Uncrossing Partitions

Jochen Knemann and David Pritchard

June 5, 2007

Abstract

We extend a well knowmncrossingtechnique in linear programs (LPs) to work with partitions.
Using this technique, we tie together three previously lated papers on Steiner trees, by showing that
the following three values are equal: (1) the objective ealfia subtour based LP by Polzin and Vahdati
Daneshmand; (2) the objective value of a partition basedy.Rénemann and Tan; (3) a “maximum
gainless tree” quantity used by Karpinski and Zelikovskige3e LPs are known to be stronger than the
bidirected cut relaxationwe conjecture that ipreprocessedraphs, these LPs are exactly as strong as
the bidirected cut relaxation, which would add a surprigmgth item to our list.

1 Introduction

The Steiner tree problem is a classical combinatorial optimization problem. pheigna graplG = (V,E)

with positive costs, for all edges, and with the verticd&sdivided into two sets: the terminaRand the
Steiner nodebl. A feasible solution is any connected subgrapBaiat connects all dR, and we want one
whose sum of edge costs is minimal. It is easy to see that any optimal solutioresalltof whose leaves
are terminals; these are call&teiner treesComputing a cheapest Steiner tree is NP-hard, and moreover
no (polynomial time)%g-approximation algorithm exists unless P=N. [Hence, there is much interest in
designing algorithms with good approximation factors.

Central to this work is théull component decompositiarf Steiner trees, which was originally used by
Zelikovsky [33] in the 1990s to get égl-approximation algorithm. Given a Steiner tfégafull component
of T is a maximal subtree dfF all of whose leaves are terminals and all of whose internal nodes areiStein
nodes. The edge set of any Steiner tree can be partitioned in a uniquetaéyll components by splitting
at internal terminals; see Figufiefor an example. Zelikovsky's original algorithm (and basically all fol-
lowing improvements) go the other way: we compute the cheapest full comgarfemgraph, and use that
information to reconstruct a cheap Steiner tree.

More specifically, for each subg€tC R of the terminals, we would like to compute the cheapest (if any)
full component with leaf seK. Then knowledge of the cheapest costs for each terminal set is suifficie
reconstruct the cheapest Steiner tree. In this way the problem is tnaesfanto a problem about minimum-
cost spanning sub-hypergraphs, which we now review. A hypehgfd &) has verticed/, hyperedges
& C{E CV ||E| > 2} and in this case cost for eachE € &; a spanning sub-hypergraph (¢, &”)
with &’ C & such that, for every partition &f into two nonempty parts, some hyperedgesinintersects
both parts. The correspondence between Steiner instances andrhapperis as follows: for eadk C R,
we computeopt(K), the cheapest full component with leaf #gtand assign coSCk := c(opt(K)). Then
spanning sub-hypergraphs correspond to Steiner trees of the dbpgaéem.

LIf xis a vector ancBis a set, we use the convention thé®) = 5 o.sxs; similarly if H is a graph ther(H) is the total cost of
the graph’s edges.

)

Figure 1: Black nodes are terminals and white nodes are Steiner nodiesa S&einer tree for this instance.
Right: the Steiner tree’s edges are partitioned into full components; thefewarfull components.

There is a subtle point to this abstraction. The original Steiner tree instancéaxa about & full
components in total (one for each nonempty non-singleton subdet and so the usual approach is to
compute only those full components of size at mo@ivherek is a fixed parameter). We call thigsepro-
cessing Preprocessing can be accomplished in polynomial time (e.g., using dynasgiaprming 8]). If
k is too small, the preprocessing to a hypergraph will increase the cost ofimunmcost Steiner tree, as
we now illustrate. Consider Figuie There is only one feasible Steiner tree and it has a full component
on 5 vertices. But, say, fdt = 3 things are still not too bad; there are full components on the terminal
sets{ry,ra,r3} and{rs,ra,rs} each of cost 3, which can (as hyperedges) be joined together togeradu
spanning sub-hypergraph of cost 6. Viewed in the original Steinelinstance, the edgen is now used
twice; the preprocessing increased the optimal solution cost from 5 tov8eWw, it is known that prepro-
cessing increases the cost by no more than a factoro®{1/logk) [2]. So by takingk — o we get an
approximation scheme where preprocessing has negligible cost.

r

l4 . 4

s r5.,4 :
r 1ol
n 3 _ 973

// ‘
- \
r " e \

2 o

Figure 2: Left: an instance of the Steiner tree problem with five terminals.diiés have cost 1. Right: if
we try to construct a feasible solution using full components on terminalsefess than 5, some edge must
be used twice. Two full components on 3 terminals are shown, using dasdetbtted edges respectively.

In the rest of this section we describe some relevant related work. tioB@ove show an equivalence
betweerpartitionsandsubtours In Section3 the partition uncrossing technique is described and we show
that items (1) and (2) of the abstract are equivalent. In Sedtiva show equivalence with item (3) and give
other applications of our technique. Finally, Sectiorontains ideas for future work.

1.1 Linear Relaxations

To apply linear programming to a combinatorial optimization problem, one typicaligrs a continuous
0-1 variable to each possible element of a feasible solution, with 1 meaningehatnt should be used and

0 meaning it should not, along with constraints amongst these variables dasidbly other auxiliary vari-
ables) to enforce that all integral solutions correspond to feasibletslffgahe combinatorial optimization
problem at hand. For NP-hard problems the linear programming appoaache used to design approx-
imation algorithms (such as a 1.5-approximation algorithm for so-cajlexsibipartiteSteiner instances
[24, 25]) and also to implement exact integer programming algorithms (e.g., as applieginerSrees in
the theses of Warma[] and Polzin R0, 22)).

There is a great deal of literature on the study of Steiner tree lineargmsgthemselves, and of the
corresponding polyhedra (feasible regions of the LPs). Work by Bdis\®] and later Choprad] on the
spanning tree polytope led to a number of different linear programs f@&ttieer tree problem. Chopra and
Rao B, 7] and Goemansl[(] investigated these in quite a bit of detail. Goemans and Myadgghowed
that LPs from several independent lines of work were all equivadtettie bidirected cut relaxation This
LP was the one used to obtain the 1.5-approximation algorithm for quasibifgpepbs P4, 25] mentioned
above. There are some hopes that the strength of this relaxation will lediaetoadgorithms, but none yet
have appeared for general graphs with constant approximation faetter than 2.

In 1997, Warme 30, 31, 32] introduced a new linear program for the Steiner tree problem. In fact,
this LP models the minimum-cost spanning sub-hypergraph problem, usingdtetion outlined previ-
ously. Polzin et al. continued this line of work, showiri[23] that this program wagsometimes strictly)
strongerthan the bidirected cut relaxation. Independently, extending work opfhon spanning trees,
Kodnemann and Tarlp, 28] showed that a similar LP could be used to interpret the currently bestrknow
[26] approximation algorithm for Steiner trees as a primal-dual algorithm.

2 Partitions versus Subtours

The relaxation used by #hemann and Tan has different constraints than the one consideredrine\&nd
Polzin. In the next sections we will show that they are equivalent. Weelefin= {E CV | |E| > 2} to be
the set of all possible hyperedges (i.e., terminal sets of full compondintsgre is no full component with
terminal seK € %/, or if we have only computed the full components on at nkasrminals andK| > k,
then we se€x = «. For a seiX, we define

b(X) = {o, if X = 0;

|X|—1, otherwise.

