Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 17 (2017)

Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/gic710

Grover's quantum search algorithm

Quantum search problem

Given: a black box computing $f: \{0,1\}^n \rightarrow \{0,1\}$

Goal: determine if *f* is *satisfiable* (if $\exists x \in \{0,1\}^n$ s.t. f(x) = 1).

In positive instances, it makes sense to also *find* such a satisfying assignment x.

Classically, using probabilistic procedures, order 2^n queries are necessary to succeed—even with probability 3/4. (say)

Grover's **quantum** algorithm makes only $O(\sqrt{2^n})$ queries

Query:
$$|x_1\rangle$$

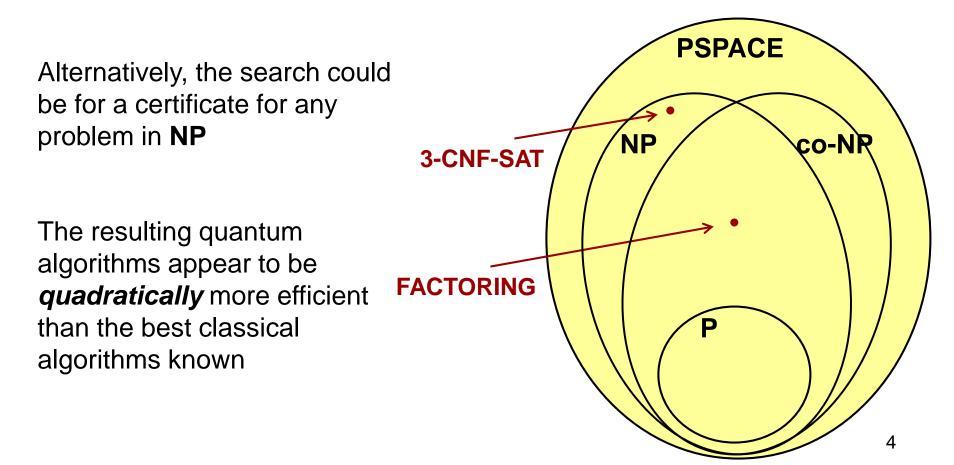
 $|x_n\rangle$
 $|x_n\rangle$
 $|y\rangle$
 $|y \oplus f(x_1, ..., x_n)\rangle$

[Grover '96]

Applications of quantum search

The function f could be realized as a **3-CNF formula**:

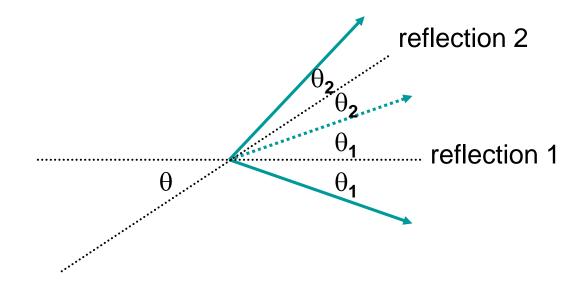
 $f(x_1, \dots, x_n) = (x_1 \lor \bar{x}_3 \lor x_4) \land (\bar{x}_2 \lor x_3 \lor \bar{x}_5) \land \dots \land (\bar{x}_1 \lor x_5 \lor \bar{x}_n)$



Prelude to Grover's algorithm:

two reflections = a rotation

Consider two lines with intersection angle θ :



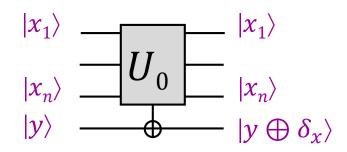
Net effect: rotation by angle 2θ , *regardless of starting vector*

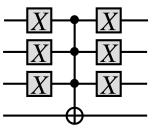
Grover's algorithm: description I

Basic operations used:

