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Quantum key distribution
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Private communication

• Suppose Alice and Bob would like to communicate privately 

in the presence of an eavesdropper Eve.

• A provably secure (classical) scheme exists for this, called 

the one-time pad.

• The one-time pad requires Alice & Bob to share a secret 

key: 𝑘 {0,1}𝑛, uniformly distributed (secret from Eve).

Alice Bob

𝑘1𝑘2⋯𝑘𝑛
𝑘1𝑘2⋯𝑘𝑛

Eve
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Private communication

• Alice sends bitwise xor 𝑐 = 𝑚⊕ 𝑘 to Bob 

• Bob receives computes 𝑐 ⊕ 𝑘, which is 𝑚⊕ 𝑘 ⊕ 𝑘 = 𝑚

𝑘1𝑘2⋯𝑘𝑛
𝑘1𝑘2⋯𝑘𝑛

One-time pad protocol:

This is secure because, what Eve sees is 𝑐, and 𝑐 is uniformly 

distributed, regardless of what 𝑚 is.

𝑚1𝑚2⋯𝑚𝑛
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Key distribution scenario

• For security, Alice and Bob must never reuse the 
key bits.
– E.g., if Alice encrypts both 𝑚 and 𝑚′ using the same key

𝑘 then Eve can deduce 𝑚⊕𝑚′ = 𝑐 ⊕ 𝑐′.

• Problem: how do they distribute secret key bits?
– Presumably, there is some trusted preprocessing stage 

where this is set up (say, where Alice and Bob get 
together, or where they use a trusted third party).

• Key distribution problem: set up a large number 
of secret key bits.
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Key distribution based on 

computational hardness

• The RSA protocol (say) can be used for key distribution: 
– Alice chooses a random key, encrypts it using Bob’s public key, 

and sends it to Bob

– Bob decrypts Alice’s message using his secret (private) key

• The security of RSA is based on the presumed 
computational difficulty of factoring integers.

• More abstractly, a key distribution protocol can be based 
on any trapdoor one-way function.

• Many such schemes are breakable by quantum 
computers (e.g., elliptic curve cryptography schemes).
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Quantum key distribution (QKD)

• A protocol that enables Alice and Bob to set up a secure*

secret key, provided that they have:

– A quantum channel, where Eve can read and modify messages

– An authenticated classical channel, where Eve can read 

messages, but cannot tamper with them (the authenticated classical 

channel can be simulated by Alice and Bob having a very short

classical secret key).

• There are several protocols for QKD, and the first one 

proposed is called “BB84” [Bennett & Brassard, 1984]:

– BB84 is “easy to implement” physically, but “difficult” to prove 

secure

– [Mayers, 1996]: first true security proof (quite complicated)

– [Shor & Preskill, 2000]: “simple” proof of security

 Information-theoretic security
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BB84
• First, define:

• Alice begins with two random 𝑛-bit strings 𝑎, 𝑏 {0,1}𝑛

• Alice sends the state  𝜓 = 𝜓𝑎1𝑏1
𝜓𝑎2𝑏2

 … 𝜓𝑎𝑛𝑏𝑛
 to Bob

• Note: Eve may see these qubits (and tamper wth them)

• After receiving  𝜓,  Bob randomly chooses 𝑏′ {0,1}𝑛 and 

measures each qubit as follows:

– If 𝑏𝑖
′ = 0 then measure qubit  in basis {0, 1}, yielding outcome 𝑎𝑖

′

– If 𝑏𝑖
′ = 1 then measure qubit  in basis { + ,  − }, yielding outcome 𝑎𝑖

′

𝜓00 = 0

𝜓10 = 1

𝜓01 = +  = 0+ 1

𝜓11 = −  = 0− 1

00

10

01

11
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BB84
• Note:

– If 𝑏𝐼
′ = 𝑏𝑖 then 𝑎𝑖

′ = 𝑎𝑖

– If 𝑏𝑖
′ ≠ 𝑏𝑖 then Pr 𝑎𝑖

′ = 𝑎𝑖 =
1

2

– Bob informs Alice when he has performed                        

his measurements (using the public channel).

• Next, Alice reveals 𝑏 and Bob reveals 𝑏′ over the public 

channel.

• They discard the cases where 𝑏𝑖
′ ≠ 𝑏𝑖 and they will use the 

remaining bits of 𝑎 and 𝑎′ to produce the key.

