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Entropy and

compression



Shannon entropy
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Let 𝑝 𝑥 be a probability distribution on a set {1,2,… , 𝑑}. 
A random variable 𝑋 takes values according to those 

probabilities, i.e. Pr 𝑋 = 𝑥 = 𝑝(𝑥).

The (Shannon) entropy of 𝑋 is

Intuitively, this turns out to be a good measure of how much 

“randomness” (or “uncertainty”, or “information”) is there is in 𝑋:

vs. vs. vs.

𝐻(𝑋) = log 𝑑 𝐻(𝑋) = 0

We’ll see that, operationally, 𝐻(𝑋) is the number of bits 

needed to store the outcome (in a certain formal sense).

𝐻 𝑋 = −෍

𝑥=1

𝑑

𝑝 𝑥 log 𝑝 𝑥 .



Von Neumann entropy
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For a density matrix 𝜌, it turns out that 𝑆 𝜌 = −Tr𝜌 log 𝜌is a 

good quantum analogue of entropy

Note: 𝑆 𝜌 = −σ𝑥 𝑝(𝑥) log 𝑝(𝑥), where the 𝑝 𝑥 are the 

eigenvalues of 𝜌 (with multiplicity), i.e. if  

𝜌 =෍

𝑥

𝑝 𝑥 𝜓𝑥〉〈𝜓𝑥

Operationally, 𝑆 𝜌 is the number of qubits needed to store 

𝜌 (in a sense that will be made formal later on)

Both the classical and quantum compression results pertain to 

the case of large blocks of 𝑛 independent instances of data: 

• probability distribution 𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 ⋯𝑝 𝑥𝑛 for i.i.d. 

(independent and identically distributed) random variables

𝑋1, … , 𝑋𝑛 ∼ 𝑝(𝑥)

• Tensor power state 𝜌⊗𝑛 in the quantum case

for orthonormal |𝜓𝑥〉.



Classical compression (1)
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Let (𝑋1, … , 𝑋𝑛) be a sequence of i.i.d. random variables, drawn 

according to a probability distribution 𝑝(𝑥) on {1,2,… , 𝑑}.
Then (𝑋1, … , 𝑋𝑛) can equal any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 1,… , 𝑑 𝑛

(𝑑𝑛 possibilities, 𝑛 log 𝑑 bits to specify such a sequence)

Proof constructs a subset 𝑇𝜖
𝑛 ⊂ 1,… , 𝑑 𝑛 of “typical 

sequences” with  𝑇𝜖
𝑛 ≤ 2𝑛(𝐻 𝑋 +𝜖) and Pr 𝑋𝑛 ∈ 𝑇𝜖

𝑛 ≥ 1 − 𝜖 .

Theorem* (Shannon data compression): for all 𝜖 > 0 and 

all sufficiently large 𝑛, there is a scheme that compresses 

(𝑋1, … , 𝑋𝑛) to 𝑛(𝐻 𝑋 + 𝜖) bits, while introducing an error with 

probability at most 𝜖.

* This version of the theorem ignores, for example, the tradeoffs between n and 

For example, an 𝑛-bit binary string with each bit distributed as 

Pr(0) = 0.9 and Pr(1) = 0.1 can be compressed to ≈ 0.47𝑛
bits.



Classical compression (2)
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First consider the random variable log
1

𝑝 𝑋
, where 𝑋 ∼ 𝑝(𝑥).

Note that 𝔼 log
1

𝑝 𝑋
= −σ𝑥 𝑝(𝑥) log 𝑝(𝑥) = 𝐻(𝑋)

Next 𝑋1, … , 𝑋𝑛 be i.i.d. random variables ∼ 𝑝 𝑥
and consider the random variable
1

𝑛
log

1

𝑝 𝑋1,…,𝑋𝑛
=

1

𝑛
log

1

𝑝 𝑋1
+⋯+ log

1

𝑝 𝑋𝑛

We prove the theorem by defining some other random variables.

Because it is an average of i.i.d random variables log
1

𝑝 𝑋𝑖
, 

the (weak) law of large numbers implies that 
1

𝑛
log

1

𝑝(𝑋1,…,𝑋𝑛)

approaches its expected value 𝐻(𝑋) in the following formal sense:

For any 𝜖 > 0 , Pr
1

𝑛
log

1

𝑝(𝑋1,…,𝑋𝑛)
− 𝐻 𝑋 ≤ 𝜖 → 1 as 𝑛 → ∞.



