Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 16 (2016)

Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/qic710

Entropy and compression

Shannon entropy

Let p(x) be a probability distribution on a set $\{1, 2, ..., d\}$. A **random variable** *X* takes values according to those probabilities, i.e. Pr[X = x] = p(x).

The (Shannon) *entropy* of X is $H(X) = -\sum_{x=1}^{n} p(x) \log p(x)$.

Intuitively, this turns out to be a good measure of how much "randomness" (or "uncertainty", or "information") is there is in *X*:

We'll see that, operationally, H(X) is the number of bits needed to store the outcome (in a certain formal sense).

Von Neumann entropy

For a density matrix ρ , it turns out that $S(\rho) = -\text{Tr}\rho \log \rho$ is a good quantum analogue of entropy

Note: $S(\rho) = -\sum_{x} p(x) \log p(x)$, where the p(x) are the eigenvalues of ρ (with multiplicity), i.e. if

 $\rho = \sum_{x} p(x) |\psi_x\rangle \langle \psi_x| \quad \text{for orthonormal } |\psi_x\rangle.$

Operationally, $S(\rho)$ is the number of **qubits** needed to store ρ (in a sense that will be made formal later on)

Both the classical and quantum compression results pertain to the case of large blocks of n independent instances of data:

• probability distribution $p(x_1, ..., x_n) = p(x_1) \cdots p(x_n)$ for i.i.d. (independent and identically distributed) random variables $(X_1, ..., X_n) \sim p(x)$

- Tensor power state $\rho^{\otimes n}$ in the quantum case

Classical compression (1)

Let $(X_1, ..., X_n)$ be a sequence of i.i.d. random variables, drawn according to a probability distribution p(x) on $\{1, 2, ..., d\}$. Then $(X_1, ..., X_n)$ can equal any $(x_1, x_2, ..., x_n) \in \{1, ..., d\}^n$ $(d^n$ possibilities, $n \log d$ bits to specify such a sequence)

Theorem* (Shannon data compression): for all $\epsilon > 0$ and all sufficiently large *n*, there is a scheme that compresses (X_1, \dots, X_n) to $n(H(X) + \epsilon)$ bits, while introducing an error with probability at most ϵ .

For example, an *n*-bit binary string with each bit distributed as Pr(0) = 0.9 and Pr(1) = 0.1 can be compressed to $\approx 0.47n$ bits.

Proof constructs a subset $T_{\epsilon}^n \subset \{1, ..., d\}^n$ of "typical sequences" with $|T_{\epsilon}^n| \leq 2^{n(H(X)+\epsilon)}$ and $\Pr(X^n \in T_{\epsilon}^n) \geq 1 - \epsilon$.

* This version of the theorem ignores, for example, the tradeoffs between n and ϵ

Classical compression (2)

We prove the theorem by defining some other random variables.

First consider the random variable $\log \frac{1}{p(X)}$, where $X \sim p(x)$. Note that $\mathbb{E}\left[\log \frac{1}{p(X)}\right] = -\sum_{x} p(x) \log p(x) = H(X)$ Next (X_1, \dots, X_n) be i.i.d. random variables $\sim p(x)$ and consider the random variable $\frac{1}{n}\log \frac{1}{p(X_1,\dots,X_n)} = \frac{1}{n}\left(\log \frac{1}{p(X_1)} + \dots + \log \frac{1}{p(X_n)}\right)$

Because it is an average of i.i.d random variables $\log \frac{1}{p(X_i)}$, the (weak) law of large numbers implies that $\frac{1}{n}\log \frac{1}{p(X_1,...,X_n)}$ approaches its expected value H(X) in the following formal sense: For any $\epsilon > 0$, $\Pr \left[\left| \frac{1}{n} \log \frac{1}{p(X_1,...,X_n)} - H(X) \right| \le \epsilon \right] \to 1$ as $n \to \infty$. 6

Classical compression (3)

Define
$$(x_1, ..., x_n) \in \{1, ..., d\}^n$$
 to be ϵ -typical if
 $\left| -\frac{1}{n} \log p(x_1, ..., x_n) - H(X) \right| \le \epsilon$.

Let T_{ϵ}^{n} denote the set of all ϵ -typical sequences.