• Note:

– If Eve did not disturb the qubits then the key can be just 𝑎 (= 𝑎′).

– The interesting case is where Eve may tamper with  𝜓 while      

it is sent from Alice to Bob.  

𝜓00

𝜓10

𝜓01

𝜓11
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BB84

• Intuition:

– Eve cannot acquire information about 𝜓 without disturbing it, 

which will cause some of the bits of 𝑎 and 𝑎′ to disagree

– It can be proven* that: the more information Eve acquires about 𝑎, 

the more bit positions of 𝑎 and 𝑎′ will be different

• From Alice’s and Bob’s remaining bits, 𝑎 and 𝑎′ (where the 

positions 𝑖 s.t. 𝑏𝑖 ≠ 𝑏𝑖 have already been discarded):

– They take a random subset and reveal them in order to estimate 

the fraction of bits where 𝑎 and 𝑎′ disagree

– If this fraction is not too high then they proceed to distill a key from 

the bits of 𝑎 and 𝑎′ that are left over (around 𝑛/4 bits)

00

10

01

11

 To prove this rigorously is nontrivial
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BB84

• If the error rate between 𝑎 and 𝑎′ is below some threshold 
(around 11%) then Alice and Bob can produce a good key 
using techniques from classical cryptography:
– Information reconciliation (“distributed error correction”): to 

produce shorter 𝑎 and 𝑎′ such that (i) 𝑎 = 𝑎′, and (ii) Eve doesn’t 

acquire much information about 𝑎 and 𝑎′ in the process

– Privacy amplification: to produce shorter 𝑎 and 𝑎′ such that Eve’s 

information about 𝑎 and 𝑎′ is very small

• There are already commercially available implementations of 
BB84, though assessing their true security is a subtle matter 
(since their physical mechanisms are not ideal)
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The Lo-Chau key exchange protocol: 

easier to analyze, though harder to 

implement
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Sufficiency of Bell states
If Alice and Bob can somehow generate a series of Bell states 

between them, such as 𝜙+𝜙+⋯ 𝜙+, 

(where 𝜙+ = 00 + 11) then it suffices for them to measure 

these states to obtain a secret key. 

Intuitively, this is because there is nothing that Eve can “know”
about 𝜙+ = 00+ 11 that will permit her to predict a future 

measurement that she has no access to.

Eve

?
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Key distribution protocol based on 𝜙+

Preliminary idea: Alice creates several 𝜙+ states and 

sends the second qubit of each one to Bob

If they knew they had the state 𝜙+𝜙+⋯ 𝜙+ then they 

could simply measure each qubit pair (say, in the 

computational basis) to obtain a shared private key

We might as well assume that Eve is supplying the qubits to 

Alice and Bob, who somehow test whether they’re 𝜙+

Since Eve can access the qubit channel, she can measure, 

or otherwise disturb the state in transit (e.g., replace by 00)

Question: how can Alice and Bob test the validity of 

their states?
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Testing 00+ 11 states (1)

Alice and Bob can pick a random subset of their 𝜙+

states (say, half of them) to test, and then forfeit those

𝜙+ 𝜙+ 𝜙+ 𝜙+ 𝜙+ 𝜙+ 𝜙+ 𝜙+

Test and discard 

these pairs𝜙+ 𝜙+ 𝜙+ 𝜙+

How do Alice and Bob “test” the pairs in this subset?

Due to Eve, they cannot use the quantum channel to actually 

measure them in the Bell basis ... but they can do individual 

measurements and compare results via the classical channel
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Testing 00+ 11 states (2)

The Bell state 𝜙+ = 00 + 11 has the following properties:

Therefore, 

(c) if both qubits are measured in the Hadamard basis the 

resulting bits will still be the same

(a) if both qubits are measured in the computational basis

the resulting bits will be the same (i.e., 00 or 11)

(b) it does not change if 𝐻⊗𝐻 is applied to it

Moreover, 𝜙+ is the only two-qubit state that satisfies 

both properties (a) and (c)

Question: Why?
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Testing 00+ 11 states (3)

For example, if Eve slips in a state 00 and then Alice & Bob 

measure this pair in the Hadamard basis, result is the same bit 

with probability only ½ (so it is detected with probability ¼).

Problem: they can only measure in one of these two bases.

Solution: they pick the basis uniformly at random among the 

two types  (Alice decides by flipping a coin and announcing 

the result to Bob on the read-only classical channel).