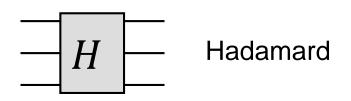
$$|x_{1}\rangle = U_{f} |x_{1}\rangle \\ |x_{n}\rangle = |x_{n}\rangle \\ |y\rangle = |y \oplus f(x_{1}, \dots, x_{n})\rangle$$

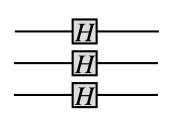
$$U_f|x\rangle|-\rangle = (-1)^{f(x)}|x\rangle|-\rangle$$



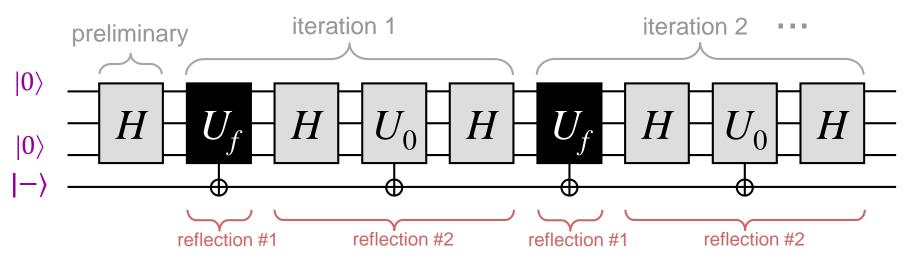


 $U_0|x\rangle|-\rangle = (-1)^{\delta_x}|x\rangle|-\rangle$





Grover's algorithm: description II



- 1. construct state $H|0\cdots 0\rangle|-\rangle$
- 2. repeat k times:

apply $-HU_0HU_f$ to state

3. measure state, check if result $x \in \{0,1\}^n$ satisfies f(x) = 1(The setting of k will be determined later)

From now on, we ignore the $|-\rangle$ qubit, writing $U_f |x\rangle = (-1)^{f(x)} |x\rangle$, etc.

Grover's algorithm: analysis I

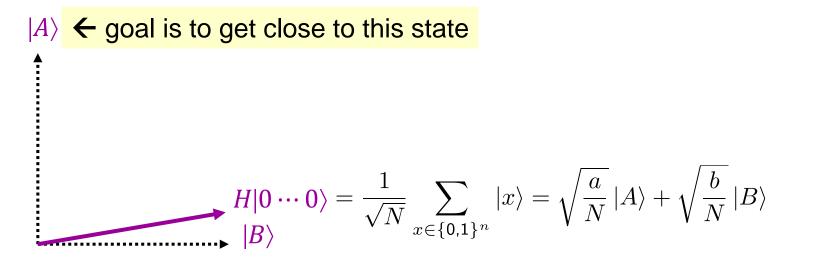
Let
$$A = f^{-1}(1) = \{x \in \{0,1\}^n : f(x) = 1\}$$

 $B = f^{-1}(0) = \{x \in \{0,1\}^n : f(x) = 0\}$
 $N = 2^n, a = |A|, b = |B|$

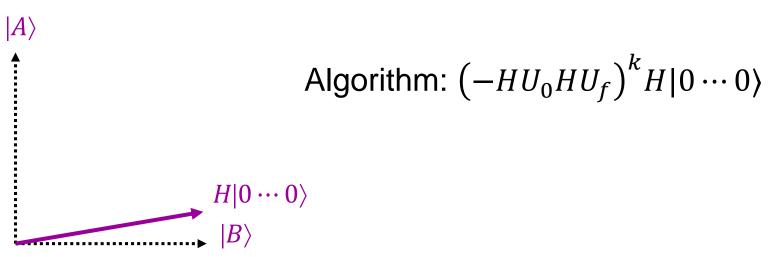
interesting case: $a \ll N$

Let
$$|A\rangle = \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle$$
 and $|B\rangle = \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$

Consider the space spanned by $|A\rangle$ and $|B\rangle$



Grover's algorithm: analysis II



Observation:

 U_f is a reflection about $|B\rangle$: $U_f|A\rangle = -|A\rangle$ and $U_f|B\rangle = |B\rangle$.

