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Preliminary remarks about 

quantum communication
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How does quantum information affect the 

communication costs of information 

processing tasks?

Quantum information can apparently be 

used to substantially reduce computation

costs for a number of interesting problems

We explore this issue ...
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Entanglement and signaling

1100
2

1

2

1 Recall that Entangled states, such as   ,

Any operation performed on one system has no affect on 

the state of the other system (its reduced density matrix)

qubit qubit

can be used to perform some intriguing feats, such as 

teleportation and superdense coding

—but they cannot be used to “signal instantaneously”
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Alice Bob

Basic communication scenario

Resources

x1x2  xn

Goal: convey n bits from Alice to Bob

x1x2  xn
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Basic communication scenario

Bit communication:

Cost:𝑛

Qubit communication:

Cost:𝑛 [Holevo’s Theorem, 1973]

Bit communication    

& prior entanglement:

Cost:𝑛 (can be deduced)
Cost:

𝑛

2
superdense coding

[Bennett & Wiesner, 1992]

Qubit communication 

& prior entanglement:
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The GHZ “paradox”
(Greenberger-Horne-Zeilinger)
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GHZ scenario

Alice Bob Carol

Input: 𝑟 𝑡𝑠

Output: 𝑎 𝑐𝑏

Rules of the game:
1. It is promised that  𝑟 + 𝑠 + 𝑡 = 0

2. No communication after inputs received

3. They win if 𝑟 ∨ 𝑠 ∨ 𝑡 = 𝑎 + 𝑏 + 𝑐

𝑟𝑠𝑡 𝑎 + 𝑏 + 𝑐

000 0

011 1

101 1

110 1

← 𝑟 ← ¬𝑠 ← 1

𝑎𝑏𝑐

011

001

111

101

[Greenberger, Horne, Zeilinger, 1980]
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No perfect strategy for GHZ 

Input: 𝑟 𝑡𝑠

Output: 𝑎 𝑐𝑏

𝑟𝑠𝑡 𝑎 + 𝑏 + 𝑐

000 0

011 1

101 1

110 1

General deterministic strategy: 

𝑎0,𝑎1,𝑏0,𝑏1, 𝑐0, 𝑐1

Winning conditions:

𝑎0 + 𝑏0 + 𝑐0 = 0
𝑎0 + 𝑏1 + 𝑐1 = 1
𝑎1 + 𝑏0 + 𝑐1 = 1
𝑎1 + 𝑏1 + 𝑐0 = 1

Has no solution 

(why?), thus no 

perfect strategy 

exists.

2 𝑎0 + 𝑎1 + 𝑏0 + 𝑏1 + 𝑐0 + 𝑐1 = 0 ≠ 1 = 1 + 1 + 1
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GHZ: preventing communication

Input: 𝑟 𝑡𝑠

Output: 𝑎 𝑐𝑏

Input and output events can be space-like separated: 
so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol still keep on winning?
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“GHZ Paradox” explained

𝑟 𝑡𝑠

a cb

Prior entanglement: 𝜓 = 000 – 011 – 101 – 110

Alice’s strategy:

1. if 𝑟 = 1 then apply 𝐻 to qubit (else 𝐼 )

2. measure qubit and set 𝑎 to result 












11

11

2

1
H

Bob’s & Carol’s strategies: similar

Case 1 (𝑟𝑠𝑡 = 000): state is measured directly … 

Cases 3 & 4 (𝑟𝑠𝑡 = 101 & 110): similar by symmetry

new state  001+ 010− 100+ 111Case 2 (𝑟𝑠𝑡 = 011):
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GHZ: conclusions
• For the GHZ game, any classical team succeeds with  

probability at most ¾

• Allowing the players to communicate would enable them 

to succeed with probability 1

• Entanglement cannot be used to communicate

• Nevertheless, allowing the players to have entanglement 

enables them to succeed with probability 1 (but not by 

using entanglement to communicate)

• Thus, entanglement is a useful resource for the task of 

winning the GHZ game
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The Bell inequality and its violation

– Physicist’s perspective
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Bell’s Inequality and its violation
Part I: physicist’s view:

Can a quantum state have pre-determined outcomes for 

each possible measurement that can be applied to it?

if {0,1} measurement 

then output 0

if {+,−} measurement

then output 1

if ... (etc)

qubit:

where the 

“manuscript” is 

something like this:

called hidden variables

[Bell, 1964]

[Clauser, Horne, Shimony, Holt, 1969]

table could be implicitly  
given by some formula
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Bell Inequality
Imagine a two-qubit system, where one of two measurements, 

called 𝑀0 and 𝑀1, will be applied to each qubit: 

M0 : a0

M1 : a1

M0 : b0

M1 : b1

Define:     

𝐴0 = –1 𝑎0

𝐴1 = –1 𝑎1

𝐵0 = –1 𝑏0

𝐵1 = –1 𝑏1

Claim: 𝐴0𝐵0 + 𝐴0𝐵1 + 𝐴1𝐵0 – 𝐴1𝐵1  2

Proof: 𝐴0(𝐵0 + 𝐵1) + 𝐴1(𝐵0– 𝐵1)  2

one is 2 and the other is 0

space-like separated, so 

no cross-coordination
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Bell Inequality

Question: could one, in principle, design an experiment to 

check if this Bell Inequality holds for a particular system?