Classical compression (3)
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Define 𝑥1, … , 𝑥𝑛 ∈ 1,… , 𝑑 𝑛 to be 𝝐-typical  if

−
1

𝑛
log 𝑝(𝑥1, … , 𝑥𝑛) − 𝐻 𝑋 ≤ 𝜖.

Let 𝑇𝜖
𝑛 denote the set of all 𝜖-typical sequences.

The results on the last slide imply the following:

For all 𝜖 > 0 and all sufficiently large 𝑛,

Pr 𝑋1, … , 𝑋𝑛 ∈ 𝑇𝜖
𝑛 ≥ 1 − 𝜖. 

We can also bound the size |𝑇𝜖
𝑛| of the typical set:

• By definition, each such sequence has probability ≥ 2−𝑛(𝐻 𝑋 +𝜖)

•Therefore, there can be at most 2𝑛(𝐻 𝑋 +𝜖) such sequences



Classical compression (4)
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In summary, the compression procedure is as follows: 

The input data is 𝑋1, …𝑋𝑛 ∈ 1,… , 𝑑 𝑛, each independently 

sampled according the probability distribution 𝑝(𝑥)

The compression procedure is to leave 𝑥1, … , 𝑥𝑛 intact if it is 

𝜖-typical and otherwise change it to some fixed 𝜖-typical 

sequence, say, some 𝑥1, … , 𝑥𝑛 (which will result in an error)

Since there are at most 2𝑛(𝐻 𝑋 +𝜖) 𝜖-typical sequences, the 

data can then be converted into 𝑛(𝐻 𝑋 + 𝜖) bits 

The error probability is at most 𝜖, the probability of an input 

that is not typical arising.



Quantum compression (1)
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The scenario: 𝑛 independent instances of a 𝑑-dimensional 

state are randomly generated according some distribution:

φ1  prob. 𝑞(1)
  

φr  prob. 𝑞(𝑟)

Goal: to “compress” this into as few qubits as possible so that 

the original state can be reconstructed “with small error”

A formal definition of the notion of error is in terms of being

𝝐-good:

No procedure can succeed at distinguishing between the 

following two states with probability better than 
1

2
+

𝜖

4
: 

(a) compressing and then uncompressing the data

(b) the original data left as is

0 prob. ½

+ prob. ½ 
Example:



Quantum compression (2)
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Define

For the aforementioned example, ≈ 0.6𝑛 qubits suffices.

Express 𝜌 in its eigenbasis as 

With respect to this basis, we will define an 𝜖-typical subspace 

of dimension 2𝑛 𝑆 𝜌 +𝜖 = 2𝑛(𝐻 𝑋 +𝜖)

The compression method:

Theorem (Schumacher data compression): For all 𝜖 > 0
and all sufficiently large 𝑛, there is a scheme that 

compresses the data to 𝑛(𝑆 𝜌 + 𝜖) qubits, that is 

2 2𝜖-good.  If 𝜖 ≤
1

2
, the scheme is 2𝜖-good.  

𝜌 =෍

𝑥

𝑝 𝑥 𝜓𝑥〉〈𝜓𝑥

𝜌 =෍

𝑦

𝑞 𝑦 𝜑𝑦〉〈𝜑𝑦



Quantum compression (3)
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By the same argument as in the classical case, the subspace 

has dimension ≤ 2𝑛(𝑆 𝜌 +𝜖) and Tr Π𝜖
𝑛𝜌⊗𝑛 ≥ 1 − 𝜖.

Define: Π𝜖
𝑛 as the projector into the 𝜖-typical subspace 

|𝜓1〉 prob. 𝑝(1)
  

|𝜓𝑑〉 prob. 𝑝(𝑑)

Why? Because 𝜌 is the density matrix of 

TrΠ𝜖
𝑛𝜌⊗𝑛 = TrΠ𝜖

𝑛෍

𝑥𝑛

𝑝 𝑥𝑛 |𝜓𝑥𝑛〉⟨𝜓𝑥𝑛| =෍

𝑥

𝑝 𝑥𝑛 〈𝜓𝑥𝑛|Π𝜖
𝑛 |𝜓𝑥𝑛〉

= ෍

𝑥𝑛∈𝑇𝜖
𝑛

𝑝 𝑥𝑛 ≥ 1 − 𝜖.

