
1

Introduction to

Quantum Information Processing
QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Jon Yard

QNC 3126

jyard@uwaterloo.ca

http://math.uwaterloo.ca/~jyard/qic710

Lecture 15 (2017)

mailto:jyard@uwaterloo.ca
http://math.uwaterloo.ca/~jyard/qic710

2

CSS Codes

Introduction to CSS codes

3

CSS codes (named after Calderbank, Shor, and Steane) are

quantum error correcting codes that are constructed from

classical error-correcting codes with certain properties

A classical linear code is one whose codewords form a

subspace 𝐶 ⊂ 𝔽2
𝑛 of a vector space

In other words, the code 𝐶 is closed under addition (i.e.

linear combinations, as the underlying field is 𝔽2 = {0,1} so

the arithmetic is mod 2).

Examples of linear codes

4

For 𝑛 = 7, consider these codes (which are linear):

𝐶2 = {0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100 , 1101001}

𝐶1 = {0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001,

1111111, 0101010, 1001100, 0011001,

1110000, 0100101, 1000011 , 0010110}

Note that the minimum Hamming distance between any pair

of codewords is: 4 for 𝐶2 and 3 for 𝐶1.

The minimum distances imply each code can correct one error

basis for space

Encoding

5

To encode a 3-bit string 𝑏 = 𝑏1𝑏2𝑏3 in 𝐶2, multiply 𝑏 (on the

right) by an appropriate 3 × 7 generator matrix



















1111000

1100110

1010101

2G

Similarly, 𝐶1 can encode 4 bits and an appropriate generator

matrix for 𝐶1 is

Since , |𝐶2| = 8, it can encode 3 bits





















1111111

1111000

1100110

1010101

1G

Orthogonal complement

6

The orthogonal complement of a linear code 𝐶 ⊂ 𝔽2
𝑛 is

𝐶⊥ = 𝑤 ∈ 𝔽2
𝑛: 𝑤 ⋅ 𝑣 = 0 ∀ 𝑣 ∈ 𝐶 .

(recall the “dot product” 𝑤 ⋅ 𝑣 = 𝑤1𝑣1 +⋯+𝑤𝑛𝑣𝑛 mod 2)

Note that in the previous example, 𝐶2
⊥ = 𝐶1 and 𝐶1

⊥ = 𝐶2.

We will use some of these properties in the CSS construction.

𝐶2 = {0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100 , 1101001}

𝐶1 = {0000000, 1010101, 0110011, 1100110,

0001111, 1011010, 0111100, 1101001,

1111111, 0101010, 1001100, 0011001,

1110000, 0100101, 1000011 , 0010110}

Parity check matrix

7

Linear codes with maximum distance 𝑑 can correct up to
𝑑−1

2
bit-flip errors.

Every 𝑘-dimensional length-𝑛 linear code has a parity-check

matrix 𝑀 (𝑛 by 𝑛 − 𝑘) such that:

• Every codeword 𝑣 satisfies 𝑣𝑀 = 0.

• Any error vector 𝑒 ∈ 𝔽2
𝑛 with weight ≤

𝑑−1

2
can be uniquely

determined by multiplying the disturbed codeword 𝑣 + 𝑒 by 𝑀.

Specifically, the error 𝑒 can be uniquely recovered from the

error syndrome 𝑠𝑒 = 𝑣 + 𝑒 𝑀 = 𝑒𝑀 ∈ 𝔽2
𝑛−𝑘.

Exercise: Find parity check matrices for 𝐶1 and 𝐶2.

CSS construction

8

Let 𝐶2 ⊂ 𝐶1 ⊂ 𝔽2
𝑛 be two classical linear codes such that:

• The minimum distance of 𝐶1 is 𝑑
• 𝐶2

⊥ ⊂ 𝐶1

Let 𝑟 = dim 𝐶1 − dim 𝐶2 = log
𝐶1

𝐶2

Then the resulting CSS code maps each 𝑟-qubit basis state

|𝑏1𝑏2⋯𝑏𝑟〉 to some “coset state” of the form

where 𝑤 = 𝑏𝐺 ∈ 𝔽2
𝑛 is a linear function of 𝑏 ∈ 𝔽2

𝑟 chosen so that

each value of 𝑤 occurs in a unique coset in 𝐶1/𝐶2.

The quantum code can correct up to
𝑑−1

2
errors.

1

|𝐶2|
෍

𝑣∈𝐶2

|𝑣 + 𝑤〉 .

