Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 13 (2017)

Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/gic710

The magic square game

Magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity

Game: ask Alice to fill in one row and Bob to fill in one column They *win* iff parities are correct and bits agree at intersection **Success probabilities:** 8/9 classical and 1 quantum

[Mermin, 1990] (For more details, Google "Pseudo-telepathy)

Distance measures for quantum states

Distance measures

Some simple (and often useful) measures:

- Euclidean distance: $\| |\phi\rangle |\psi\rangle \|_2$
- Fidelity: $|\langle \phi | \psi \rangle|$

Small Euclidean distance implies "closeness" but large Euclidean distance need not imply "far away" (for example, $|\psi\rangle$ vs $-|\psi\rangle$)

Not so clear how to extend these for mixed states ...

... though fidelity does generalize, to $F(\rho, \sigma) = \text{Tr}\sqrt{\rho^{1/2}\sigma\rho^{1/2}}$

Trace norm – preliminaries (1)

For a normal matrix *M* and a function $f: \mathbb{C} \to \mathbb{C}$, we define the matrix f(M) as follows:

Write $M = U^{\dagger}DU$, where D is diagonal (we can do this because normal matrices are unitarily diagonalizable).

Now, define $f(M) = U^{\dagger}f(D)U$, where

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{pmatrix} \qquad f(D) = \begin{pmatrix} f(\lambda_1) & 0 & \cdots & 0 \\ 0 & f(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(\lambda_d) \end{pmatrix}$$

Trace norm – preliminaries (2)

For a normal matrix $M = U^{\dagger}DU$, define |M| in terms of replacing *D* with

$$|D| = \begin{pmatrix} |\lambda_1| & 0 & \cdots & 0\\ 0 & |\lambda_2| & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & |\lambda_d| \end{pmatrix}$$

More generally, can define $|M| = \sqrt{M^{\dagger}M}$ for **all** matrices *M* (not necessarily normal ones), since $M^{\dagger}M$ is positive semidefinite.

Trace norm/distance – definition

The *trace norm* of *M* is $||M||_{tr} = ||M||_1 = Tr|M| = Tr\sqrt{M^{\dagger}M}$.

Intuitively, it's the 1-norm of the eigenvalues (or, in the nonnormal case, the *singular values*) of *M*

The *trace distance* between ρ and σ is defined as $\|\rho - \sigma\|_1$.

Why is this a meaningful distance measure between quantum states?

Theorem: for any two quantum states ρ and σ , the **optimal** measurement procedure for distinguishing between them succeeds with probability $\frac{1}{2} + \frac{1}{4} \|\rho - \sigma\|_1$

Distinguishing between two arbitrary quantum states

Holevo-Helstrom Theorem (1)

Theorem: for any two quantum states ρ and σ , the optimal measurement procedure for distinguishing between them succeeds with probability $\frac{1}{2} + \frac{1}{4} \|\rho - \sigma\|_1$ (equal prior probs.)

Proof* (the attainability part):

Since $\rho - \sigma$ is Hermitian, its eigenvalues are real Let Π_+ be the projector onto the positive eigenspaces

Let Π_{-} be the projector onto the non-positive eigenspaces

Take the POVM measurement specified by Π_+ and Π_- with the associations $+ \equiv \rho$ and $- \equiv \sigma$

* The other direction of the theorem (optimality) is omitted here

Holevo-Helstrom Theorem (2)

Claim: this succeeds with probability $\frac{1}{2} + \frac{1}{4} \|\rho - \sigma\|_1$ **Proof of Claim:**

A key observation is $Tr(\Pi_{+} - \Pi_{-})(\rho - \sigma) = \|\rho - \sigma\|_{1}$

The success probability is
$$p_s = \frac{1}{2} \operatorname{Tr}(\Pi_+ \rho) + \frac{1}{2} \operatorname{Tr}(\Pi_- \sigma)$$
.

& the failure probability is $p_f = \frac{1}{2} \operatorname{Tr}(\Pi_+ \sigma) + \frac{1}{2} \operatorname{Tr}(\Pi_- \rho)$.

Therefore,
$$p_s - p_f = \frac{1}{2} \operatorname{Tr}(\Pi_+ - \Pi_-)(\rho - \sigma) = \frac{1}{2} \|\rho - \sigma\|_1$$
.

From this, the result follows

Purifications & Ulhmann's Theorem

Any density matrix ρ can be obtained by tracing out part of some larger *pure* state:

$$\rho = \sum_{j=1}^{d} \lambda_j |\phi_j\rangle \langle \phi_j| = \mathrm{Tr}_2 \left(\sum_{j=1}^{d} \sqrt{\lambda_j} |\phi_j\rangle |j\rangle \right) \left(\sum_{j=1}^{d} \sqrt{\lambda_j} \langle \phi_j |\langle j| \right)$$

a purification of ρ

Ulhmann's Theorem*: The *fidelity* between ρ and σ is the maximum of $|\langle \phi | \psi \rangle|$ taken over all purifications $|\psi\rangle$ and $|\phi\rangle$

* See [Nielsen & Chuang, pp. 410-411] for a proof of this using the singular-value decomposition.

Recall our previous definition of fidelity as

$$F(\rho, \sigma) = \text{Tr}\sqrt{\rho^{1/2}\sigma\rho^{1/2}} = \|\rho^{1/2}\sigma^{1/2}\|_{1}.$$
¹²

Relationships between fidelity and trace distance

$$1 - F(\rho, \sigma) \leq \frac{1}{2} \|\rho - \sigma\|_1 \leq \sqrt{1 - F(\rho, \sigma)^2}$$

See [Nielsen & Chuang, pp. 415-416] for more details