This notion of “size” or “rank” turns out to be natural in our setting.
The hypergraph formulations use a relaxed indicator varigbl®r each hyperedgk € 7. First, we
present Warme’s formulatioh.

minimize Z Ck Xk (6Z0)
Ke
x>0 1)
Y %p(K)=p(R) @
KeJ
VSCR: Z xxkp(KNS) < p(9 (3)
KeJ

2We adopt the following convention fromi2]: a prime () symbol in an LP denotes that the feasible region is bounded.

The letter.¥ is short for thesubtour elimination constraints), which are a key feature of Warme’s LP.

A cyclein a hypergraph is a sequence of distinct vertices and distinct hypesegdgeysvice o v €
.-+ € & 2 Vo. A spanning hypergraph isspanning (hyper)tred it has no cycles. I is the characteristic
vector of (the edge set of) a hypergraph anklas a cycle (with notation as above), then it is easy to see that
x violates the subtour constrairs)(for S= {vo,v1,...,w }. Intuitively, cycles are bad since the connectivity
they provide is redundant (and hence not optimal).

Warme showed that the feasible integral points @f) are exactly the incidence vectors of spanning hy-
pertrees. Informally, this correspondence holds beca&@)sedvents cycles an@) ensures that all terminals
are connected.

A partition of Ris a collection of set§r |i = 1,...,t} such that eachg is nonempty, and such that each
r € Roccurs in exactly oneg. The setst are called thepartsof . For a partitionr, its rank r() is the
number of parts oft, i.e.,r({r,..., 7t }) =t. Given a partitiorvt of Rand anyK € %, we define theank
contributionrcf to be the number of parts af spanned by, minus one. Equivalently;cy is the rank
drop incurred byt if we merge together all parts intersectikgGiven the incidence vectorof a spanning
hypergraph and any partitiamof R, Kdnemann and Tan showed that the following inequality is valid:

Y xcrek >r(m -1 (4)
Kext

Note that the special case of inequality {n which r () = 2 follows immediately from the definition of

a spanning sub-hypergraph. Note also that wites the unique rank-one partitiofR}, both sides of4)
vanish. We will show that the subtour constrairisdre equivalent to partition constraints, but first we need
alemma.

Lemma 2.1. For a partition t= {rm, ..., 7%} of R, where t=r(71), we have
t
p(K) =xcg-+ 3 p(KN ™).
i=

Proof. By definition, K N 75 # 0 for exactly 14-rcj values ofi. Also, p(KN) = 0 for all otheri. Hence

t
_;pamm > (Knml-1)={ \Kﬁn!>—(rc(£+1)- (5)

a iIKNTEA£0 (i:Kmn;A@
Observe thaF;.knn.0 KN 75| = |[K| = p(K) + 1; using this fact together with Equatio®) (ve obtain

t
Elp(Kﬂn‘):< > !Kﬂm!)—(rcE+1):p(K>—1+(rc.’£+1).
i= i:KNT5#£0

Rearranging, the proof of Lemn#alis complete. O

Definelg to be the family of all partitions oR. We are now in a position to show that the polytope

3The characteristic vector of a s&ts the vectory (S) such that x(S))s = 1 forse Sand(x(S))s=0fors¢ S.

defined by () is equal to the polytope defined by the followipgrtition basedinear program.

minimize Z Ck Xk ()
KeJ
x>0 @
 xp(K)=p(R))
KeJZ
Ve Ng: > xkreg >r(m—1 (6)
KeJ

In the rest of the paper, let us denote the feasible region of a lineargono®) by £s(X).
Theorem 2.2(Subtour/partition correspondencé)he polytopess(#?’) andfs(.’) are equal.

Proof. Notice that the constraintd) and @) are common to both formulations. We will show tha{(.~")
C £s() and then thats(#?') C £s(.).

Consider the constraing) for any fixed partitionrt = {r,..., 7%}, sot =r(m). We claim that this
constraint can be written ag)(minus certain constraint8) sincerr was chosen arbitrarily, this will prove
thatfs(’) C £s(2?). In patrticular, for each ¥ i <t, subtract the constrainB)with S= 5. We obtain

K) — K R) — . 7
3 x(pK) =3 p(KNM) = p(R)= 3 p() ™

From Lemma2.1, p(K) — 5;p(KN) = rci. We also havep(R) — 5;p(m) = |R —1—(|R| —r(m)) =
r(m) — 1. Hence the inequality7} that we derived as valid fats(.”) is exactly 6).

Conversely, let us write3] for a fixed setS as a linear combination o) minus an inequality of the
form (6). Note whenS= 0 that @) is vacuously true so we may assu®¢ 0. LetR\S= {ry,...,r } and
takerr= {{r1},...,{ru},S}. Subtract §) for this 7 from (2), obtaining

> % (p(K) —reg) = p(R)—r(m)+1. (8)

Kex
Using Lemma2.1 and the fact thap(K N {r;}) = 0 for any j, K, we getp(K) —rcf = p(KNS). Finally,
asp(R) —r(m+1=|R —1-(R\S/+1)+1=p(S), Equation @) is the same as3[. Sofs(#') C
£s(S). O

By observing that.¢”’) and (#?') have the same objective function, we obtain the following.
Corollary 2.3. The LPS(.¥") and (#?") have the same objective value for any cost function C.

The technique behind the proof of Theor@rfis fairly simple, and so itis not clear if it is new. However,
the authors are not aware of any prior usage. We simply note that thegeetuan also be used to describe
an existing subtour based formulation of the bidirected cut relaxation 18per terms of partitions.

3 Uncrossing Partitions

In this section we describe the new partition uncrossing technique. Firshotreate the result. The linear
program (?’) that we wrote above is actually different from the one used byédfmnann and Tan. In fact,
their formulation did not use the constrai).(Note that ifx is the incidence vector of the full components
in a Steiner tree, ther satisfies constraint2]. However, there are some cases in which this constraint
changes the strength of the LP; here is an example.

5

Example 3.1. Let R= {1,2,3,4}. Define the costs &3 = Ci124 = 0, Cz4 = 1, and let all other
costs be infinite. Then the optimal value(e?’) is 1, whereas removing constraif#) weakens the LP and
reduces the optimal value to 0. For example, the characteristic vectpfloR, 3}, {1,2,4}} meetg1) and
(6) but not(2).

It could be said that Exampl1is somewhat artificial. In our application (using hypergraphs to model
full components of Steiner trees) the costs specified in Exadglare clearly impossible. If the full
componen{1,2 3} has cost zero, and all edge costs are nonnegative, then note thathheop 1 to 2
in this full component is itself a full component on terminal $&12} with cost zero, which contradicts
Cy1,2) = 1. More generally, we have the following.

Definition 3.2. Let C be a cost function fron#” to R,.. We call Cnondecreasing Cs > Cr whenever
SOT.

Lemma 3.3. In a Steiner tree instance with nonnegative edge costss iIGhe cheapest cost of any full
component with terminal set K, then C is nondecreasing.

