) and zuv = max{z′u1v2 , z

′
u2v1} defines a
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feasible solution for (P̄ ): For uv ∈M , we get yu+yv = (y′u1
+y′v2+y′u2

+y′v1)/2 =
1 and for uv ∈ E \M with u, v ∈ V (M), we get

yu + yv =
y′u1

+ y′v2 + y′u2
+ y′v1

2
≥

1− z′u1v2 + 1− z′u2v1

2

= 1−
z′u1v2 + z′u2v1

2
≥ 1−max{z′u1v2 , z

′
u2v1} = 1− zuv.

The case uv ∈ E \M with u ∈ V (M) and v /∈ V (M) follows in an analogous
manner. As the cost of (y′, z′) is at most 2|F |, the cost of the solution (y, z) of
(P̄ ) that we constructed is also bounded by 2|F |. However, z is integral and
thus defines an M -stabilizer in G of size at most twice the size of the minimum
M -stabilizer. ut

Propositions 2 and 3 jointly imply Theorem 2.

4.1 Ratio between M -stabilizer and minimum stabilizer

In this section we illustrate that the size of the M -stabilizer could vary by a
large factor depending on the choice of the maximum matching M .

Proposition 4 There exist a planar factor-critical graph G = (V,E) and two
different maximum matchings M,M ′ in G such that the sizes of the minimum
M -stabilizer and the minimum M ′-stabilizer differ by a factor of Ω(|V |).

Proof Let G′ be the graph as shown in Figure 2. Its vertex and edge sets are
given by

V = {ai, bi, ci, di : i ∈ [t]} ∪ {u1, u2, v1, v2, r}

E = {u1v1, u2v2, u1u2, v1v2} ∪ {u2ai, v2ci, aibi, cidi, bir, dir : i ∈ [t]}.

By figure 2 the graph is planar. Factor-criticality of the graph is also straight-
forward to verify. Now, we take M = {aibi, cidi : i ∈ [t]} ∪ {u1v1, u2v2} and
M ′ = (M \ {u1v1, u2v2}) ∪ {u1u2, v1v2}.

The minimum M ′-stabilizer is {u1v1} as deleting this edge ensures that
there are no M ′-flowers in the resulting graph. In contrast, any M -stabilizer
necessarily has to delete t = Ω(|V |) edges to ensure that the resulting graph
has no M -flowers. This is because there exist t M -flowers that are disjoint in
their non-M -edges.

ut

5 Finding small stabilizers

In this section, we return to the problem of finding small stabilizers. The
following two sections present algorithms for the problem in sparse and regular
graphs, respectively.
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(a) M -stabilizer of size t (b) M ′-stabilizer of size 1

Fig. 2 Instance showing that the size of a minimum M -stabilizer is far from the size of a
minimum stabilizer.

5.1 An O(ω)-approximation algorithm for sparse graphs

Before proving Theorem 3, we state and prove the following lemma that is the
main ingredient of our algorithm.

Lemma 2 Let G be a graph with νf (G) > ν(G). There exists an efficient
algorithm to find a set of edges L with |L| = O(ω), such that

(i) ν(G \ L) = ν(G),
(ii) νf (G \ L) ≤ νf (G)− 1

2 .

In other words, Lemma 2 shows that we can find a small subset of edges
to remove from G without decreasing the size of the maximum matching but
reducing the size of the minimum fractional vertex cover.

Proof (Proof of Lemma 2) Consider x̂ and M as in Theorem 9 for the graph
G. By duality theory, there exists a fractional vertex cover y with 1T y = 1T x̂
satisfying complementary slackness conditions with x̂. Moreover, we can always
find such a vector y with half integral components (e.g., see [9]). We will give
an efficient algorithm to find a vertex u with the following properties:

(a) yu = 1
2 ,

(b) Lu := {uw : yw = 1
2} satisfies ν(G \ Lu) = ν(G) and |Lu| ≤ 4ω.