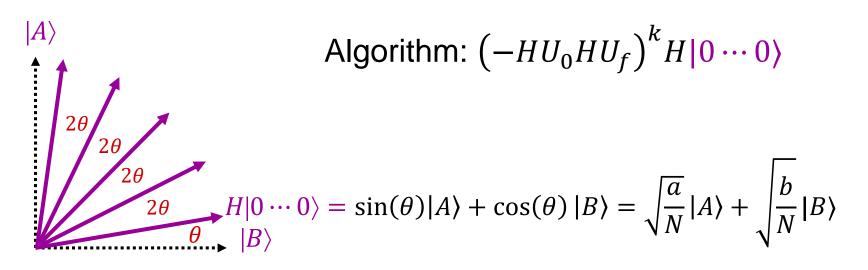
Question: what is $-HU_0H$? **Answer:** a reflection about $H|0\cdots 0$

Proof:

$$-HU_0H(H|0\cdots 0\rangle) = -HU_0|0\cdots 0\rangle = -H(-|0\cdots 0\rangle) = H|0\cdots 0\rangle$$

 $-HU_0H(H|0\cdots 0\rangle)^{\perp} = -HU_0|0\cdots 0\rangle^{\perp} = -H|0\cdots 0\rangle^{\perp} = -(H|0\cdots 0\rangle)^{\perp}$

Grover's algorithm: analysis III



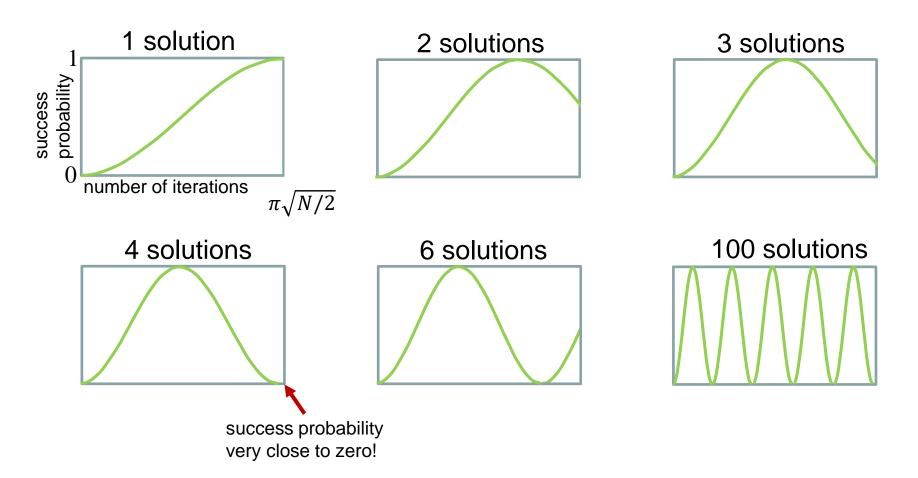
Since $-HU_0HU_f$ is a composition of two reflections, it is a rotation by 2θ , where $\sin(\theta) = \sqrt{a/N}$ so $\theta \approx \sqrt{a/N}$.

When a = 1, we want $(2k + 1)(1/\sqrt{N}) \approx \pi/2$, so $k \approx (\pi/4)\sqrt{N}$.

More generally, it suffices to set $k \approx (\pi/4)\sqrt{N/a}$.

Question: what if *a* is not known in advance?

Unknown number of solutions



Choose a *random* k in the range to get good success probability.

Optimality of Grover's algorithm

Optimality of Grover's algorithm I

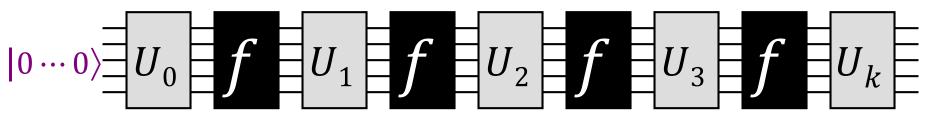
Theorem: any quantum search algorithm for $f: \{0,1\}^n \to \{0,1\}$ must make $\Omega(\sqrt{2^n})$ queries to f (if f is used as a black-box).

