Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 14 (2017)

Jon Yard

QNC 3126

jyard@uwaterloo.ca

http://math.uwaterloo.ca/~jyard/qic710

Classical error correcting codes

Binary symmetric channel

Each bit that goes through it has probability ε of being flipped

3-bit repetition code:

- Encode each bit b as bbb
- Decode each received message $b_1b_2b_3$ as majority(b_1,b_2,b_3)

Reduces the effective error probability per data bit to $3\varepsilon^2 - 2\varepsilon^3$ at a cost of tripling the message length ("rate" is 1/3).

Is this useful?

- If $\varepsilon = 0.1$ and this is applied to k-bit messages then around 3% of the k bits will be in error, rather than 10%
- If $\varepsilon = .01$ and this is applied to k-bit messages then around .03% of the k bits will be in error, rather than 1%

A rough "big picture" view I

"Good" codes (for classical information):

Message: 0100110101110101 (some *k*-bit string)

Encoding: 0110011010101011111010101111010 (n bits) constant expansion

Errors: 010011101010110110110110110

Decoding: 0100110101110101 *no errors with probability* \rightarrow 1 *as* $n \rightarrow \infty$

k/n is the **rate** of the code (= reciprocal of message expansion)

Theorem (good codes exist):

For all $\varepsilon < 1/2$, there exist encoding and decoding functions $E: \{0,1\}^k \to \{0,1\}^n$ and $D: \{0,1\}^n \to \{0,1\}^k$ such that k/n is **constant** and the probability of **any** errors $\to 0$ as $k \to \infty$.

A rough "big picture" view II

Rate as a function of noise level:

Each bit going through channel flips with probability ε

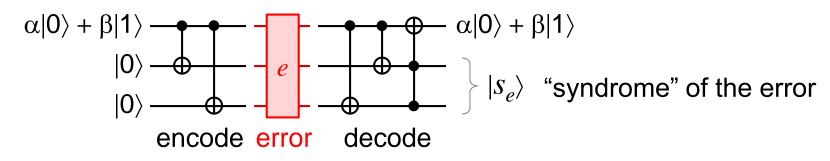
Capacity
$$C(\varepsilon) = 1 - H(\varepsilon, 1 - \varepsilon)$$
$$= 1 - (-\varepsilon \log(\varepsilon) - (1 - \varepsilon) \log(1 - \varepsilon))$$

The **rate** $R = \frac{k}{n}$ of a code is the reciprocal of message expansion. For every rate $R < C(\varepsilon)$ (less than the **capacity**), there exist "good" codes for large n. Informally, "good" codes with block length n have this property: probability of **any** errors occurring in block $\rightarrow 0$ as $n \rightarrow \infty$.

Shor's 9-qubit code

3-qubit code for one X-error

The following 3-qubit quantum code protects against up to one error, if the error can only be a quantum bit-flip (an X operation)



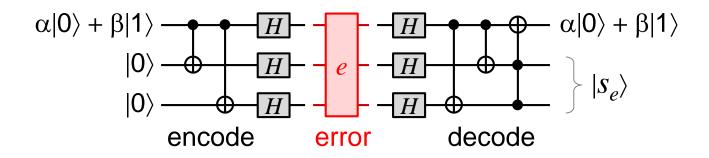
Error can be any one of: $I \otimes I \otimes I = X \otimes I \otimes I = I \otimes X \otimes I = I \otimes I \otimes X$ Corresponding syndrome: $|00\rangle = |11\rangle = |10\rangle = |01\rangle$

The essential property is that, in each case, the data $\alpha|0\rangle + \beta|1\rangle$ is shielded from (i.e. unaffected by) the error

What about Z errors? This code leaves them intact...

3-qubit code for one Z-error

Using the fact that HZH = X, one can adapt the previous code to protect against Z-errors instead of X-errors

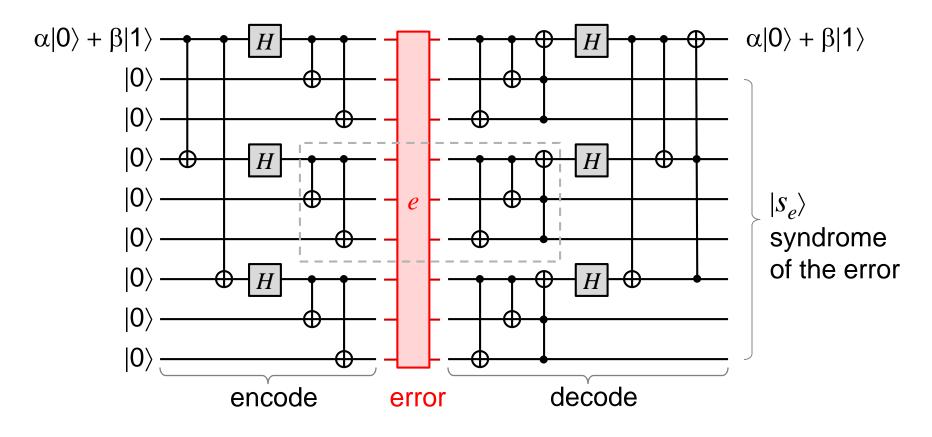


Error can be any one of: $I \otimes I \otimes I$ $Z \otimes I \otimes I$ $I \otimes Z \otimes I$ $I \otimes I \otimes Z$

This code leaves *X*-errors intact

Is there a code that protects against errors that are arbitrary one-qubit unitaries?

Shor's 9-qubit quantum code



The "inner" part corrects any single-qubit X-error The "outer" part corrects any single-qubit Z-error Since Y = iXZ, single-qubit Y-errors are also corrected

Arbitrary one-qubit errors

Suppose that the error is some arbitrary one-qubit unitary operation $\it U$

Since there exist scalars λ_1 , λ_2 , λ_3 and λ_4 such that

$$U = \lambda_1 I + \lambda_2 X + \lambda_3 Y + \lambda_4 Z$$

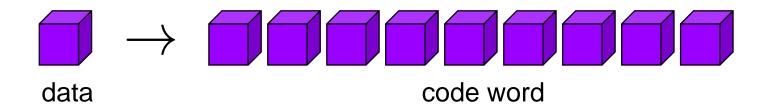
a straightforward calculation shows that, when a U-error occurs on the $k^{\,\text{th}}$ qubit, the output of the decoding circuit is

$$(\alpha|0\rangle + \beta|1\rangle)(\lambda_1|s_{e_1}\rangle + \lambda_2|s_{e_2}\rangle + \lambda_3|s_{e_3}\rangle + \lambda_4|s_{e_4}\rangle)$$

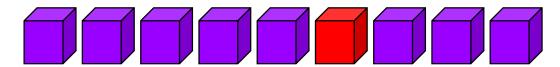
Where s_{e_1} , s_{e_2} , s_{e_3} and s_{e_4} are the syndromes associated with the four errors (I, X, Y and Z) on the k^{th} qubit.

Hence the code actually protects against *any* unitary one-qubit error (in fact the error can be any one-qubit quantum operation)

Summary of 9-qubit code



Can recover data from any 1 qubit error:



unknown position

It turns out the data can also be recovered data from **any** 2 qubit **erasure** error:

