
1

Introduction to 

Quantum Information Processing
QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Jon Yard 

QNC 3126

jyard@uwaterloo.ca

http://math.uwaterloo.ca/~jyard/qic710

Lecture 10 (2017)

mailto:cleve@uwaterloo.ca
http://math.uwaterloo.ca/~jyard/qic710


2

Distinguishing mixed states
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Distinguishing mixed states (1)

0 with prob. ½ 

0 + 1 with prob. ½

0 with prob. ½ 

1 with prob. ½

𝜙0 =
0 +|+〉

2
with prob. cos2(/8)

𝜙1 =
1 +|−〉

2
with prob. sin2(/8)

0

+

0

1

𝜙0 with prob. ½ 

𝜙1 with prob. ½ 

Whats the best distinguishing strategy for distinguishing 

between these two mixed states? 

𝜌1 also arises from this 

orthogonal mixture:
… as does 𝜌2 from:

𝜌1 =
3/4 1/4
1/4 1/4

𝜌2 =
1/2 0
0 1/2
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Distinguishing mixed states (2)

We managed to find an orthonormal basis 𝜙0, 𝜙1 in which 

both density matrices are diagonal:

Rotating 𝜙0, 𝜙1 to 0, 1 the scenario can now 

be examined using classical probability theory:

Question: what do we do if we aren’t so lucky to get two 

density matrices that are simultaneously diagonalizable?

Distinguish between two classical coins, whose probabilities 

of “heads” are cos2(/8) ≃ .853 and ½ respectively

0

+

0

1 1

𝜌1
′ =

cos2(𝜋/8) 0

0 sin2(𝜋/8)
𝜌2
′ =

1/2 0
0 1/2
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Quantum Operations

(quantum channels)
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Quantum operations (1)

Example 1 (unitary): applying 𝑈 to 𝜌 yields 𝑈𝜌𝑈†.

Also known as: 

“quantum channels”
“completely positive trace preserving (CPTP) maps”,
“general quantum operations”

Let 𝐴1, 𝐴2, … , 𝐴𝑚 be matrices satisfying 

Then the mapping is a quantum operation.

Note: 𝐴1, 𝐴2, … , 𝐴𝑚 do not have to be square matrices.



𝑗=1

𝑚

𝐴𝑗
†𝐴𝑗 = 𝐼

𝜌 ↦

𝑗=1

𝑚

𝐴𝑗𝜌𝐴𝑗
†
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Quantum operations (2)

Example 2 (decoherence): let 𝐴0 = 0 〈0| and 𝐴1 = 1 〈1|

This quantum op maps 𝜌 to 00𝜌00 + 11𝜌11

Corresponds to measuring 𝜌 “without looking at the outcome”

For 𝜓 = 𝛼0 + 𝛽1

After looking at the outcome, 𝜌 becomes    00 with prob. 𝛼 2

11 with prob. 𝛽 2

𝛼 2 𝛼𝛽∗

𝛼∗𝛽 𝛽 2 ↦
𝛼 2 0

0 𝛽 2
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Quantum operations (3)

Example 3

Let 𝐴0 = 𝐼 ⊗ 〈0| =
1 0 0 0
0 0 1 0

, 𝐴1 = 𝐼 ⊗ 〈1| =
0 1 0 0
0 0 0 1

• Any state of the form 𝜌⊗ 𝜎 (product state) becomes 𝜌

• Entangled state 
00 +|11〉

2

〈00|+〈11|

2
becomes 

1/2 0
0 1/2

It’s the same density matrix as for ((½, 0), (½, 1))

The operation is called the partial trace Tr2 𝜌

• Corresponds to “discarding the second register”



More about the partial trace

If the 2nd register is discarded, state of the 1st register remains 𝜎

Two quantum registers                    in states 𝜎 and 𝜇 (resp.) are 
independent when the combined system is in state 𝜌 = 𝜎 ⊗ 𝜇

In general, the state of a two-register system may not be of the 
form 𝜎 ⊗ 𝜇 (it may contain entanglement or correlations)

The partial trace Tr2 𝜌 , can also be characterized as the 
unique linear operator satisfying the identity Tr2 𝜎 ⊗ 𝜇 = 𝜎.

For 𝑑-dimensional registers, Tr2 is defined with respect to the 

operators 𝐴𝑘 = 𝐼 ⊗ 〈𝜙𝑘|, where 𝜙1, 𝜙2, … , 𝜙𝑑 can be any 

orthonormal basis

The partial trace Tr2 gives the effective state of the first register
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Partial trace continued
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For 2-qubit systems, the partial trace is explicitly
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Quantum operations (4)

Example 4 (adding an extra qubit):

Just one operator 𝐴0 = 𝐼 ⊗ 0 =

1 0
0 0
0 1
0 0

States of the form 𝜌 become 𝜌⊗ |0〉〈0|

More generally, to add a register in state |𝜙〉, use the 

operator 𝐴0 = 𝐼 ⊗ |𝜙〉.
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Quantum operations (5)

Let                              be a quantum operation.𝒜 𝜌 =

𝑗=1

𝑚

𝐴𝑗𝜌𝐴𝑗
†

Then                                         

is a quantum operation.

(𝒜 ⊗ id) 𝜌 =

𝑗=1

𝑚

(𝐴𝑗⊗ 𝐼)𝜌(𝐴𝑗
†⊗ 𝐼)

Why?  Physical interpretation?
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Properties of quantum 

operations

Let                              be a quantum operation.

What properties does it satisfy? 

Trace-preserving: Tr 𝒜 𝑋 = Tr 𝑋

𝒜 𝜌 =

𝑗=1

𝑚

𝐴𝑗𝜌𝐴𝑗
†

Linear: 𝒜 𝑋 + 𝑌 = 𝒜 𝑋 +𝒜(𝑌)

Hermitian preserving: 𝑋† = 𝑋 ⇒ 𝒜 𝑋 † = 𝒜 𝑋

Positivity preserving:  𝑋 p.s.d ⇒ 𝒜 𝑋 p.s.d. 

Completely positive:  𝑌 p.s.d ⇒ (𝒜⊗ id) 𝑌 p.s.d. 

This is a full characterization: Quantum operations are 

CPTP (Completely Positive and Trace-Preserving) linear maps
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Quantum channels

Qubit flip: 𝜌 ↦ 1 − 𝑝 𝜌 + 𝑝𝑋𝜌𝑋

Depolarizing: 𝜌 ↦ 1 − 𝑝 𝜌 +
𝑝

2
𝐼

(exercise: show that this is a quantum operation)

Quantum operations also model noisy quantum processes, 

where they are often referred to as quantum channels.

Phase flip: 𝜌 ↦ 1 − 𝑝 𝜌 + 𝑝𝑍𝜌𝑍

Completely depolarizing: 𝜌 ↦
1

4
𝜌 + 𝑋𝜌𝑋 + 𝑌𝜌𝑌 + 𝑍𝜌𝑍 =

1

2
𝐼