Proof (of a slightly simplified version):

Assume queries are of the form

$$|\mathbf{x}\rangle \equiv f \equiv (-1)^{f(\mathbf{x})} |\mathbf{x}\rangle$$

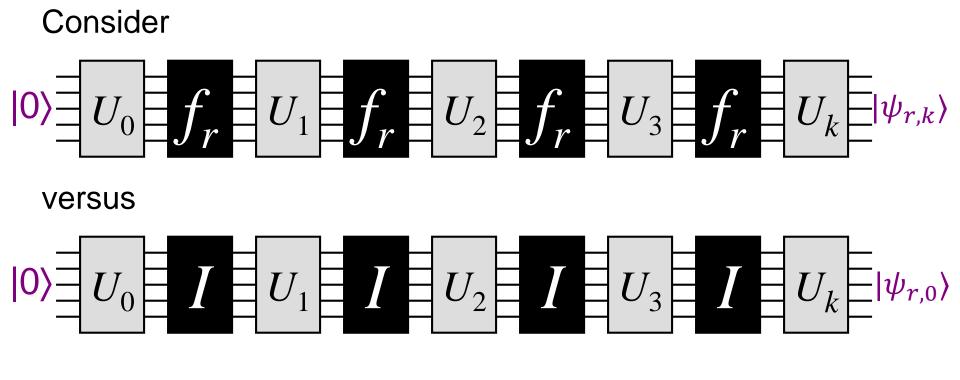
and that a k-query algorithm is of the form



Where $U_0, U_1, U_2, ..., U_k$ are arbitrary unitary operations.

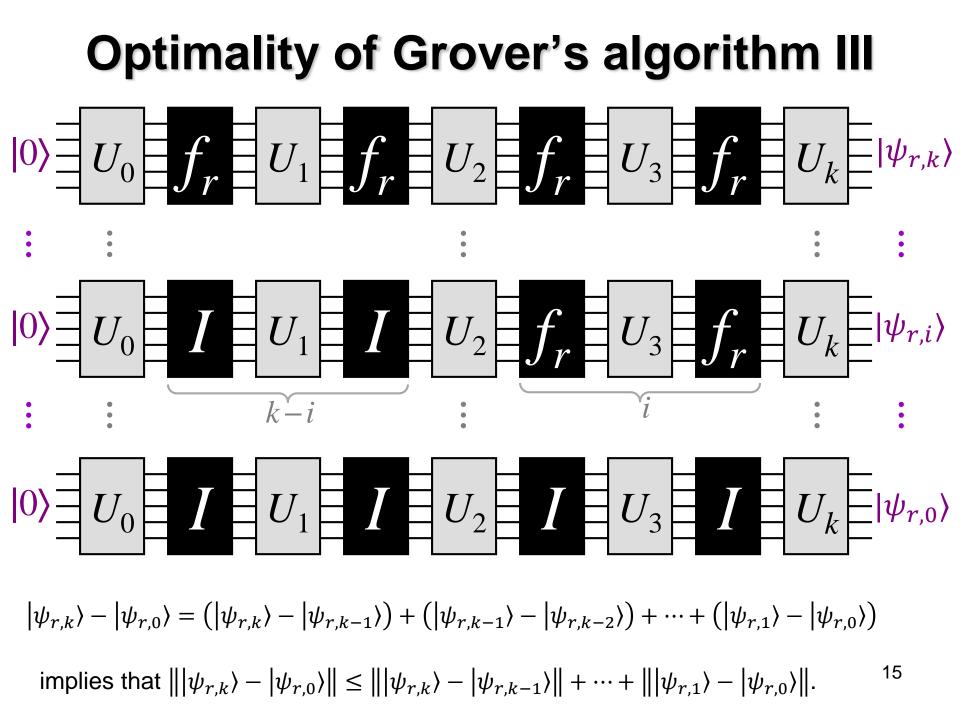
Optimality of Grover's algorithm II

Define $f_r: \{0,1\}^n \to \{0,1\}$ as $f_r(x) = 1$ iff x = r.