Proof. Let T C Sbe any sets of terminals, and tgt(S) be a minimum-cost full component with leaf &t

For each paifu,v) of terminals inT, there is a unique path joining those terminal® pi(S); let H denote

the union of these paths over all choicesi@ndv. Notice thatH is a subset obpt(S); since all edges in the
original Steiner instance have nonnegative cadt,) < c(opt(S)) = Cs. Also, H is a full component with

leaf setT, so by definitiorCr < c(H). HenceCr < c¢(H) <Cs. O

In this section we will show that i€ is nondecreasing, then removing constrai)tffom (#?') does not
change its optimal value. In other words, we can rewrite the hypergrappanning-tree LP as follows:

minimize z Ck Xk (22)
Kex
x>0 @)
vYrmeNg: Z xkrcg >r(m—1 (6)
Kex

To be precise, Knemann and Tan interpreted the Robins-Zelikovsky algorit®hds an iterated primal-
dual algorithm, and4?) is the LP used in the first iteration. We will upartition uncrossingo show that
() and (') are equivalent, and also equivalent to a “gainless tree” formulatiomeSuher nice features
of this LP are:

e ltis stronger than the bidirected cut relaxation.

e The optimum can be computed in polynomial time (e.g., QueyraBijegypve a separation oracle for
).

e No extended variables are needed.
e There is essentially only one type of constraint i)

Next, we introduce our new technique.

3.1 Definitions for Partitions

For any feasible poink of the program {?), we say that partitiont is tight for x if the constraint ©)
corresponding taris met with equality. Following notation introduced i8] let 7° denote the partition of
Rinto |R| singleton parts. Crucially, the constraif) (s the same as saying thaf is tight for x; we want to
show thatr® is tight for some optimak of (%?). Let .7 (x) denote the family of all tight partitions for We
first show that the family of tight partitions has a special structure (formttiada Second, we argue that
some optimal solution has a “large enough” tight family.

Given two partitionsT and ' of R, we say thatt refinesm if each part ofrt’ is contained in some part
of . See Figure&(a). To say thatr coarsengt is the same as saying thatrefinesrr. It is easy to see that
if 7’ refinesr’ and ' refinesm, thenm” refinesm. The seflr of all partitions ofR has an additional nice
property which is summarized in the following definition.

Definition 3.4 (Lattice operations)Let 11,77 € MNg. Their join Vv 17 is the most refined partition that
coarsens bothrand . TheirmeetrrA 17’ is the coarsest partition that refines bathand 17'.

See Figure3 for an illustration. In the definition of join, when we say “the most refineditian
coarsening botht and 7" we mean that, whenevemr” coarsenst and 17, thenmtv 1’ refinesn’. The
definition of meet is analogous. Definitidh4 hides something, because it does not immediately obvious
that such partitions exist; nonetheless the existence proof is standarcse=®7]. (For reference, we
remark that in general, lattice is any partially ordered set where such meet and join operators are well-
defined.)

Here is an intuitive construction for joins and meets.

Fact 3.5. Let the parts oftbe rm, ..., 7% and let the parts of? ber,..., ,. Then the parts of the meet
A 17 are the nonempty intersections of partgofvith parts ofr,

nATl ={mNm|1<i<t,1<j<uandmnm #0}.

Given a graplG and a partitiorvt of V(G), we say that inducesrt if the parts ofrr are the connected
components of.

Fact 3.6. Let (R, E) be a graph that induces, and let(R E’) be a graph that inducer’. Then the graph
(R EUE’) inducesrtv ',

Analogously tor®, we definert! to be the coarsest partition & i.e., the partition with just one part.
The meet and join operations are each commutative due to DefiiionVe will later need the following
fact.

Fact 3.7. The meet and join operations are each associative.

3.1.1 Warmup: Graphs

Before diving in to our main uncrossing argument (for partitions in hygzggs), we will prove an analogous
easier result for ordinary graphs. Lt denote the set of all edges Gfthat span two different parts af,

Er:= {uve E | uandv do not lie in the same part af}.

(a): The dashed patrtition refines the solid one.

o el

(c): The meet of the partitions from (b). (d): The join of the partitions from (b).

O,

Figure 3: lllustrations of some partitions. The black dots are the termin& set

Chopra p] gave the following linear program for thminimum-cost spanning tr®1ST) problem in ordi-
nary graphs.

minimize EECeXe (Zc)
x>0 ()]
vrmelg: X(Ep) >r(m) —1 (10)

The linear program 4’c) is particularly nice in that there is always an integral optimal solution (unless
somece < 0, in which case the program is unbounded). Notice that we can view texdnaph LP {?) as
a generalization of Chopra’s LPAg), by settingCx = o for all component& with |K| > 2 and allK ¢ E.
Similarly, () generalizes a spanning tree LP originally due to Edmo@Hdi (Z%), just as in (), we
define partitiornvt to betight for x if the corresponding inequality. 0) holds with equality.

Chopra showed ing] that (%) is exactly as strong as earlier MST formulations by Edmonds and
Fulkerson. In proving the equivalence with Fulkerson’s LP, Chofz@a showed a result analogous to what
we want for hypegraphs: that adding the constrdigts Xe = |R| — 1 to (#’c) does not affect the optimal

8

value (i.e., there is an optimal solution t&7¢) for which ri° is tight). In contrast to our hypergraph result,
where the cost function must be nondecreasing, Chopra’s resu#t tooldll nonnegative cost functions. We
present a new proof of this result as a warmup to the hypergraphkiaestewe need the following technical

lemma.

Lemma 3.8. For any T, 17’ € Mg,
r(rmv) +r(mAm) >r(m+r(m). (11)

Proof. Choosery so that(R,Fp) is a forest that induces A 1. SincerrA 1 refinesmt we can pick a sef
of edges disjoint fronfr such thai{ R,y UF) is a forest that induces. Similarly let(R,FoUF’) inducer
andFRyNF’ = 0. Using FacB.6, (R, FlpUF UF') inducesmV 17'.

Since (R Fp) is a forest onR| vertices withr (1TA 1) connected componenty| = |R| —r(TA 7).
Similarly [FoUF| = |R| —r(m), and|RoUF’| = |R| —r(77), and agR, Fo UF UF’) is not necessarily a forest
we havelFoUF UF’| > |R| —r (Vv 7). Hence rearranging,

r(mvm)+r(nAm)>|R —|F|+|R —|RUFUF'|=|R - |RUF|+|R — |RUF'|+|FNF/|
> |R = |FoUF|+|R| — [FRUF'| =r(m) +r(1T). O

We say that partitionsrandr’ crossif 1T neither refines nor coarsens See Figuré(b) for an example.
The following lemma is trivially true ifrand ' do not cross. In this case one refines the other, w.l.o.g.
refinesm, and sorv ' = mandn A =17

Lemma 3.9 (Meet/join closure of tight partitions in graphd)et x be feasible fof{.%?c). If mand i’ are
both tight for x, thent\v ' and TA 17’ are both tight for x.

Proof. Let x(S) denote the characteristic vector®f E. We can write the partition inequalities ofAg)
asx- X(Ep) >r(m —1.
Since the partition inequalitied Q) for rv ™ and A rrare valid for,

X-(X(Emrr) + X (Epvrr)) > 1(mAT) —1+r(mv) — 1. (12)

Using Fact3.5, E;ny = EfUEj, and using FacB.6, Ey C ExNEy. The component-wise vector
inequality
X(En) +X(E71) = X(ENU En’) ‘f‘X(Enﬂ En’) > X(En/\n’) +X(En\/n’) (13)
then follows.
Now put everything together; in the first inequality we also need to notexthdl.

X-(X(Em) + X (En)) 289X (X (Emre) + X (Enym)) 2 1 (mAT) =11 (v) =120 1 () — 11 (1) - 1.