First, let us argue that (a) and (b) together imply the result. Assume we
can find such a vertex u. The only non-trivial conclusion that needs to be
verified is that νf (G \ Lu) ≤ νf (G) − 1/2. Consider the vector y′ defined as
y′v = yv for all v 6= u and y′u = 0 otherwise. Note that u cannot be adjacent
to vertices w with yw = 0 since y is a feasible fractional vertex cover in G.
Furthermore, yw = 1 whenever uw ∈ E \ Lu. This implies that y′ is a feasible
fractional vertex cover in G \ Lu, and its objective value of y(V ) − 1/2 is an
upper-bound on the value of a fractional matching in G \ Lu.
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Now let us prove that a vertex u satisfying (a) and (b) can be found effi-
ciently. Consider an arbitrary odd cycle in x̂, e.g., C1. Since x̂e > 0 for every
edge e = uv in C1, it follows that the vertex cover constraint is tight (i.e.,
yu + yv = 1 holds) for all edges in C1, and therefore yv = 1

2 for all vertices in
C1. By choice of M we know that it induces a maximum matching in C1, and
M exposes exactly one vertex of C1.

Set H := C1, and mark all vertices in C1. Since C1 is an odd cycle, and
since M induces a matching in C1 that exposes a single vertex, removing from
G any subset of edges incident to a (marked) vertex in H does not decrease
the size of a maximum integral matching in the resulting graph. Repeat the
following process, which will maintain a collection of four invariants for the
graph H: (i) Every vertex in H has y-value 1

2 , (ii) removing any subset of edges
incident to one marked vertex of H does not decrease the size of a maximum
matching, (iii) from any marked vertex, there is an even-length M -alternating
path to a vertex in C1, (iv) at least half of the vertices of H are marked. All
properties clearly hold initially when H consists of C1 only.

1. If there is a marked vertex in H with |Lu| ≤ 4ω, then u satisfies properties
(a) and (b). STOP.

2. Otherwise, consider an arbitrary marked vertex u in H that is adjacent to a
vertex w /∈ H with yw = 1

2 . Such a w must be matched in M as otherwise,
we could obtain an M -augmenting path in G by concatenating wu, the
even-length M -alternating path from u to C1 guaranteed by property (iii)
and an appropriate even-length M -alternating path along C1 to the M -
exposed vertex on C1.

3. Let z be the vertex matched to w by M . By complementary slackness,
yz = 1

2 . Add w and z to H and mark z. Go to 1.

It is straightforward to verify that properties (i)–(iv) continue to hold
throughout the execution of the above process. Thus, it only remains to show
that we can always find a vertex w as specified in Step 2 above; i.e., if all
marked vertices u have |Lu| > 4ω, then there exists a marked vertex in H that
is adjacent to a vertex w /∈ H with yw = 1/2. Suppose not. Consider the sub-
graph G[H] induced by the vertices in H. This subgraph has the property that
the degree of every marked vertex u in G[H] is at least |Lu| > 4ω. However,
by (iv), the number of marked vertices is more than half the total number of
vertices in G[H]. This contradicts the ω-sparsity of V (H) in G. Finally, it is
easy to see that the above process runs in polynomial time. ut

With this Lemma at hand, we are now ready to prove our main theorem.
We will use the following algorithm:

Algorithm 1.
INITIALIZE G′ = G.
FOR i = 1, . . . , 2(νf (G)− ν(G)):

1. Let L be the set of edges returned by the algorithm in Lemma 2 when its
input is the current graph G′.
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2. Set G′ ← G′ \ L.
3. If G′ is stable, STOP.

Proof (Proof of Theorem 3)
Let G be an unstable graph. We use Algorithm 1. We will now prove that

(a) whenever the above algorithm stops, the current graph G′ is stable, and
(b) the total number of edges removed during the complete execution of the
algorithm is O(ω) · |F ∗|, where F ∗ is a minimum stabilizer. Clearly (a) + (b)
implies the result.

First, let us argue about stability. If the algorithm stops in step (iii) for
some iteration i < 2(νf (G)− ν(G)), this is clear. So we may assume that the
algorithm stops after performing all 2(νf (G)− ν(G)) iterations. The graph G′

output at this point has νf (G′) ≤ νf (G)− 1
2 (2(νf (G)−ν(G))) = ν(G) = ν(G′).

This is because, by Lemma 2, in each iteration the size of a minimum fractional
vertex cover decreases by at least 1

2 while the size of the maximum matching
is maintained. Hence, by definition of stability, G′ is stable.

By Lemma 2, in each iteration we remove O(ω) edges and the total number
of iterations is at most 2(νf (G) − ν(G)). The bound on the approximation
factor follows from Theorem 11. The running time bound also follows since
the number of applications of the algorithm in Lemma 2 is at most 2(νf (G)−
ν(G)) ≤ |F ∗| ≤ |E| times. ut

We end the section with an observation about our algorithm that will be
useful for our approximation results on regular graphs.