Example of CSS construction

9

For 𝑛 = 7, for the 𝐶1 and 𝐶2 in the previous example we obtain

these basis codewords:

0𝐿 = 0000000 + 1010101 + 0110011 + 1100110

+ 0001111 + 1011010 + 0111100 + 1101001

1𝐿 = 1111111 + 0101010 + 1001100 + 0011001

+ 1110000 + 0100101 + 1000011 + 0010110

There is a quantum circuit that transforms between

(0+ 1)000000 and 0𝐿+ 1𝐿

and the linear function mapping 𝑏 to 𝑤 can be given as 𝑤 = 𝑏𝐺

    11111117654321 bwwwwwww 

G

CSS error correction I

10

Using the error-correcting properties of 𝐶1, one can construct

a quantum circuit that computes the syndrome 𝑠 for any

combination of up to
𝑑−1

2
𝑋-errors in the following sense

Once the syndrome 𝑠𝑒, has been computed, the 𝑋-errors can

be determined and undone

noisy

codeword

0𝑛−𝑘

noisy

codeword

se

What about 𝑍-errors?

The above procedure for correcting 𝑋-errors has no effect

on any 𝑍-errors that occur.

CSS error correction II

11

Note that any 𝑍-error is an 𝑋-error in the Hadamard basis.

Changing to Hadamard basis is like changing from 𝐶2 to 𝐶2
⊥:

Note that, since 𝐶2
  𝐶1, this is a superposition of elements of

𝐶1, so we can use the error-correcting properties of 𝐶1 to correct.

Applying 𝐻n to a superposition of basis codewords yields

Then, applying Hadamards again, restores the codeword with

up to 𝑑 𝑍-errors corrected

and𝐻⊗𝑛 ෍

𝑣∈𝐶2

𝑣 = ෍

𝑢∈𝐶2
⊥

𝑢 𝐻⊗𝑛 ෍

𝑣∈𝐶2

𝑣 + 𝑤 = ෍

𝑢∈𝐶2
⊥

−1 𝑤⋅𝑢 𝑢 .

𝐻⊗𝑛 ෍

𝑏∈𝔽2
𝑟

𝛼𝑏 ෍

𝑣∈𝐶2

𝑣 + 𝑏𝐺 = ෍

𝑏∈𝔽2
𝑟

𝛼𝑏 ෍

𝑢∈𝐶2
⊥

−1 𝑏𝐺𝑢𝑇 𝑢 = ෍

𝑢∈𝐶2
⊥

෍

𝑏∈𝔽2
𝑟

𝛼𝑏 −1 𝑏𝐺𝑢𝑇 𝑢 .

CSS error correction III

12

The two procedures together correct up to
𝑑−1

2
𝑋-errors that

and up to
𝑑−1

2
𝑍-errors. Since 𝑌 = 𝑖𝑋𝑍, this means they can

correct
𝑑−1

2
𝑌-errors.

From this, a simple linearity argument can be applied to show

that the code corrects up to
𝑑−1

2
arbitrary errors (that is, the

error can be any quantum operation performed on up to
𝑑−1

2

qubits).

Since there exist pretty good classical codes that satisfy the

properties needed for the CSS construction, this approach can

be used to construct pretty good quantum codes.

Depolarizing channel

For any noise rate below 𝜀 ≈ .255 (whether this can go as high

as 𝜀 = 1/3 is a major open question), there are codes with:

 finite rate (message expansion by a constant factor: 𝑅 = 𝑘/𝑛)

 error probability approaching zero as 𝑛 → ∞.

𝐼 with probability 1 − 3𝜀/4 (no error)

𝑋 with probability 𝜀/4 (bit flip)

𝑍 with probability 𝜀/4 (phase flip)

𝑌 with probability 𝜀/4 (both)

Each qubit incurs the following type of error (0 ≤ 𝜀 ≤ 1):

𝜀

rate

depolarizing

channel

½ 𝜀

rate

binary

symmetric

channel

13

14

Brief remarks about

fault-tolerant computing

15

A simple error model

At each qubit there is an  error per unit of time, that denotes

the following noise:

0

1

1

0

1

0

1

0

1

0

1

1

       
       
       
       
       
       

𝐼 with probability 1 − 3𝜀/4
𝑋 with probability 𝜀/4
𝑍 with probability 𝜀/4
𝑌 with probability 𝜀/4

16

Threshold theorem

If 𝜀 is very small then this is okay —a computation of size*

less than 𝑂
1

𝜀
will still succeed most of the time.

* where size = (# qubits)x(# time steps)

But, for every constant value of 𝜀, the size of the maximum

computation possible in this manner is constant

Threshold theorem:

There’s a fixed constant 𝜀0 > 0 such that a circuit of any size

𝑇 can be translated into a circuit of size 𝑂(𝑇 log𝑐 𝑇) that is

robust against the error model with parameter 𝜀 ≤ 𝜀0.

(The proof is omitted here)

17

Comments about the threshold theorem
Idea is to use a quantum error-correcting code at the start

and then perform all the gates on the encoded data

At regular intervals, an error-correction procedure is performed,

very carefully, since these operations are also subject to errors!

(Need to correct errors faster than they are created)

The 7-qubit CSS code has some nice properties that enable

gates from the Clifford group (e.g. 𝐻 and CNOT) to be

directly performed on the encoded data “transversally” in the

sense that:

H

are equivalent to

H

H

H

H

H

H

H

encoded qubit

Also, codes applied recursively become stronger