But sincerr and 1’ are tight, the leftmost and rightmost terms of the above inequality chain aré équa
particular Equationi(2) holds with equality, which implies thatA 7 andmr\ 17" are tight. O

Theorem 3.10([5]). Let c be nonnegative. There is an optimal point x(6fc) for which the equality
S ece Xe = P(R) holds (i.e., for which® is tight).

Proof. Let x be a basic optimal solution to{s). Hencex is an extreme point ofs(#z). Let 7 be
shorthand fot7 (x).

Claim 3.11. For each edgeec E such that ¥ > 0, somerr € .7 exists with & € E;;.

Proof. Suppose otherwise, that every partitmmvith €* € E;; is not tight. Define the point’ by
@ =X eFE
C I Xe—€, e=¢.

Now there is some > 0 for which X' is feasible. Notice that+ (x— X') > x and so, by the definition
of (Zc), X+ (x—X) is also feasible. Buk= x'/2+ (x+ (x—X'))/2, sox can be written as a convex
combination of two elements @k (27s), contradicting the fact thatis an extreme point afs(#%s). [

Let A .7 denote the common meet of all tight partitions fofwe use FacB.7 here). FacB.5implies
thatU,. > Exr = Ep 7. Claim3.11establishes that, for every edgeeitherxe = 0 ore € U, »~ Er. Hence
X(E) =x(Ep 7). By Lemma3.9, A .7 is tight and so

X(E) =x(Epz7)=r(\7)-1 (14)
On the other hand sinoesatisfies the inequalityl() corresponding tat°,
X(E) = X(Ep) > r(n°) — 1. (15)
Putting Equationsi(4) and (L5) together we seg(A.7) — 1> r(m°) — 1, and as™® is the unique partition
of maximum possible rank) .7 = °. Using LemmaB.9, we see thatt® is tight for x. O
3.1.2 Hypergraphs

Now we return to the hypergraph LP setting. Unfortunately the “obvioustassing by directly comparing
the four constraintsg) for m, @, m\v 1, A ' does not work. E.g., compare the following example with
Equation (3).

Example 3.12.1f K = {1,2,3,4}, m= {{1,2},{3,4}}, 7 = {{1,3},{2,4}} thenrcf +rcf < rc'™ +

ATl
re .

We use a slightly more complicated set of constraints to establish what we want.

Definition 3.13. Let T € Mg be a partition and let - R. Define thenerged partitiom(,S) to be the most
refined partition that coarsermg and contains all of S in a single part.

See Figurel for an example. The notation introduced in Definitidri3allows us to restate an earlier
remark:
rcg = r(m) —r(m(m,K)). (16)

Here is our new uncrossing technique.

Lemma 3.14 (Partition uncrossing)Let i, € Mg and let the parts ofit be T, ®,.... The following
(in)equalities hold:

vKex : r(m) [rcﬂ + {rc,’g} > {rcg/\”’} —i—r(;n) {rc?mﬂ)} a7)

r(m) [r(r) 1] +[r(m) -1 = [r(n/\n’)—l]+Zl[r(m(n’,ﬂ))—l] (18)

Figure 4: lllustration of merging. The left figure shows a (solid) partitivelong with a (dashed) s&t The
right figure shows the merged partitian{rz, S).

The bracket$] have no special meaning but only emphasize the parallel structure ofubtats; they
will soon be interpreted as adding and subtracting multiples of the constai@€fore we prove Lemma
3.14, let us show how its result is used.

Lemma 3.15. Let x be feasible fo¢<?), and let the parts oftbe s, 5, If mand ' are both tight for X,
then for each Ke ¢ with x« > 0 we have

r(m) [rcﬁl] + [rcﬂ = [rcﬁ/\"’} +r(_2"1) [rc?(n,’m}. (29)

Moreover,tA 17 and each rfwt, 1) are tight for x.
Proof. Let m= {m, 7p, ... }. Using LemmaB.14 we have

r(m) [ZXKI'C(Z ZXKI‘CE] >0 [ZXKrcm",

3
43 e

+

; :]

-1

7T

>0 [r(mAT) —
=9 () [r(r) - 1] +[r(m) — 1]

where (x) holds since®) is valid forx € £s(#?). Sincerrandr’ are tight, the first and last terms in the above
inequality chain are equal, so all inequalities are met with equality. The fatcfthds met with equality
implies that the partitionsg A 71 andm(77, 1) for all i are tight; the fact thatl(?) is met with equality implies
that Equation19) holds for eactK with xx > 0. O

Theorem 3.16(Meet/join closure of tight partitions)Let x be feasible fo¢<?). If mand 7’ are both tight
for x, thenmtvy ' and A 17’ are both tight for x.

Proof. Repeatedly applying Lemnfal5 observen(---m(m(77',1q), 78),---) = TV 17 is tight. O

11

So although the uncrossing operation for hypergraphs is more complitetedor graphs, Theorem
3.16allows us to proceed more or less as we showed in Se8tibd We shall now prove the partition
uncrossing inequalities. For both proofs, we first modify the hypetgbgpcontracting each part afA 7.
Notice that in the contracted graphA M7 = 1°, i.e., |5 N ;| < 1 for each partg of mand each pant; of
. To justify this approach we must remark that the contraction does nat affe), r (77'),r(1TA 17') or any
r(m,).

Proof of Equation(18). Fix i. Since|[rsNg| <1 for all j, the rank contribution*e% is equal to| 75| — 1.
Then using Equatioril@) we know that (m(77', 75)) = r (') — | 75| + 1. Thus adding over al| the right-hand
side of Equation8) is equal to

r(m)
IRI—1+ _;(f(ﬂ’)— 7)) = [RI=1+r(mr(m) - R

and this is precisely the left-hand side of Equatid)(Ol

LetK € ¢ be a hyperedge of the original graph, which may not necessarily bemaeiparts ofrA 17’
DefineK’ to be the union of all parts af A ™ meetingK, i.e.,K’ is the part ofm(rrA 7', K) containingK.
Notice thatk andK’ have the same rank contribution with respectrte’, tA 7 and eachin(77, 75). Hence
contracting all parts oftA 17’ is justified in proving Equationi(7), as we can considé¢’ in the contracted
hypergraph instead df.

Proof of Equation(17). Fixi. Since|rtN nj| <1 for all j, we have

rcf — rcr}?(n’,n;) > p(mNK) (20)
because, when we merge the partsioitersectingg, we makeK span at leagh (75 N K) fewer parts.
Adding the right-hand side of Equatiof) over alli givesy; p(1NK), which by Lemma2.1is equal
to p(K) —rcf. Hence, we have

r(m r(m

_;m&“ —reg ™) > 3 P(mNK) = p(K) ~xcf.

Finally note thap(K) = chA” and the above equation, after rearranging, yields Equatign ([

Next we explain what sort of tight partitions can be assumed to exist. Téie lgea is that, for any
SC T C R, we can always decreage by a little bit and increases by the same amount without increasing
the overall cost; so eithet = 0 or this “replacement” is prevented by a tight partition.

Lemma 3.17.Let C be nondecreasing. There is an optimal solutiotoX.#?) such that the following holds:
for any K with % > 0 and for any re K, there existst € .7 (x*) such that the part oft containing r contains
no other vertices of K.