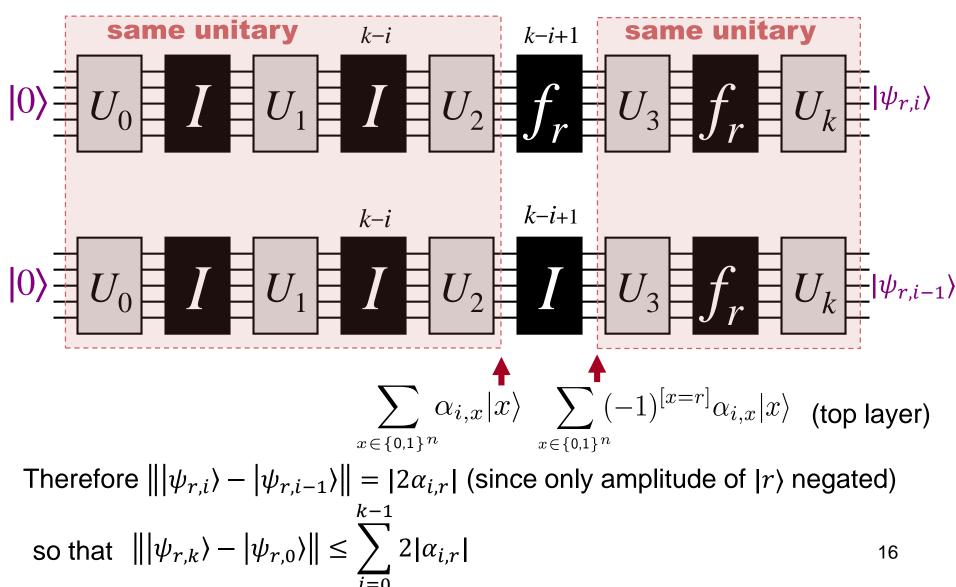
We'll show that, averaging over all $r \in \{0,1\}^n$, $\| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle \| \leq \frac{2k}{\sqrt{2^n}}.$

14



Optimality of Grover's algorithm IV

Consider the difference between any two consecutive layers (*i* and i-1):



Optimality of Grover's algorithm V

Now, averaging over all $r \in \{0,1\}^n$,

$$\begin{split} \frac{1}{2^n} \sum_{r \in \{0,1\}^n} \| |\psi_{r,k}\rangle - |\psi_{r,0}\rangle \| &\leq \frac{1}{2^n} \sum_{r \in \{0,1\}^n} \left(\sum_{i=0}^{k-1} 2|\alpha_{i,r}| \right) \quad \text{(we just showed this)} \\ &= \frac{1}{2^n} \sum_{i=0}^{k-1} 2 \left(\sum_{r \in \{0,1\}^n} |\alpha_{i,r}| \right) \quad \text{(reordering sums)} \\ &\leq \frac{1}{2^n} \sum_{i=0}^{k-1} 2 \left(\sqrt{2^n} \right) \quad \begin{array}{l} \text{(by Cauchy-Schwarz)} \\ &\langle u, v \rangle \leq \|u\| \cdot \|v\| \\ &= \frac{2k}{\sqrt{2^n}} \end{split}$$

Therefore, for **some** $r \in \{0,1\}^n$, the number k of queries must be $\Omega(\sqrt{2^n})$ in order to distinguish f_r from the all-zero function (using the bound $|| |\psi\rangle\langle\psi| - |\varphi\rangle\langle\varphi| ||_1 \leq || |\psi\rangle - |\varphi\rangle||^2$).

This completes the proof.