Proposition 5 Let ∆(G) be the maximum degree of a vertex in G. Then, the
stabilizer output by Algorithm 1 has size at most 2(νf (G)− ν(G))∆(G).

Proof In each iteration of the algorithm, we remove a subset of edges incident
to some vertex. Therefore we remove at most ∆(G) edges in each iteration.
Further, the number of iterations is at most 2(νf (G)− ν(G)). ut

5.2 A 2-approximation algorithm for regular graphs

In this section, we give a 2-approximation algorithm for solving the stabilizer
problem in regular graphs.

Proof (Proof of Theorem 4) We use Algorithm 1. Consider a d-regular graph
G, i.e., a graph where every vertex has degree d. Let k := 2(νf (G) − ν(G)).
By Proposition 5, the size of F output by the algorithm is at most kd. We
complete the proof by showing that every stabilizer in G is of size at least
kd/2.

Consider the Edmonds-Gallai decomposition of G, namely B(G), C(G),
D(G). Let S denote the isolated vertices in G[B]. Consider a maximum match-
ing M in G that also matches the maximum possible number of vertices in
S. By Proposition 1, the number of non-trivial factor-critical components in
G[B(G)] with at least one vertex exposed by M is equal to k.
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Let Su denote the vertices in S that are exposed by M . We first observe
that the size ν(G) of the maximum matching in G is (|V |−k−|Su|)/2. Consider
the following primal and dual linear programs.

min
∑
e∈E

ze (P)

yu + yv + zuv ≥ 1 ∀ uv ∈ E∑
u∈V

yu = ν(G)

y, z ≥ 0

max
∑
e∈E

αe − γν(G) (D)

α(δ(u)) ≤ γ ∀ u ∈ V
0 ≤ α ≤ 1

By setting z to be the indicator vector of the minimum stabilizer, we can
obtain y such that (y, z) is a feasible solution to the primal program. This is
because, if z is the indicator vector of a stabilizer in G, then by definition there
exists a fractional vertex cover y in G \ Support(z) with size equal to ν(G \
Support(z)). We also know by Theorem 1 that for every minimum stabilizer
F , ν(G \ F ) = ν(G).

Thus, the primal program is a relaxation of the stabilizer problem. Con-
sequently, the objective value of any feasible solution to the dual program is
a lower bound on the size of a minimum stabilizer. We will provide a dual
feasible solution with objective value at least kd/2.

Consider the dual solution (γ = d, αe = 1 ∀ e ∈ E). Since the graph is
d-regular we have that α(δ(u)) = d. Thus, all dual constraints are satisfied
and hence, it is a dual feasible solution. The objective value is

∑
e∈E

αe − γν(G) =
d|V |

2
− d

(
|V | − k − |Su|

2

)
= d

(
k + |Su|

2

)
≥ kd

2
.

ut

5.3 Integrality Gap

In this section, we show an integrality gap example for a natural integer pro-
gramming formulation of the stabilizer problem.

If we consider the linear program (P) and add integrality constraints on
the z variables, we obtain an integer program (IP) and it follows by our result
that the integrality gap of the resulting IP is at most 2 for d-regular graphs.
Könemann et al. [12] proved a Θ(n)-bound on the integrality gap of the IP
for general graphs. However, the resulting IP is not a formulation for our
minimum stabilizer problem, since the integral optimum solution of the IP
could be Ω(n) away from the size of a minimum stabilizer for arbitrary graphs
(not necessarily regular). In order to obtain a formulation for our stabilizer
problem, we could introduce additional variables x and impose the existence
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of a matching in G \ Support(z) of size ν(G):

min
∑
e∈E

ze

yu + yv + zuv ≥ 1 ∀ uv ∈ E,∑
u∈V

yu = ν(G),

x(δ(v)) ≤ 1 ∀ v ∈ V,
∑
e∈E

xe = ν(G), x(E[S]) ≤ |S| − 1

2
∀ S ⊆ V, |S| odd,

xe + ze ≤ 1 ∀ e ∈ E,
x, y, z ≥ 0, x, z integral.

However, we can show a lower bound of Ω(n) on the integrality gap of the
above formulation for factor critical graphs.

Proposition 6 There exists a graph G = (V,E) such that the integrality gap
of the above formulation for G is Ω(|V |).

Proof The gap instance G = (V,E) is constructed as follows: Let V = {vi : i ∈
[2r+ 1]} ∪ {ai, bi : i ∈ [4r]}. The edges are E = {vivj : i, j ∈ [2r+ 1]} ∪ {aibi :
i ∈ [4r]} ∪ {aivj , bivj : i,∈ [4r], j ∈ [r]}.

For notational convenience, let Q = {vi : i ∈ [2r+1]} and S = {vi : i ∈ [r]}.
The instance consists of an odd clique on 2r + 1 vertices in Q. The gap instance
and a feasible solution are shown in figures 3 and 4. The number of vertices
in the graph is |V | = 10r + 1.

Fig. 3 Integrality gap instance G
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Claim The graph G is factor critical.

Proof By Lemma 1, it is sufficient to give an ear construction of the graph
using only odd ears. Here is an ear construction of G: first construct K2r+1

using odd ears. Repeat for i = 1, . . . , 4r: add the odd ear (uai, aibi, biu) where
u ∈ S. Next add edges aiv followed by biv for all vertices v ∈ S and all i ∈ [4r].

ut

Next we construct a feasible solution (x, y, z) to the linear program for this
instance (see Figure 4). Fix a vertex v ∈ S in the clique and let M be a perfect
matching in the clique that exposes v. Set

xe =


1 if e ∈M
7r−1
7r if e = aibi i ∈ [4r]
1
7r if e = aiv, i ∈ [4r]

0 otherwise,

yu =


1
2 if u ∈ Q \ S
7r+1
14r if u ∈ S
7r−1
14r if u = ai or bi, i ∈ [4r]

0 otherwise,

ze =

{
1
7r if e = aibi, i ∈ [4r]

0 otherwise.

(i) (y, z) values (ii) x values

Fig. 4 Feasible solution for the integrality gap instance

Claim The solution (x, y, z) is feasible and has objective value 4/7.
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Proof We show feasibility of the solution by verifying that x satisfies all odd-
set constraints. The rest of the constraints can be verified easily. In order to
show that x satisfies all matching constraints, we will express it as a convex
combination of 4r + 1 integral matchings. Take M0 = M ∪ {aibi : i ∈ [4r]}.
Now, for each i = 1, . . . , 4r, take Mi = M ∪ {ajbj : j ∈ [4r], j 6= i} ∪ {aiv}. It
is immediately seen that

x =
3

7
χM0

+

4r∑
i=1

1

7r
χMi

where χM denotes the indicator vector of M . The objective value of the linear
program is easy to verify. ut

In order to exhibit the integrality gap, it remains to show that the minimum
stabilizer in this graph is of size Ω(r). The following claim completes the proof.

ut

Claim The minimum stabilizer for G is of size Ω(r).

Proof By Theorem 1, we know that there exists a maximum matching M∗ in
G and a minimum stabilizer F that is disjoint from M∗. Let H = G\F . Since
the graph G is factor-critical, we know that the matching M∗ exposes exactly
one vertex u. We have two cases.

1. Suppose this vertex u is in the odd clique. We note that at most r of
the vertices in Q have neighbors outside Q and therefore can be matched
outside. Hence, at least r of the vertices in Q are matched to vertices in Q.
Therefore, we have at least r/2 edge-disjoint triangles through u containing
exactly one edge from M∗. Since H is stable, H cannot contain any of these
triangles. Hence |F | ≥ r/2.

2. Suppose this vertex u ∈ {a1, . . . , a4r, b1, . . . , b4r}. Consider the vertices in
S. All these are neighbors of u in G. If t among these vertices in S are
matched inside the odd clique by M∗, then we can pair up these matching
edges and find t/2 disjoint 5-cycles through u in G each containing exactly
two edges from M∗ (See figure (a)). Since H is stable, H cannot contain
any of these 5-cycles. Thus, the stabilizer has to remove at least t/2 edges.

(a) If t ≥ r/2, then the stabilizer has to remove at least t/2 ≥ r/4 edges.
(b) If t < r/2, then M∗ matches r − t ≥ r/2 vertices to vertices outside

outside the clique. If one of the r−t vertices is matched to some ai, then
the vertex bi is either matched to a vertex inside the clique or bi = u
(see figure (b)). Thus, we can once again identify (r−t−1)/2 ≥ (r−2)/4
disjoint 5-cycles through u in G each containing exactly two edges from
M∗. Since H is stable, H cannot contain any of these 5-cycles. Thus,
the stabilizer has to remove at least (r − 2)/4 ≥ r/8 edges.