The results on the last slide imply the following: For all $\epsilon > 0$ and all sufficiently large n, $\Pr[(X_1, ..., X_n) \in T_{\epsilon}^n] \ge 1 - \epsilon.$

We can also bound the **size** $|T_{\epsilon}^{n}|$ of the typical set:

- By definition, each such sequence has probability $\geq 2^{-n(H(X)+\epsilon)}$
- Therefore, there can be at most $2^{n(H(X)+\epsilon)}$ such sequences

Classical compression (4)

In summary, the compression procedure is as follows:

The input data is $(X_1, ..., X_n) \in \{1, ..., d\}^n$, each independently sampled according the probability distribution p(x)

The compression procedure is to leave $(x_1, ..., x_n)$ intact if it is ϵ -typical and otherwise change it to some fixed ϵ -typical sequence, say, some $(x_1, ..., x_n)$ (which will result in an error)

Since there are at most $2^{n(H(X)+\epsilon)} \epsilon$ -typical sequences, the data can then be converted into $n(H(X) + \epsilon)$ bits

The error probability is at most ϵ , the probability of an input that is not typical arising.

Quantum compression (1)

The scenario: *n* independent instances of a *d*-dimensional state are randomly generated according some distribution:

$$\begin{cases} |\phi_1\rangle \text{ prob. } q(1) \\ \vdots & \vdots & \vdots \\ |\phi_r\rangle \text{ prob. } q(r) \end{cases}$$
 Example:
$$\begin{cases} |0\rangle \text{ prob. } \frac{1}{2} \\ |+\rangle \text{ prob. } \frac{1}{2} \end{cases}$$

Goal: to "compress" this into as few qubits as possible so that the original state can be reconstructed "with small error"

A formal definition of the notion of error is in terms of being <u>*e*-good</u>:

No procedure can succeed at distinguishing between the following two states with probability better than $\frac{1}{2} + \frac{\epsilon}{4}$:

(a) compressing and then uncompressing the data(b) the original data left as is

Quantum compression (2) Define $\rho = \sum_{y} q(y) |\varphi_{y}\rangle\langle\varphi_{y}|$

Theorem (Schumacher data compression): For all $\epsilon > 0$ and all sufficiently large *n*, there is a scheme that compresses the data to $n(S(\rho) + \epsilon)$ qubits, that is $2\sqrt{2\epsilon}$ -good. If $\epsilon \leq \frac{1}{2}$, the scheme is 2ϵ -good.

For the aforementioned example, $\approx 0.6n$ qubits suffices.

The compression method:

Express ρ in its eigenbasis as $\rho = \sum_{x} p(x) |\psi_x\rangle \langle \psi_x|$

With respect to this basis, we will define an ϵ -typical subspace of dimension $2^{n(S(\rho)+\epsilon)} = 2^{n(H(X)+\epsilon)}$

Quantum compression (3)

The ϵ -typical subspace is that spanned by $|\psi_{x^n}\rangle \coloneqq |\psi_{x_1}\rangle |\psi_{x_2}\rangle \cdots |\psi_{x_n}\rangle$ where $(x_1, \dots, x_n) \in T_{\epsilon}^n$.

Define: Π_{ϵ}^{n} as the projector into the ϵ -typical subspace

By the same argument as in the classical case, the subspace has dimension $\leq 2^{n(S(\rho)+\epsilon)}$ and $\operatorname{Tr}(\Pi_{\epsilon}^{n}\rho^{\otimes n}) \geq 1-\epsilon$.

Why? Because ρ is the density matrix of $\begin{cases} |\psi_1\rangle & \text{prob. } p(1) \\ \vdots & \vdots & \vdots \\ |\psi_d\rangle & \text{prob. } p(d) \end{cases}$

$$\operatorname{Tr}\Pi_{\epsilon}^{n}\rho^{\otimes n} = \operatorname{Tr}\Pi_{\epsilon}^{n}\sum_{x^{n}} p(x^{n})|\psi_{x^{n}}\rangle\langle\psi_{x^{n}}| = \sum_{x} p(x^{n})\langle\psi_{x^{n}}|\Pi_{\epsilon}^{n}|\psi_{x^{n}}\rangle$$
$$= \sum_{x^{n}\in T_{\epsilon}^{n}} p(x^{n}) \ge 1 - \epsilon.$$

