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Entropy and

compression



Shannon entropy

Let p(x) be a probability distribution on a set {1,2, ..., d}.
Arandom variable X takes values according to those
probabilities, i.e. Pr[X = x] = p(x).

d
The (Shannon) entropy of X is H(X) = — z p(x)logp(x).

x=1
Intuitively, this turns out to be a good measure of how much

“randomness” (or “uncertainty”, or “information”) is there is in X:
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H(X)=logd HX)=0

We'll see that, operationally, H(X) is the number of bits
needed to store the outcome (in a certain formal sense).




Von Neumann entropy

For a density matrix p, it turns out that S(p) = —Trp log pis a
good quantum analogue of entropy

Note: S(p) = — X, p(x)logp(x), where the p(x) are the
eigenvalues of p (with multiplicity), i.e. if

p = z p ()| P Xy for orthonormal |,,).

X
Operationally, S(p) is the number of qubits needed to store
p (In a sense that will be made formal later on)

Both the classical and quantum compression results pertain to
the case of large blocks of n independent instances of data:

* probability distribution p(x4, ..., x,) = p(x1) --- p(x,,) for i.i.d.
(independent and identically distributed) random variables

(X]J ---;Xn) ~ p(x)
- Tensor power state p®" in the quantum case



Classical compression (1)

Let (X4, ..., X,,) be a sequence of i.i.d. random variables, drawn
according to a probabillity distribution p(x) on {1,2, ..., d}.

Then (X4, ..., X;,) can equal any (x4, x5, ..., x,,) € {1, ...,d}"

(d" possibilities, nlogd bits to specify such a sequence)

Theorem* (Shannon data compression): for all e > 0 and
all sufficiently large n, there is a scheme that compresses
(X1, ..., X)) to n(H(X) + €) bits, while introducing an error with
probability at most €.

For example, an n-bit binary string with each bit distributed as
Pr(0) = 0.9 and Pr(1) = 0.1 can be compressed to = 0.47n
bits.

Proof constructs a subset T c {1, ..., d}" of “typical

sequences” with |T| < 2nHX+) gnd Pr(X" e T > 1 —¢.

5
* This version of the theorem ignores, for example, the tradeoffs between n and ¢




Classical compression (2)

We prove the theorem by defining some other random variables.

First consider the random variable log— ( 1 where X ~ p(x).
Note that E [logﬁ] = —).p(x)logp(x) = H(X)

Next (X, ..., X,,) be i.i.d. random variables ~ p(x)
and consider the random variable

1 1 1 1
w108 _E(IOgm SR +1°gp<xn>)

Because it is an average of i.i.d random variables log

1
p(X;)
the (weak) law of large numbers implies that %logp(x - 0

1rin
approaches its expected value H(X) in the following formal sense:

p(Xlij:--;Xn) - H(X)‘ S E] - 1 as n — 0. s

log

Foranye>0,Pr[%



Classical compression (3)

Define (x4, ..., x,,) € {1, ...,d}"™ to be e-typical if
1
—Elogp(xl, e, Xp) — H(X)

Let T denote the set of all e-typical sequences.

< E.

The results on the last slide imply the following:
For all e > 0 and all sufficiently large n,

Pr[(Xy,..,X,) €T > 1 —€.

We can also bound the size |T*| of the typical set:

- By definition, each such sequence has probability > 2~ HX)+€)
« Therefore, there can be at most 2"HX)+€) gych sequences



Classical compression (4)

In summary, the compression procedure is as follows:

The input data is (X4, ... X;,) € {1, ..., d}", each independently
sampled according the probability distribution p(x)

The compression procedure is to leave (x4, ..., x;,) intact if it is
e-typical and otherwise change it to some fixed e-typical
seguence, say, some (x4, ..., Xx,) (which will result in an error)

Since there are at most 2" X)+€) ¢_typical sequences, the
data can then be converted into n(H(X) + €) bits

The error probability is at most €, the probability of an input
that is not typical arising.



Quantum compression (1)

The scenario: n independent instances of a d-dimensional
state are randomly generated according some distribution:

|p,) prob. q(1) 0) prob. %

+) prob. Y

Example:

|p,) prob. q(r)

Goal: to “compress” this into as few qubits as possible so that
the original state can be reconstructed “with small error”

A formal definition of the notion of error is in terms of being
€-good:

No procedure can succeed at distinguishing between the
following two states with probability better than % + E:

(a) compressing and then uncompressing the data
(b) the original data left as is 9




Quantum compression (2)

Define p = z q) |y Xy
y

Theorem (Schumacher data compression): Foralle > 0
and all sufficiently large n, there is a scheme that

compresses the data to n(S(p) + €) qubits, that is
2v/2e-good. If e < % the scheme is 2e-good.

For the aforementioned example, = 0.6n qubits suffices.
The compression method:

Express p in its eigenbasis as p = z p () [P x|
X

With respect to this basis, we will define an e-typical subspace

of dimension 2nE@)+e) — pn(HX)+e)
10



Quantum compression (3)

The e-typical subspace is that spanned by
|7~/)x"> = |l/)x1>|l/)x2> |1/an> where (xl: ---:xn) € Teﬁ-

Define: I1} as the projector into the e-typical subspace

By the same argument as in the classical case, the subspace
has dimension < 25+ and Tr(M*p®") > 1 —e.

' i - b.
Why? Because p Is the density matrix of { 1) prob. p(1)

a) prob. p(d)

THIZP®™ = TrllE ) p(™lihon)thanl = D PG o NE [hen)

= z p(x™) =>1—¢.



Quantum compression (4)

Calculation of the “expected fidelity” for our actual mixture:

D a0 @yl lgyn) = > aG™THIZ|gyn) ]
y" yr

= TrlI¢ Z g™ |@yn )@y
yn

= Tr1%p®"
=>1—€

Does this mean that the scheme is e-good for some €?
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Quantum compression (5)

The true data is of the form (y", |p,n)), where y™ is generated
with probability g(y™).
The approximate data is of the form (y", |§0;n>),

/ 1 :
where ‘(pyn> — aﬂ?kpyn), Cyn = \/(gDynll—[?lQDyn) IS a
normalization factor and y™ is generated with probability g(y™).

We can bound the fidelity between them by defining purifications:

|P) = z VAO™) [y eyn) @) = z Va™) [y eyn)
yn yn

F <p®",z qy™) I<p’yn><<p;n|> > (D[P’
yn

C 13

= (yn|llg|@yn) = > q(y™) (@yn|llg|@yn) =1 —€
n ym n
y y



Quantum compression (6)

But how well can we distinguish between these two states?

P8 = > aMleyn)gynl = ) PG )t
y" yr

[z p®™IIE

I __ n !/ !/ _
p' = Zq(y )‘q)ynm)yn = T @
yn
Can try to directly bound trace distance
Z p(x”)<—<26 IfES%

ngTTl
Get a bound for all € using relation to fidelity:
|0®" = p'||, < 21 =F(p®", p)2 < 2{/1~ (1 —€)? < 2V2e.

lp®" = p'll, < Trnnp®n

Therefore the scheme is e-good if € < %
and it is 2v/2e-good for regardless of the value of e. 14