Proof. Let x be any optimal solutionxc > 0, andr € K as described. Suppose that ne& .7 (X) exists
as specified in the statement Lem®a7. Let ex denote the unit basis vector for compon&nt For the
moment assumg| > 2. LetK’ = K\{r} and define(= x—tex +tex: wheret > 0 is a parameter. Since
C is nondecreasing’ has objective value no more thanIn order forx to be feasible for ¢?), we need
t < xx and

ZI‘CEXK+(ICZ/*ICE)1: >r(m—1, Ve MR

12

Notice thatrc;, —rcy is —1 when the part oftcontaining contains no other vertices Kf, and 0 otherwise.
By hypothesis (i.e., our choices afandK) all partitionsrt with rcf, — rcf = —1 are not tight, so we can
take
t =min{xx, min ZrcEXK —r(m+1}>0.
TLrey, #reg
The resulting< no longer violates the conclusion of this theoremHKoandr. Finally, if |K| = 2 then the
same approach works except that we simply defire x — teg.

We iterate the replacement operation described in the previous paragrajpho suchK andr exist;
after each iteration redefine= x'. We will complete the proof by showing that only finitely many iterations
can occur. Notice thatZ (X') 2 .7 (x). Hence, the numbe7 (x)| of tight partitions is nondecreasing.
Furthermore, notice that in each iteration, # xx then|.7 (x)| increases, and otherwise the quantity

S (21)
o B

decreases. Since the quantifi) and|.7 (x)| are integral, nonnegative, and bounded, only a finite number
of iterations can occur. We defixé to be the finak, and the proof is complete. O

With these tools, we can complete the main proof of this section.

Theorem 3.18. Let C be nondecreasing. Then of all optimal feasible point&“8j, there is one for which
(2) is valid (i.e., for whichrg is tight).

Proof. Let x* be an optimal solution as specified by Lem#a7. Let 7 be shorthand for7 (x*).

For any hyperedgk such thatg > 0, and for any{u,v} C K, the conclusion of Lemma 17guarantees
that{u,v} € E; for somem e .7. Notice furthermore the) 7 = Unc 7Er. It follows that any hyperedge
K such thatrc/K\y < |K| — 1 must satisfy;, = 0. Sincex* meets inequality&) with 7= 1°,

r(nf)—1< Zx;g(uq —1) = Zx;f(rc{g?
But A 7 is tight and so the right-hand side of the above equation can be rewritten
r(mf)—1< Zx’krc{(\g =r(\7) -1
It follows that A .7 = ni°. By TheorenB.16 1 is tight forx*, i.e.,) is valid forx*. O

Corollary 3.19. For any Steiner tree problem instance, the optimal valugs:6), (') and(#?) are equal.
Proof. This follows immediately from Theore 2, Lemma3.3and Theoren3.18 O

3.1.3 Polyhedral Results

Analogously to the bounded LP relaxationg/) and (') of the spanning hypertree problem, the following
LP is a bounded LP relaxation for the spanning tree problem in ordinaphgr

minimize chexe (25)
ec
x>0 (22)
Xe=|R -1 (23)
2
vrmelg: Xe >r(m) —1. (24)
eckty

13

As we proved, both programsAg) and (#7;;) have the same optimal value for nonnegative cost func-
tions. However, as soon as any edge has negative cost, prograing clearly unbounded. With a little
more work we can obtain a proof of the following fact. Td@minantof a setSis the sefy| I3x€ S:y > x}.

Fact 3.20([5]). The dominant ofs(#;) is £s(Zc).
In contrastfs(#?) is notthe dominant of s(#’); we obtain an example by re-examining Example

Example 3.21.Let R= {1,2,3,4}. Then the point x= €1 5 3} + €124 € £s(?). However, in order for x
to be in the dominant afs(%”’), there needs to be a point of the form=yae; 5 3, + Be1 24y in £s5(F).
The patrtition inequalitie$6) require a, B > 1 but the equality2) requiresa + 8 = 1. So no such y exists.

Other more complicated generalizations of Fa@0do hold, however.

4 Applications of Partition Uncrossing

Uncrossing has played a critical role in recent work in the area of nktdesign, e.g.,J1, 14, 17, 18, 19].

In that setting one uncrosssstsin an LP withsubtour elimination constraintsather than partitions as we
have done hefe In this section we prove a property of the polyhedfef.?) in the spirit of these results.

A set of partitions is called ehainif no two of the partitions are crossing; equivalently, a set is a chain iff it
can be written in the formirtY, . .., i} wherertll! refinesrt’! for allt > j > i > 1. Thesupportof a vector

is the collection of indices where it is nonzero:

suppx) = {i | x 0}.

Using a span argument, we will establish that every extreme poif&(©#) is defined by its support and

a chain of tight partitionsin the sense that it is the unique solution to those constraints. The common

analogous result in the subtour setting uses a so-ciiathar family of subtours in place of the chain of

partitions. We have chosen to ussmanbased argument; the original span argument, due to lIdjnHas

been repeated in several places (e, 18, 29]) and so we hope that the general idea is already familiar.
We need to rephrase the result of the previous section so as to be swtathle $§pan argument. Given

two partitionsrt= {1, 7®, ... } and 1, define thecrossing partsp,, (1) to be the set

epr (M) 1= { € | M(, 1) # 70},
Fact 4.1. We have thattrefinesrt if and only ifcp,, (11) = 0.

Corollary 4.2. Suppose x is feasible f¢2”?) and thatrrand 17’ are tight for x. Then for each K withoc> 0,

reg + [epy (1)] ‘ICZ = chA"'+ Z rc?("’ﬂ)'
mecpy (1)
Proof. Apply Lemma3.15and subtractr (77) — |cp,,(7)|)xcf from both sides of Equatiori).]

4The general idea is that § S are tight crossing subtour sets, then so®ieS andSNS. Whenr? is tight, one can show
this is equivalent to the meet/join closure of tight partitions (Theosei) modulo the subtour/partition correspondence (Theorem
2.2). Whenn® is not tight however, we have not found a way to apply previous usirgsesults to our setting.

14

In the following, x* is a feasible point of £?). Without loss of generality (by deleting items frap)
we assume tha§; > O for allK € .#. Let sparim) denote the vector

spar{7) := (reg ke

i.e., the vector of coefficients in the constraifif.(For aset.” of partitions let spafi”’) denote the vector
space spanned by the vectdeparis) | s€ ./'}.

Lemma 4.3(Span lemma) Let X' be feasible fo(.%?). Let% be any inclusion-maximal chain i (x*).
Thenspan{4’) = sparf.7 (x*)).

Proof. Again let.7 := 7 (x*). Suppose for the sake of contradiction theis a tight partition such that
spar{m) ¢ spar{%’). Pick such a counterexamptehaving minimal rank.

Now %" must contain some partitiod that crossest, since% is a maximal chain inZ, and if no such
partition existed, we could addto . ChooseC to be the most refined partition # that crossest. The
following intermediate claim will be needed later. We gdstrictly refinesrif ' refinesrandm’ # m.