Answer 1: no, not directly, because 𝐴0, 𝐴1, 𝐵0, 𝐵1 cannot 

all be measured (only one 𝐴𝑠𝐵𝑡 term can be measured)

Answer 2: yes, indirectly, by making many runs of this 

experiment: pick a random 𝑠𝑡 ∈ {00, 01, 10, 11} and then 

measure with 𝑀𝑠 and 𝑀𝑡 to get the value of  𝐴𝑠𝐵𝑡

The average of  𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, – 𝐴1𝐵1 should be  ½

𝐴0𝐵0 + 𝐴0𝐵1 + 𝐴1𝐵0 – 𝐴1𝐵1  2 is called a Bell Inequality* 

* also called CHSH Inequality
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Recap of Bell Inequality

Consider the following experiment:

1.pick a random 𝑠𝑡 {00, 01, 10, 11} (uniform distribution)

2.perform Ms measurement on 1st qubit (outcome 𝐴𝑠 ∈ {+1, – 1})
3.perform Mt measurement on 2nd qubit (outcome 𝐵𝑡 ∈ {+1, – 1})
4.output the value of  (−1)𝑠𝑡𝐴𝑠𝐵𝑡

In any run of this experiment, the output is an element of {+1, – 1}
(according to probabilities that depend on what 𝐴0, 𝐴1, 𝐵0, 𝐵1 are)

= ¼ (𝐴0𝐵0 + 𝐴0𝐵1 + 𝐴1𝐵0 – 𝐴1𝐵1)  ¼ 2 = ½

How large can the expected value of the outcome be?

M0 : A0

M1 : A1

M0 : B0

M1 : B1

Assume local hidden variables framework is correct

¼ (𝐴0𝐵0) + ¼ (𝐴0𝐵1) + ¼ (𝐴1𝐵0) + ¼ (– 𝐴1𝐵1)
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Violating the Bell Inequality

Two-qubit system in state 

𝜙 = 00 – 11

Define 

𝑀𝟎: rotate by  /16 then measure

𝑀𝟏: rotate by +3/16 then measure
st = 01 or 10

/8

3/8

-/8

st = 11

st = 00

Then 𝐴0𝐵0, 𝐴0𝐵1, 𝐴1𝐵0, −𝐴1𝐵1 all have 

expected value

cos2
𝜋

8
− sin2

𝜋

8
=

1

2
+

2

4
−

1

2
−

2

4
=

2

2
, 

which contradicts the upper bound of 1/2.

Assume the quantum mechanical framework is correct

It can be shown that applying rotations 𝑅𝜃𝐴 ⊗𝑅𝜃𝐵 yields:

cos 𝜃𝐴 + 𝜃𝐵 ( 00 − |11〉) + sin 𝜃𝐴 + 𝜃𝐵 ( 01 + |10〉)

𝐴𝐵 = +1 𝐴𝐵 = 1

Therefore, QM framework implies LHV framework is false

𝑅𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝜃𝐴 + 𝜃𝐵
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Bell Inequality violation: summary 

Assuming that quantum systems are 

governed by local hidden variables

leads to the Bell inequality 

𝐴0𝐵0+ 𝐴0𝐵1 + 𝐴1𝐵0 − 𝐴1𝐵1  2

But this is violated in the case of Bell states (by a factor of 2)

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments 

along these lines have actually been conducted
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The Bell inequality and its violation

– Computer Scientist’s perspective
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Bell’s Inequality and its violation

b

s t

a

input:

output:

With classical resources, Pr[𝑎 + 𝑏 = 𝑠𝑡] ≤ 0.75

But, with prior entanglement state 00 – 11,  

Pr 𝑎 + 𝑏 = 𝑠𝑡 = cos2(/8) =
1

2
+

2

4
= 0.853…

Rules: 1. No communication after inputs received

2. They win if 𝑎 + 𝑏 = 𝑠𝑡
𝑠𝑡 𝑎 + 𝑏

00 0

01 0

10 0

11 1

Part II: computer scientist’s view:
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The quantum strategy

• Alice and Bob start with entanglement    

𝜙 = 00 – 11

• Alice: if s = 0 then rotate by 𝜃𝐴 = −𝜋/16
else rotate by 𝜃𝐴 = +3𝜋/16 and measure 

• Bob: if t = 0 then rotate by 𝜃𝐵 = −𝜋/16
else rotate by 𝜃𝐵 = +3𝜋/16 and measure 

𝑠𝑡 = 01 or 10

/8

3/8

-/8

𝑠𝑡 = 11

𝑠𝑡 = 00

Success probability: 

Pr 𝑠 ∧ 𝑡 = 𝑎 + 𝑏
= Pr 𝑠 ∧ 𝑡 = 0 cos2(±𝜋/8) + Pr 𝑠 ∧ 𝑡 = 1 sin2(3𝜋/8)

=
3

4

1

2
+

2

4
+

1

4

1

2
+

2

4
=

1

2
+

2

4
= 0.853…

cos 𝜃𝐴 + 𝜃𝐵 ( 00 − |11〉) + sin 𝜃𝐴 + 𝜃𝐵 ( 01 + |10〉)
𝑎 + 𝑏 = 0 𝑎 + 𝑏 = 1

𝜃𝐴 + 𝜃𝐵
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Nonlocality in operational terms

information 

processing 

task

quantum 

entanglement

!

classically,

communication

is needed
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