Thus, we have a lower bound of Ω(r) = Ω(|V |) on the size of the minimum
stabilizer. ut
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(a) Disjoint 5-cycles using matching (b) Disjoint 5-cycles using matching
edges inside the clique edges outside the clique

6 Hardness of the Stabilizer problem

In this section, we show that the stabilizer problem is at least as hard as the
vertex cover problem. The construction is very similar to the one used in the
proof of Proposition 2, except that we introduce a gadget graph H instead of
a two-edge-path in order to enforce that a minimum stabilizer selects edges
incident to the super-source.

Proof (of Theorem 5) As in the proof of Proposition 2, we give a reduction
from the vertex cover problem. Let G = (V,E) be a vertex cover instance.
We may assume that G has no isolated vertices. We construct a new graph
G′ as in the proof of Proposition 2, but where the edges of the type v′v′′ are
replaced by a gadget graph H. The gadget graph H connects v′ and v′′, each
to one of the parts of a Kn,n, the complete bipartite graph on n vertices, where
n = |V | is the number of vertices in the vertex cover instance. See Figure 5(a)
for an illustration of the gadget graph H and Figure 5(b) for the instance
G′ constructed from the vertex cover instance G. In the rest of the proof, for
every vertex v ∈ V , we will refer to Hv as the gadget graph H between the
vertices v′ and v′′ in G′.

We observe that the gadget graph Hv is precisely Kn,n \ {v′v′′} and hence
bipartite. Further, it is straightforward to verify that the instance G′ is factor-
critical.

Claim Let W be a vertex cover in G. Then, F = {v0v′ : v ∈W} is a stabilizer
in G′ and moreover, |F | = |W |.

Proof By Theorem 6, it is sufficient to show that F is an N -stabilizer for
any chosen maximum matching N in G′. We choose N to be the maximum
matching that leaves v0 exposed and has a perfect matching in each gadget
graph Hv. Suppose for contradiction that there is an N -flower in G′ \F . Since
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(a) Gadget graph Hv (b) Stabilizer instance G′

Fig. 5 Minimum stabilizer instance constructed from vertex cover instance G

v0 is the only exposed vertex, every N -flower has to contain it. By the choice
of N and the construction of the gadget graph H, this N -flower has to contain
an edge of the type u′′v′′ for an edge uv ∈ E and also the edges v0u

′ and v0v
′.

This is a contradiction to W being a vertex cover. ut

By the above claim, we can also conclude that a minimum stabilizer in G′

is of size strictly smaller than n.

Claim Given any stabilizer F̄ in G′, there exists another stabilizer F ′ in G′

that only consists of edges of the type v0v
′ for some vertices v ∈ V and

|F ′| ≤ |F̄ |.

Proof We may assume that |F̄ | < n for otherwise, we can take F ′ = {v0v :
v ∈ V } to obtain the conclusion. The algorithm used in the proof of Theorem 1
yields a stabilizer F and a maximum matching M in G′ with F ∩M = ∅ and
F ⊆ F̄ . To prove the claim, we will show that we can replace every edge in F
of a different type by an edge of the type v0v

′ for some vertex v ∈ V . Since G′

is factor-critical, every maximum matching in G′ can contain at most one edge
of the type u′′v′′ for an edge uv ∈ E; otherwise the matching would expose
more than one vertex, a contradiction to G′ being factor-critical. Thus we are
left with only two kinds of maximum matchings in G′:

Case 1: M does not contain any edge of the type u′′v′′ for an edge uv ∈ E.
If M leaves v0 exposed, we observe that every M -flower in G′ corresponds
to an odd cycle of the form v0, v

′, . . . , v′′, u′′, . . . , u′, v0 (with some path of
odd length through the gadgets Hu, Hv to connect v′ to v′′ and u′′ to u′,
respectively). This implies that an edge u′′v′′ ∈ F can be replaced by v0u

′

without violating the stabilizing property, since every flower containing u′′v′′

must also contain v0u
′. Similarly, an edge in F that belongs to a gadget Hv

for some v ∈ V can also be replaced by v0v
′, since every flower containing this

edge must also contain v0v
′.

If v0u
′ ∈M , then the exposed vertex is either u′′ or adjacent to u′ in Hu.