The 𝝐-typical subspace is that spanned by 

𝜓𝑥𝑛 ≔ 𝜓𝑥1 𝜓𝑥2 ⋯|𝜓𝑥𝑛〉 where 𝑥1, … , 𝑥𝑛 ∈ 𝑇𝜖
𝑛.



Quantum compression (4)
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Calculation of the “expected fidelity” for our actual mixture:

Does this mean that the scheme is 𝝐-good for some 𝝐?

෍

𝑦𝑛

𝑞(𝑦𝑛)⟨𝜑𝑦𝑛 Π𝜖
𝑛 𝜑𝑦𝑛〉 =෍

𝑦𝑛

𝑞 𝑦𝑛 TrΠ𝜖
𝑛 𝜑𝑦𝑛〉〈𝜑𝑦𝑛

= TrΠ𝜖
𝑛෍

𝑦𝑛

𝑞(𝑦𝑛) 𝜑𝑦𝑛〉〈𝜑𝑦𝑛

= TrΠ𝜖
𝑛𝜌⊗𝑛

≥ 1 − 𝜖



Quantum compression (5)
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The approximate data is of the form (𝑦𝑛, |𝜑𝑦𝑛
′ 〉),                       

where 𝜑𝑦𝑛
′ =

1

𝑐𝑦𝑛
Π𝜖
𝑛|𝜑𝑦𝑛〉, 𝑐𝑦𝑛 = 𝜑𝑦𝑛 Π𝜖

𝑛 𝜑𝑦𝑛 is a 

normalization factor and 𝑦𝑛 is generated with probability 𝑞 𝑦𝑛 .

We can bound the fidelity between them by defining purifications:

𝐹 𝜌⊗𝑛,෍

𝑦𝑛

𝑞(𝑦𝑛) |𝜑𝑦𝑛
′ 〉〈𝜑𝑦𝑛

′ | ≥ Φ Φ′

=෍

𝑦𝑛

𝑞 𝑦𝑛

𝑐𝑦𝑛
𝜑𝑦𝑛 Π𝜖

𝑛 𝜑𝑦𝑛 ≥෍

𝑦𝑛

𝑞 𝑦𝑛 𝜑𝑦𝑛 Π𝜖
𝑛 𝜑𝑦𝑛 ≥ 1 − 𝜖

The true data is of the form (𝑦𝑛, |𝜑𝑦𝑛〉), where 𝑦𝑛 is generated 

with probability 𝑞(𝑦𝑛).

Φ =෍

𝑦𝑛

𝑞 𝑦𝑛 𝑦𝑛 |𝜑𝑦𝑛〉 Φ′ =෍

𝑦𝑛

𝑞 𝑦𝑛 𝑦𝑛 |𝜑𝑦𝑛
′ 〉



Quantum compression (6)
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Therefore the scheme is 𝜖-good if 𝜖 ≤
1

2
, 

and it is 2 2𝜖-good for regardless of the value of 𝜖.

But how well can we distinguish between these two states?

𝜌⊗𝑛 =෍

𝑦𝑛

𝑞 𝑦𝑛 |𝜑𝑦𝑛〉〈𝜑𝑦𝑛| =෍

𝑦𝑛

𝑝 𝑥𝑛 |𝜓𝑥𝑛〉〈𝜓𝑥𝑛| ,

𝜌′ =෍

𝑦𝑛

𝑞 𝑦𝑛 𝜑𝑦𝑛
′ 𝜑𝑦𝑛

′ =
1

TrΠ𝜖
𝑛𝜌⊗𝑛

Π𝜖
𝑛𝜌⊗𝑛Π𝜖

𝑛

Can try to directly bound trace distance

𝜌⊗𝑛 − 𝜌′
1
≤

1

TrΠ𝜖
𝑛𝜌⊗𝑛

෍

𝑥𝑛∉𝑇𝜖
𝑛

𝑝 𝑥𝑛 ≤
𝜖

1 − 𝜖
≤ 2𝜖

Get a bound for all 𝜖 using relation to fidelity:

𝜌⊗𝑛 − 𝜌′
1
≤ 2 1 − 𝐹 𝜌⊗𝑛, 𝜌′ 2 ≤ 2 1 − 1 − 𝜖 2 ≤ 2 2𝜖.

if 𝜖 ≤
1

2
.