Claim 4.4. If C’ € ¢ and C strictly refines C, then Qefinesrt.
Proof. By our choice ofC, note thatC’ and T don't cross. So eithe€’ refinesm or vice-versa. But ifit

refinesC’ then (sinceC’ refinesC) thenm also refine<C, which contradicts the fact th& and cross. So
C' refinesrt. O

Let the parts o€ beC4,Cy,. .., as usual. Sincec > 0 for all K, Corollary4.2 can be restated as saying
that
spariC) + |cp,(C)| - sparim) = spafmAC)+ ¥ sparim(m.C))
Ciecpr(C)

and that the partitionstAC,m(r,C;) are all tight. By Fac#.1, cp,(C) is nonempty. Since spéd)
spar{%’) and spafn) ¢ spanf%), it follows that either spafmtAC) ¢ spar{%’) or spafim(71,C;)) & span%’)
for someC; € cp,(C).

Case 1: sparfrtAC) ¢ spar{%’). We claim in fact thattAC can be added to the chaify, contradicting the
maximality of . We need to establish that\ C crosses no partitiof’ € ¢’. There are two subcases:

e CrefinesC/, in which casatAC refinesC'.
e C' strictly refinesC. Then using Claimt.4, we know thatC’ refinesr, soC’ refinesmAC.

Indeed, in either caseA C andC’ do not cross.
Case 2: sparim(m,C;)) & spar{¢’). Notem(m,Ci) is tight. SinceC; € cp,(C), m(1,Ci) has smaller rank

thanm. This contradicts our choice af. O

4.1 Extreme Points

The main consequence of Lemm& is that extreme points dfs(#?) are zero in most of their coordinates.

Theorem 4.5. Let X be an extreme point dfs(#?) and let% be an inclusion-maximal chain i (x*).
Then X has at mos{#’| nonzero coordinates.

15

Proof. Consider the family of {”)’s constraints that hold for* with equality. We have assumed thgt> 0
for all K € 2, so all of these constraints correspond to tight partitions. Is it a well krfast in polyhedral
theory that, since* is extreme, the span of these constraints is full-dimensional, i.e.($pa&h)) = R” .
Using Lemma4.3, spari%’) = spar{.7 (x*)) = R*". However, the dimension of spgsi) is at most%’| and
hence|l 7| <|%)|. O

Corollary 4.6. Each extreme point dfs(#?) has at mostR| — 1 nonzero coordinates.

Proof. Any chain inlg has at mostR| members, since whenevet strictly refinestwe haver (1) > r(m).
Without loss of generality we can remove the vacuously true constrairésponding tar and then the
longest possible chain héR| — 1 members. O

Note that any (graph) spanning tree meets this bound. Cordll&ig reminiscent of results in a recent
paper by Goemansl]] dealing with minimum-degree-plus-two spanning trees. Like Goemans, we can
establish a “local sparseness” result for the extreme poinfs(©#’). We also obtain an iterated rounding
proof of the following well known result; a similar proof is given ibd] for the subtour formulation.

Corollary 4.7 ([9]). Every basic solution of 27) is the characteristic vector of a spanning tree.

Proof. Consider a basic solutionand the support grapH := (V,supgXx)). Corollary 4.6 applies since
(Z) is a special case of®), and so there must be some vertex V with degree one itd. To meet the
partition inequality for{ {v},V\{v}}, the single edge of H incident onv must havex. > 1; and ifxe > 1 it

is easy to see the solution is not basicxse- 1. Now deleter ande and consider the remaining graph. The
projection of the old basic solution on the new edge set is once again bastly,Rhe result of Corollary
4.7 follows by induction. O

Using Corollary4.6 we have computed all extreme pointsfef{.2?) for small values ofR|. We say two
extreme points oR areisomorphicif they are the same under some relabelingrpi.e., e(1 2 3) +€34; IS
isomorphic toe; 34y +€(2,3- The number of nonisomorphic extreme pointse{~’) is 6 for |R| = 4, 27
for |R| =5, and 407 foiR| = 6. These computational results have informed our study of these LPs. For
example, we noticed and subsequently proved thRigasws, some extreme points exhibit bad fractionality;
hence an iterated rounding approach adl i} (infortunately looks impossible.

4.2 Gainless Tree Formulation

Given an ordinary spanning trdeof R and any hyperedg€ C R, we define thegain of K in T to be the
cost decrease whddis included in the spanning tree,

gainr (K) :=¢(T) —mst(T /K) — Cx,

wheremst(T /K) is the minimum cost of any spanning tree in the grafter the terminal& are contracted
into a single pseudonode. So to say tKahas positive gain means that a cheaper spanning hypertree is
possible wher is included. We say that a trdeis gainlessf gainr (K) <0 forallK € 7.

Definition 4.8. The quantityf is the maximum cost of any gainless tree T with nonnegative edge weights.
The quantity ¥ is the maximum cost of any gainless tree T with arbitrary edge weights.

These definitions essentially come from Karpinksi and Zelikové®y. [They used full components and
gain to devise a novel approximation algorithm for the Steiner tree problemahwhd the best approxima-
tion factor known at the time. To be precise, they defined a single quéfiityhout specifying whether or
not the edge weights could be negative. Using partition uncrossing, wprawle the following theorems.

16

Theorem 4.9. The quantity ¥’ is equal to the optimum value ¢f7').
Theorem 4.10.The quantityf is equal to the optimum value ¢f7).

Karpinski and Zelikovsky applied preprocessing to their graphs,éngrecfull component cost function
C is nondecreasing in their setting. Hence, using Theofe®n Corollary 3.19 and Theoremt.10 we
discover an interesting fadt from [15] has the same value whether or not negative tree edges are aflowed.
Also of note is the fact that was used in 15 as an upper bound in one place and as a lower bound
in another; this resembles an LP optimal value already, since the optimal va{sayina minimization
program is a lower (resp. upper) bound on the objective value ofeasilile primal (resp. dual) solution.

The LP dual of ¢#), which we will need, has a variablé® for each partitionrr € M. Notice that
the equality constraint?] is just the same as saying)(holds with equality for the partitiom?®, soy"0 is
unconstrained while each othgf should be nonnegative. Hence the LP dual@f)is

maximize ; (r(m—1)-y" (2)
el lr
vire NR\{m} : y'>0 (25)
vKe 2 : yrcg < Ck (26)
Trel IR

For anyy € R™®, definec(y) to denote the objective value pfn (£75). Call a (not necessarily feasible)
solutiony of (") chain-supportedf supp(y) is a chain.

Our proof of Theorend.9works in three steps, which we now sketch. First, by giving a dual indéspr
tion of partition uncrossing (Lemnfa14), we show that.¢?’) has an optimum that is chain-supported. Sec-
ond, we define a surjective functi®i8TDual; it maps each spanning tréeof Rto a chain-supportegisuch
that satisfies45), and such that(y) = c(T). Third, we show for eacK that 6) holds fory = MSTDual(T)
if and only if gainr (K) < 0. Hence using these properties,

opt(2") = max{c(y) | y is chain-supported26) holds, and for alK € .#" (26) holds}

=M max{c(T) | forall K € #,gainy (K) <0}
7.

We elaborate on (1) and discuss TheoredDafter proving the supporting claims, which now follow.
Lemma 4.11(Dual uncrossing) (') always has an optimum,ysuch that y is chain-supported.

Proof. Suppose is any feasible solution tof’’*) such that two crossing partitioms 17 havey™,y™ = 0.
Note thatrt* does not cross any other partition, so we may assume/fhgf > 0. Lete™ denote the unit
basis vector for partitiomr. Define

r(m
y i=y—t-(r(me” +e7) +t (e"“f T Zl em(’f’”)>
i=
wheret > 0 is a parameter. We would like to incredaantil one of the termg’” or y” becomes zero, i.e.,

we claim that putting
t =min ﬂ y"
r(m)’

SFurthermore, the analysis ia9] is correct under either interpretation.