Then there exists an even M -alternating path P from the exposed vertex to
v0 of length two or four. We change M along P to a new maximum matching
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M ′ := M∆P . Now, if P contains an edge f ∈ F , we can exchange f with
v0u
′. The resulting set F ′ := (F \ {f}) ∪ {v0u′} is an M ′-stabilizer. To see

this, observe first that every M ′-flower in G′ is an odd cycle of the form
v0, p

′, . . . , p′′, w′′, . . . , w′, v0 (with some path of odd length through the gadgets
Hp, Hw to connect p′ to p′′ and w′′ to w′, respectively). Suppose there was an
M ′-flower Z in G′ \ F ′. Z cannot contain u′ or u′′ since v0u

′ ∈ F ′. Hence Z
corresponds to the blossom of at least n different M -flowers that are disjoint
on the edges neither in M nor in Z. This contradicts either the fact that G′\F
is stable or |F | < n.

Case 2: M contains an edge u′′v′′.
Because M is a maximum matching, M has to contain by construction either
v0u
′ or v0v

′. Suppose w.l.o.g. v0u
′ ∈M . We have two possibilities:

Case 2(a): The exposed vertex is v′. We observe that if the edge v0v
′ is

not contained in the stabilizer F , then the number of M -flowers with disjoint
non-M -edges is at least n due to the n edge-disjoint paths through Hu and
Hv. Hence, by characterization (iii) of Theorem 6, F is of size at least n, a
contradiction. We further observe that for any p, w 6∈ {u, v}, the edge p′′w′′

in F can be replaced by v0p
′ as in previous case 1, since they only belong to

M -blossoms with base v0 (reached via an even M -alternating path from v′

through v′′, u′′ and u′). A similar argument applies to the edges of F within
a gadget Hw, since every flower has to contain the edge v0w

′ as well. Finally,
suppose F contains edges e from the gadgets Hv or Hu. Then, either all these
edges can be removed from F still ensuring the stabilizer property or |F | ≥ n.
This is because, if removing all these edges from F leads to M -flowers in the
resulting graph, then there are in fact more than n M -flowers with disjoint
non-M -edges (due to the n edge-disjoint paths from v′ to v′′ through the
gadget Hv).

Case 2(b): The exposed vertex is a vertex t adjacent to v′′ in the gadget
Hv. As in the previous case, a stabilizer cannot contain edges from the gadgets
Hv or Hu, since otherwise the stabilizer would have size at least n. We further
observe that for any p, w 6∈ {u, v}, the edge p′′w′′ in F can be replaced by v0p

′

as before, since they only belong to M -blossoms with base v0 (reached via an
even M -alternating path from t through v′′, u′′ and u′).

This proves our claim. ut

We set W := {v : v0v
′ ∈ F ′} for the stabilizer F ′ with the property men-

tioned in the claim. We now claim that W is a vertex cover in G. For contradic-
tion, suppose that an edge uv is not covered by W . This implies that neither
v0v
′ nor v0u

′ is in F ′. Then there exists a cycle v0, v
′, . . . , v′′, u′′, . . . , u′, v0

(with some path of length three through the gadgets Hu, Hv) in G′ \ F ′. We
observe that the matching N defined in the beginning of the proof is a max-
imum matching in G′ \ F ′ and thus this cycle forms an N -flower in G′ \ F ′
contradicting that F ′ is a stabilizer in G′.

Hence, we have shown that any vertex cover in G induces a stabilizer in G′

of the same cardinality, and moreover, any stabilizer F in G′ induces a vertex
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cover in G of size at most |F |. Thus, we have an approximation preserving
reduction from the vertex cover problem. ut
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6. P. Biró, M. Bomhoff, P. A. Golovach, W. Kern, and D. Paulusma, Solutions for the stable
roommates problem with payments, WG, 2012, pp. 69–80.

7. G. Chalkiadakis, E. Elkind, and M. Wooldridge, Computational aspects of cooperative
game theory, Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers, 2011.

8. W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver, Combinatorial Optimiza-
tion, John Wiley & Sons, Inc., New York, NY, USA, 1998.

9. D. Hochbaum, Approximation algorithms for the set covering and vertex cover problems,
SIAM Journal on Computing 11 (1982), no. 3, 555–556.

10. S. Khot, On the power of unique 2-Prover 1-Round games, Proceedings, ACM Sympo-
sium on Theory of Computing, 2002, pp. 767–775.
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