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Grover’s quantum 

search algorithm
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Quantum search problem

Given: a black box computing 𝑓: 0,1 𝑛 → {0,1}

Goal: determine if 𝑓 is satisfiable (if ∃𝑥 ∈ 0,1 𝑛 s.t. 𝑓 𝑥 = 1).

In positive instances, it makes sense to also find such a satisfying 

assignment 𝑥.

Classically, using probabilistic procedures, order 2𝑛 queries are 

necessary to succeed—even with probability 3/4. (say)

𝑥1

𝑥𝑛

𝑦

𝑥𝑛

𝑥1

𝑦 ⊕ 𝑓(𝑥1, … , 𝑥𝑛)

𝑈𝑓

Query:

[Grover ‘96]

Grover’s quantum algorithm makes only 𝑂 2𝑛 queries
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Applications of quantum search
The function f could be realized as a 3-CNF formula:

𝑓 𝑥1, … , 𝑥𝑛 = 𝑥1 ∨ ҧ𝑥3 ∨ 𝑥4 ∧ ҧ𝑥2 ∨ 𝑥3 ∨ ҧ𝑥5 ∧ ⋯∧ ( ҧ𝑥1 ∨ 𝑥5 ∨ ҧ𝑥𝑛)

Alternatively, the search could 

be for a certificate for any 

problem in NP
3-CNF-SAT

FACTORING

P

NP

PSPACE

co-NP

The resulting quantum 

algorithms appear to be  

quadratically more efficient 

than the best classical 

algorithms known
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Prelude to Grover’s algorithm:

two reflections = a rotation



1

2

1

2

Consider two lines with intersection angle 𝜃:

reflection 1

reflection 2

Net effect: rotation by angle 2𝜃, regardless of starting vector
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Grover’s algorithm: description I

𝑥1

𝑥𝑛

𝑦

𝑥𝑛

𝑥1

𝑦 ⊕ 𝛿𝑥

𝑈0

𝑥1

𝑥𝑛

𝑦

𝑥𝑛

𝑥1

𝑦  𝑓(𝑥1, … , 𝑥𝑛)

𝑈𝑓

𝑈𝑓 𝑥 − = −1 𝑓 𝑥 𝑥 |−〉

𝐻
H

H

H

X

X

X

X

X

X

Hadamard

Basic operations used:

Implementation?

𝑈0 𝑥 − = −1 𝛿𝑥 𝑥 |−〉
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Grover’s algorithm: description II

1. construct state 𝐻 0⋯0 |−〉
2. repeat 𝑘 times:

apply −𝐻𝑈0𝐻𝑈𝑓 to state

3. measure state, check if result 𝑥 ∈ 0,1 𝑛 satisfies 𝑓 𝑥 = 1

0

0

|−〉

UfH H U0 H Uf H U0 H

(The setting of 𝑘 will be determined later)

reflection #1 reflection #2 reflection #1 reflection #2

iteration 2    ...iteration 1preliminary

From now on, we ignore the |−〉 qubit, writing 𝑈𝑓 𝑥 = −1 𝑓 𝑥 |𝑥〉, etc.
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Grover’s algorithm: analysis I
Let 𝐴 = 𝑓−1 1 = {𝑥 ∈ 0,1 𝑛: 𝑓 𝑥 = 1}

𝐵 = 𝑓−1 0 = {𝑥 ∈ 0,1 𝑛: 𝑓 𝑥 = 0}
𝑁 = 2𝑛, 𝑎 = |𝐴|, 𝑏 = |𝐵|

𝐵

𝐴

Consider the space spanned by 𝐴 and |𝐵〉

interesting case: 𝑎 ≪ 𝑁

 goal is to get close to this state

Let and

𝐻0⋯0
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Grover’s algorithm: analysis II

Algorithm: −𝐻𝑈0𝐻𝑈𝑓
𝑘
𝐻|0⋯0〉

𝐵

𝐴

𝐻0⋯0

Observation:

𝑈𝑓 is a reflection about |𝐵〉: 𝑈𝑓 𝐴 = −|𝐴〉 and 𝑈𝑓 𝐵 = |𝐵〉.

Question: what is −𝐻𝑈0𝐻? Answer: a reflection about 𝐻|0⋯0〉

Proof:

−𝐻𝑈0𝐻(𝐻|0⋯0〉) = −𝐻𝑈0|0⋯0〉 = −𝐻(−|0⋯0〉) = 𝐻|0⋯0〉

−𝐻𝑈0𝐻(𝐻|0⋯0〉)⊥= −𝐻𝑈0 0⋯0 ⊥ = −𝐻 0⋯0 ⊥ = −(𝐻|0⋯0〉)⊥



10

Grover’s algorithm: analysis III

𝐵

𝐴

𝐻0⋯0 = sin 𝜃 𝐴 + cos 𝜃 𝐵 =
𝑎

𝑁
𝐴 +

𝑏

𝑁
|𝐵〉

𝜃
2𝜃

2𝜃

2𝜃
2𝜃

Since −𝐻𝑈0𝐻𝑈𝑓 is a composition of two reflections, it is a rotation by 𝟐𝜽, 

where sin 𝜃 = 𝑎/𝑁 so 𝜃 ≈ 𝑎/𝑁.