17

produces a feasiblg with the same objective value s From Equation 17) we deduce that thig is
feasible for (#'); from Equation {8) we deduce thay has the same objective valueyasBy uncrossing
mand i’ we mean the map— Y.

With the uncrossing operation formally defined, we can complete the pramé that (') is feasible
and bounded, whencef{'") is too. For a feasible solutionof (#?'*) define

ranksum(y) =) y".

Tr(m)=i

Let y, be a optimal solution4’") that is maximal with respect to lexicographic ordering on the vector
(ranksum(y.),ranksum_1(y.), .. .); to see that such . exists, note that it can be computed by solving a
series of linear programs. Now if the supportypfwere not a chain, then it contains two crossed partitions
mand7r. By uncrossing them iy,, we increasg’™ . But whenrmrandrt' cross, it is not hard to see that

r(mAm) > max{r(m),r(m)}

and it is easy to see that
max{r (r7),r (1)} > r(m(t, 1))

for alli. Hence by uncrossingandr? iny,, the lexicographic value dfanksum(y.), ranksum_1(y.),...)
strictly increases. This contradicts the maximalityypf Hence no suchr, ' exist, andy, is a chain-
supported optimum to4’"). O

4.2.1 MST Duals

The polytopefs(#;) is commonly called thepanning tree polytopbecause it is the convex hull of the
incidence vectors of all spanning trees@fWe will need its LP dual, which follows.

maximize Z\ (r(m)—1)-y" (Z2'c)
vme NR\{m} : y'>0 (29
Yuv e E(G) : z y" < Cuy (27)

TtTTSeparates fromv

Note that the objective value in{’;;) is c(y), the same objective from®’"). Additionally, in (#') and
in (£ the variabIQ/7T1 is vacuous, i.e. it can have any value without affecting the feasibility or ofitima
of the solution. So from now on we assugié = 0 for convenience.

Chopra p] used the LPs.’;) and (#';) to give a primal-dual interpretation of Krusal's MST algorithm
(see also6]). WhenG s a tree, althouglis(() is just a single pointfs(2”') is useful for our purposes.
We summarize Chopra’s result (specialized to the caseiimt tree) in the proceduSTDual.

Theorem 4.12([5]). For any tree T, the dual solution returned HMgTDual(T) is feasible and optimal for
(2'%), and chain-supported.

Proof. The proof of feasibility and optimality is standard (s&gl[6]) and is therefore omitted, although here
we are also allowing for negative-weight edges. The factytsichain-supported follows by construction,

sinceri” refinesrd” forall j > 1. O

18

Algorithm 1 The algorithm‘STDual(T).

1: LetW = {c(e) | ec T} be the set of distinct edge costsdn
2: SortW into the increasing sequenéé= (wy, ..., W)

3 Fori = 1tot let 7' be the partition oRinduced by the graptR,{e€ T | c(e) <wi})
4 Returny, == wie™ + (W —wi_1)e’ (xNote Y = 71%)

Corollary 4.13. For any tree T on vertex set R, we hay& £= c(MSTDual(T)).

Proof. Apply strong LP duality to the result of Theorefril2, and use the fact that the characteristic vector
of T is an optimal solution to4?'1). O

We also need to show th#$TDual is surjective. The exact technical requirement is encapsulated in the
following lemma.

Lemma 4.14. Suppose y satisfi€d5) and y is chain-supported. Then there exists a tree T on vertex set R
for which y=MSTDual(T).

Proof. Denote the chain supp) U {m°} by ¥, 2, ... mitl wheren! refinesmi™+¥ for 1 <i < t. For
convenience letr' ™Y denotert!, the coarsest partition. Denote thé-coordinate ofy by ylil.

We now define a seEl! of edges for each ¥ i <t. We claim such sets can be chosen so that
(R,Uij:lE“]) inducesm’ for each 0< i <t. The base case= 0 clearly holds. Then in the induction
step, sincet! refinesni*Y, such a seEll! can be chosen — informallll is a spanning forest of the parts
of i +1 when! is contracted.

Now let T = U_,ElIJ, where we assign cogt|_; yl!l to each edge ifEll. WhenmsTDua1(T) runs,

i) = 7l for all i, wy =y, andwi —w;_1 = yl! for all i. Hence the output. is equal toy. O
The following lemma is the final technical ingredient.

Lemma 4.15(Dual interpretation of gain)Let T be a tree on vertex set R. Let=yMSTDual(T). Full
component K has positive gain in T if and only if y violates the inequélidyfor K.

Proof. The key fact is that
mst(T) —ms{(T/K) = Zy"rc,’(T. (28)
m

Once we establish Equatio&g), Lemma4.15follows since then, by the definition of gain,

gainr (K) = mst(T) —ms{(T /K) —Cx = 3 y"rcg —Ck (29)
T
and the right-most term of EquatioRq) is positive iffy violates @6) for K.

We need to determine the cost of a minimum spanning tré¢ihn Recall that Kruskal's MST algorithm
operates by examining all edges in increasing order of weight, and aotistr a solution of each edge that
does not create a cycle with the partial solution up to that point.

Now, the effect of contracting is that, at the start of the algorithrK, is connected, and we need to
connect the vertices df to the rest ofR. As we run Kruskal’s algorithm on the gragh/K, there will
be exactly|K| — 1 edges that form cycles with the partial solution; call these edges.,eq. Then the

19

minimum spanning tree of /K is justT\{ey,...,eq}. Nowmst(T) —mst{T /K) = 5 ; c(e), but we also

claim that q

210(3) = > ¥'reg (30)
i= T

which in turn establishes Equationd). A proof of Equation 80) (which is not difficult, but requires more
notation than we wish to develop here) appears as patitpt pmma 5]. O

Proof of Theorem.9. The step needing elaboration is the equality (1) in the sketch given earfieerBma
4.14

max{c(y) | y is chain-supported26) holds, and for alK € .#" (26) holds}
=max{c(MSTDual(T)) | for all K € .#" (26) holds aty = MSTDual(T)}

Then applying the dual interpretation of gain (Lem#éab) and the fact that(T) = c¢(MSTDual(T)),

max{c(MSTDual(T)) | for all K € .# (26) holds aty = MSTDual(T)}
=max{c(T) | forall K € #,gaint (K) <0 }. O

We can obtain essentially the same result when working with the dual of thmuodbed formulation
(22), which we denote by4?*). Notice that the only difference betweef{) and (¢?’") is that in (%),
y"o has to be nonnegative. The analogous components that complete theopiidudorem4.10 are as
follows.

° t{ and the optimum value of®) both are well-defined if€ > 0.

e Dual uncrossing as defined in Lemrd.1can only increasg"o, and so is applicable taX*) .

e The construction$lSTDual and Lemma4.14 are unchanged. We need only to note th’ﬁtz 0
implies that all edge costs df are positive, and vice versa.

5 Future Work

The bidirected cut formulatioris one of the most well-known and deeply-studied LP relaxations of the
Steiner tree problem. There are several equivalent (compact, ed)dodaulations, but the “natural space”

of the LP consists of a relaxed indicator variakidor eache € E. See [L2] for a comprehensive survey of
results in this formulation. The following result is due to Polzin and VahdateBamandZ3].