Quantum compression (4)

Calculation of the "expected fidelity" for our actual mixture:

$$\sum_{y^n} q(y^n) \langle \varphi_{y^n} | \Pi_{\epsilon}^n | \varphi_{y^n} \rangle = \sum_{y^n} q(y^n) \operatorname{Tr} \Pi_{\epsilon}^n | \varphi_{y^n} \rangle \langle \varphi_{y^n} |$$
$$= \operatorname{Tr} \Pi_{\epsilon}^n \sum_{y^n} q(y^n) | \varphi_{y^n} \rangle \langle \varphi_{y^n} |$$
$$= \operatorname{Tr} \Pi_{\epsilon}^n \rho^{\otimes n}$$
$$\geq 1 - \epsilon$$

Does this mean that the scheme is ϵ -good for some ϵ ?

Quantum compression (5)

The *true data* is of the form $(y^n, |\varphi_{y^n}\rangle)$, where y^n is generated with probability $q(y^n)$.

The **approximate data** is of the form $(y^n, |\varphi'_{y^n}\rangle)$,

where
$$|\varphi'_{y^n}\rangle = \frac{1}{c_{y_n}} \Pi^n_{\epsilon} |\varphi_{y^n}\rangle$$
, $c_{y^n} = \sqrt{\langle \varphi_{y^n} | \Pi^n_{\epsilon} | \varphi_{y^n} \rangle}$ is a normalization factor and y^n is generated with probability $q(y^n)$.

We can bound the fidelity between them by defining purifications:

$$\begin{split} |\Phi\rangle &= \sum_{y^n} \sqrt{q(y^n)} |y^n\rangle |\varphi_{y^n}\rangle \quad |\Phi'\rangle = \sum_{y^n} \sqrt{q(y^n)} |y^n\rangle |\varphi'_{y^n}\rangle \\ F\left(\rho^{\otimes n}, \sum_{y^n} q(y^n) |\varphi'_{y^n}\rangle \langle \varphi'_{y^n}|\right) &\geq \langle \Phi | \Phi'\rangle \\ &= \sum_{y^n} \frac{q(y^n)}{c_{y^n}} \langle \varphi_{y^n} | \Pi_{\epsilon}^n | \varphi_{y^n}\rangle \geq \sum_{y^n} q(y^n) \langle \varphi_{y^n} | \Pi_{\epsilon}^n | \varphi_{y^n}\rangle \geq 1 - \epsilon_{13} \end{split}$$

Quantum compression (6)

But how well can we distinguish between these two states?

$$\rho^{\otimes n} = \sum_{y^n} q(y^n) |\varphi_{y^n}\rangle \langle \varphi_{y^n}| = \sum_{y^n} p(x^n) |\psi_{x^n}\rangle \langle \psi_{x^n}|,$$
$$\rho' = \sum_{y^n} q(y^n) |\varphi'_{y^n}\rangle \langle \varphi'_{y^n}| = \frac{1}{\mathrm{Tr}\Pi_{\epsilon}^n \rho^{\otimes n}} \Pi_{\epsilon}^n \rho^{\otimes n} \Pi_{\epsilon}^n$$

Can try to directly bound trace distance

$$\left\|\rho^{\otimes n} - \rho'\right\|_{1} \leq \frac{1}{\operatorname{Tr}\Pi_{\epsilon}^{n}\rho^{\otimes n}} \sum_{x^{n} \notin T_{\epsilon}^{n}} p(x^{n}) \leq \frac{\epsilon}{1 - \epsilon} \leq 2\epsilon \text{ if } \epsilon \leq \frac{1}{2}.$$

Get a bound for all ϵ using relation to fidelity:

$$\left\|\rho^{\otimes n} - \rho'\right\|_{1} \le 2\sqrt{1 - F(\rho^{\otimes n}, \rho')^{2}} \le 2\sqrt{1 - (1 - \epsilon)^{2}} \le 2\sqrt{2\epsilon}.$$

Therefore the scheme is ϵ -good if $\epsilon \leq \frac{1}{2}$, and it is $2\sqrt{2\epsilon}$ -good for regardless of the value of ϵ .