More generally, it suffices to set 𝑘 ≈ 𝜋/4 𝑁/𝑎.

Question: what if 𝒂 is not known in advance?

When 𝑎 = 1, we want 2𝑘 + 1 1/ 𝑁 ≈ 𝜋/2, so 𝑘 ≈ 𝜋/4 𝑁.

Algorithm: −𝐻𝑈0𝐻𝑈𝑓
𝑘
𝐻|0⋯0〉



Unknown number of solutions
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1 solution
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number of iterations

Choose a random 𝑘 in the range to get good success probability.

4 solutions

success probability 

very close to zero!

0

1

𝜋 𝑁/2

2 solutions

6 solutions

3 solutions

100 solutions
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Optimality of 

Grover’s algorithm
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Optimality of Grover’s algorithm I

Proof (of a slightly simplified version):

𝑓𝑈0 𝑈1 𝑈2 𝑈3 𝑈𝑘𝑓 𝑓 𝑓

and that a k-query algorithm is of the form 

Where 𝑈0, 𝑈1, 𝑈2, … , 𝑈𝑘 are arbitrary unitary operations.

f|𝑥 −1 𝑓(𝑥)|𝑥Assume queries are of the form

|0⋯0

Theorem: any quantum search algorithm for 𝑓: 0,1 𝑛 → {0,1} must make 
Ω( 2𝑛 ) queries to 𝑓 (if 𝑓 is used as a black-box).
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Optimality of Grover’s algorithm II 

Define 𝑓𝑟: 0,1
𝑛 → {0,1} as 𝑓𝑟 𝑥 = 1 iff 𝑥 = 𝑟.  

frU0 U1 U2 U3 Ukfr fr fr
|0 |𝜓𝑟,𝑘〉

Consider 

versus

IU0 U1 U2 U3 UkI I I|0 |𝜓𝑟,0〉

We’ll show that, averaging over all 𝑟 ∈ 0,1 𝑛 ,

𝜓𝑟,𝑘 − |𝜓𝑟,0〉 ≤
2𝑘

2𝑛
.
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Optimality of Grover’s algorithm III 

frU0 U1 U2 U3 Ukfr fr fr
|0 |𝜓𝑟,𝑘〉

IU0 U1 U2 U3 UkI I I|0 |𝜓𝑟,0〉

𝜓𝑟,𝑘 − 𝜓𝑟,0 = 𝜓𝑟,𝑘 − 𝜓𝑟,𝑘−1 + 𝜓𝑟,𝑘−1 − 𝜓𝑟,𝑘−2 +⋯+ 𝜓𝑟,1 − 𝜓𝑟,0

IU0 U1 U2 U3 UkI fr fr
|0 |𝜓𝑟,𝑖〉

k i i

…
…

…
…

…
…

…
…

…
…

implies that 𝜓𝑟,𝑘 − 𝜓𝑟,0 ≤ 𝜓𝑟,𝑘 − 𝜓𝑟,𝑘−1 +⋯+ 𝜓𝑟,1 − 𝜓𝑟,0 .
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Optimality of Grover’s algorithm IV

IU0 U1 U2 U3 UkI fr fr
|0 |𝜓𝑟,𝑖〉

k−i k−i+1

Therefore 𝜓𝑟,𝑖 − 𝜓𝑟,𝑖−1 = |2𝛼𝑖,𝑟| (since only amplitude of |𝑟〉 negated)

IU0 U1 U2 U3 UkI I fr
|0

k−i k−i+1

|𝜓𝑟,𝑖−1〉

same unitary same unitary

Consider the difference between any two consecutive layers (i and i−1):

𝜓𝑟,𝑘 − 𝜓𝑟,0 ≤ ෍

𝑖=0

𝑘−1

2|𝛼𝑖,𝑟|

(top layer)

so that
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Optimality of Grover’s algorithm V

Now, averaging over all 𝑟 ∈ 0,1 𝑛, 

This completes the proof.

Therefore, for some 𝑟 ∈ 0,1 𝑛, the number 𝑘 of queries must 
be Ω 2𝑛 in order to distinguish 𝑓𝑟 from the all-zero function
(using the bound 𝜓 𝜓 − |𝜑〉〈𝜑| 1 ≤ 𝜓 − 𝜑 ԡ2).

(by Cauchy-Schwarz)

𝑢, 𝑣 ≤ 𝑢 ⋅ ԡ𝑣ԡ

(reordering sums)

(we just showed this)