Theorem 5.1. The LP(.’) is (sometimes strictly) stronger than the bidirected cut relaxation.

The preprocessing we described in the first section can be viewed asséotmation that produces
another graph, rather than a hypergraph. Initially let the new g&monsist of vertex seR and no edges.
Then, for each full componemt € 7, compute the cheapest full componemt(K) with leaf setK, and
add a newcloneof that full component intd3'. In the resultingG’, every Steiner node belongs to exactly
one (cloned) full component. By standard metricity assumptions (see,E}).we can assume that every
Steiner node has degree at least 3. We call tipieprocessedraph.

Let (#") denote the bidirected cut relaxation for a preprocessed graph, titeeiegl with the constraint
that in each (cloned) full component, all edge values are equal. Thevioiaesult can be proved using
techniques from43].

20

Theorem 5.2. The formulationg.%") and (') are equally strong.

In fact, the result can be framed as a polyhedral equivalence, cgirgy each full component’s (equal)
edge values onto a single variable.

We furthermore conjecture even without the strengthening, the LPs aatia@ certain natural setting.
The set” of all full components islown-closedf wheneverK € ¢, J C K and|J| > 2, thend € 7.

Conjecture 5.3. Suppose G is a preprocessed graph, a#dis down-closed. Then the bidirected cut
formulation has the same optimal value(ag’).

We ultimately hope that the results of this study have applications beyondatonnbetween existing
papers. One possibility is to use the LPs to get a new and improved primadyolpigiximation algorithm
for the Steiner problem. If Conjectufe3is true, then it might be possible to use the L#'] to bound
the integrality gap of the bidirected cut formulation in some situations — at the mdheshest lower and
upper bounds]] are 87 and 2.

References

[1] A. Agarwal and M. Charikar. On the advantage of network codorgrhproving network throughput.
In Proceedings, IEEE Information Theory Worksh2p04.

[2] A. Borchers and D.-Z. Du. Th&-Steiner ratio in graphs. 1ACM Symp. on Theory of Computjng
pages 641-649, 1995.

[3] E. R. Canfield. Meet and join within the lattice of set partitioB$ectr. J. Comb.8(1), 2001.

[4] M. Chlebik and J. Chletkova. Approximation hardness of the Steiner tree problem on graphs. In
Proceedings, Scandinavian Workshop on Algorithm Thgmages 170-179, 2002.

[5] S. Chopra. On the spanning tree polyhedrOperations Research Lettei&25—-29, 1989.

[6] S. Chopra and M. R. Rao. The Steiner tree problem 1: Formulationspasitions, and extension of
facets.Mathematical Programming4:209-229, 1994.

[7] S. Chopra and M. R. Rao. The Steiner tree problem 2: Propertiéeslasses of facetdMathematical
Programming 64:231-246, 1994.

[8] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graplesworks 1:195-207, 1972.
[9] J. Edmonds. Matroids and the greedy algoritivtath. Programming1:127-136, 1971.

[10] M. X. Goemans. The Steiner tree polytope and related polyhededh. Program, 63(2):157-182,
1994.

[11] M. X. Goemans. Minimum bounded degree spanning treds0@S pages 273-282. IEEE Computer
Society, 2006.

[12] M. X. Goemans and Y. Myung. A catalog of Steiner tree formulatidtestworks 23:19-28, 1993.

21

[13] C. Gropl, S. Hougardy, T. Nierhoff, and H. J.d#mel. Approximation algorithms for the Steiner tree
problem in graphs. In X. Cheng and D. Du, edit@tginer trees in industriepages 235-279. Kluwer
Academic Publishers, Norvell, Massachusetts, 2001.

[14] K. Jain. A factor 2 approximation algorithm for the generalized Stenet¢work problem.Combina-
torica, 21(1):39-60, 2001. Preliminary version appeared at FOCS 1998.

[15] M. Karpinski and A. Zelikovsky. New approximation algorithms for tB&einer tree problemsJ.
Combinatorial Optimization1(1):47-65, 1997.

[16] J. Kbnemann and K. Tan. A fresh look at Steiner trees: Greedy vs primahtfj@ithms. Technical
report, University of Waterloo, 2006.

[17] L. C. Lau, J. Naor, M. Salavatipour, and M. Singh. Survival#énork design with degree or order
constraints. ISTOC 2007. To appeatr.

[18] L. C. Lau and M. Singh. Approximating minimum bounded degree sipgninees to within one of
optimal. INnSTOC 2007. To appear.

[19] V. Melkonian andE. Tardos. Algorithms for a network design problem with crossing supeuiao
demandsNetworks 43(4):256-265, 2004.

[20] T. Polzin. Algorithms for the Steiner Problem in NetworkBhD thesis, Universit des Saarlandes,
February 2003.

[21] T. Polzin and S. Vahdati Daneshmand. A comparison of Steiner ¢tagations. Discrete Applied
Mathematics112(1-3):241-261, 2001. Preliminary version appeared at CO&. 199

[22] T. Polzin and S. Vahdati Daneshmand. Improved algorithms for thiae3tproblem in networks.
Discrete Applied Mathematic412(1-3):263—-300, 2001.

[23] T. Polzin and S. Vahdati Daneshmand. On Steiner trees and minimumisgdrees in hypergraphs.
Oper. Res. Lett31(1):12-20, 2003.

[24] S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxatothie metric Steiner tree problem.
In Proceedings, ACM-SIAM Symposium on Discrete Algorithmages 742—751, 1999.

[25] R.Rizzi. On Rajagopalan and Vazirani’'gZapproximation bound for the Ilterated 1-Steiner heuristic.
Information Processing Letter86(6):335-338, 2003.

[26] G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner &igproximation SIAM J. Discrete
Math, 19(1):122-134, 2005. Preliminary version appeared as “Improt&ded tree approximation
in graphs” at SODA 2000.

[27] R. P. StanleyEnumerative Combinatoricsolume 1. Wadsworth & Brooks/Cole, 1986.

[28] K. Tan. On the role of partition inequalities in classical algorithms for $teproblems in graphs.
Master’s thesis, University of Waterloo, 2006.

[29] V. V. Vazirani. Approximation AlgorithmsSpringer, 2001.

22

[30] D. Warme. A new exact algorithm for rectilinear Steiner trees. InaPd&os and D.-Z. Du, editors,
Network Design: Connectivity and Facilities Location: DIMACS Workshopl 28-30, 1997 pages
357-395. American Mathematical Society, 1997. Preliminary version aggpeilSMP 1997.

[31] D. Warme.Spanning Trees in Hypergraphs with Applications to Steiner Treb® thesis, University
of Virginia, 1998.

[32] D. Warme, P. Winter, and M. Zachariasen. Exact Algorithms for Pieener Tree Problems: A
Computational Study. In D.-Z. Du, J. M. Smith, and J. H. Rubinstein, edifslsances in Steiner
Trees pages 81-116. Kluwer Academic Publishers, 2000.

[33] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problefigorithmica
9:463-470, 1993.

23

	1 Introduction
	1.1 Linear Relaxations

	2 Partitions versus Subtours
	3 Uncrossing Partitions
	3.1 Definitions for Partitions
	3.1.1 Warmup: Graphs
	3.1.2 Hypergraphs
	3.1.3 Polyhedral Results

	4 Applications of Partition Uncrossing
	4.1 Extreme Points
	4.2 Gainless Tree Formulation
	4.2.1 MST Duals

	5 Future Work