𝜙+

𝜙−

𝜓+

𝜓−

0 0

0 1

1 0

1 1

𝑎𝑏 𝑎𝑏
Basis:  computational Hadamard If Eve slips in 𝜇 in place of 𝜙+ then the 

probability it fails the test (and thus Eve’s 

tampering is detected) is
1

2
𝜇|𝜙− 2 +

1

2
𝜇|𝜓+ 2 + 𝜇|𝜓− 2

≥
𝜇|𝜙− 2+ 𝜇|𝜓+ 2

+ 𝜇|𝜓− 2

2
=

1− 𝜇|𝜙+ 2

2

For 00 =
1

2
𝜙+ +

1

2
|𝜙−〉 this is 

1

4
.
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Testing 00+ 11 states (4)

Say there are 𝑛 supposed 𝜙+ states and Alice and Bob test 

𝑚 of them (and are left with 𝑛 −𝑚 key bits).

Suppose Eve slips in just one 00 state.

Then the probability of this causing the test to fail (thereby 

detecting Eve) is only 
𝑚

4𝑛
.

Even in the extreme case, where Alice and Bob set 𝑚 = 𝑛 − 1, 

the detection probability is 
𝑛−1

4𝑛
=

1−
1

𝑛

4
≤

1

4
.

There is a much better approach…

So in this extreme case, Eve can control the value of one key 

bit (without her being detected) with probability at least 3/4. 
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Better testing (1)
Think of a related (simpler) classical problem: detect if a 

binary array contains at least one 1

0 0 0 0 1 0 0 0

If one is confined to examining individual bits, this is difficult 

to do with very high probability making few tests

If one can test parities of subsets of bits then the following 

procedure exposes a 1 with probability ½:

pick a random 𝑟  {0,1}𝑛 and test if 𝑟𝑥 = 0

If 𝑥 ≠ 00⋯0 then this test detects this with probability 1/2.  

Testing 𝑘 such parities detects with probability 1 −
1

2𝑘
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Better testing (2)
Another way of interpreting this idea is to allow CNOT gates 

to be applied before a bit position is checked/discarded

Construct a circuit of CNOT gates in the following way:

Detects 𝑥 ≠ 00⋯0 with probability 1/2 by only discarding one 

bit.  
By repeating this 𝑘 times, detects with probability 1 −

1

2𝑘
by 

only discarding 𝑘 bits.

choose a random 𝑟  {0,1}𝑛 and compute 𝑟𝑥 in some bit 

position using CNOT gates

𝑥1
𝑥2

𝑥𝑛 𝑟𝑥

example of circuit for 𝑟 = 1011
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Better testing (3)

The previous idea can be translated into the context of 

testing whether pairs Bell states are all 𝜙+ or not

𝜙+ 𝜙+ 𝜙+ 𝜙+ 𝜙+ 𝜙+ 𝜙+ 𝜙+

1. Alice picks a random 𝑟  {0,1}𝑛 and sends it to Bob

2. Alice and Bob perform various bilateral CNOT operations 

on their qubits

For 𝑟 = 1011

“parity” of 

positions 1, 3, 4
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Methodology of bilateral CNOTS (1)

𝑋𝑎𝑍 𝑒

𝜙+
we can think of each 

supposed 𝜙+ state as: 

(where 𝑎, 𝑒 ∈ {0,1}𝑛)

𝜙+ = 00+ 11 if 𝑎𝑒 = 00
𝜙− = 00− 11 if 𝑎𝑒 = 01
𝜓+ = 10+ 01 if 𝑎𝑒 = 10
𝜓− = 10− 01 if 𝑎𝑒 = 11

Since

(We will consider general states—that are superpositions of 

states of the above form—later on)

𝑋𝑎𝑍𝑒 ⊗ 𝐼 𝜙+ =
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Methodology of bilateral CNOTS (2)

𝑋

𝑋
and

Note that:

𝑋

𝑋

𝑋

𝑋𝑎1

𝑋𝑎2

𝑋𝑎1

𝑋𝑎1+𝑎2

𝑍 𝑒1

𝑍 𝑒2 𝑍 𝑒1

𝑍𝑒1+𝑒2

More generally:

Similarly:
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Methodology of bilateral CNOTS (3)

𝜙+

𝜙+

𝜙+

𝜙+

Also, it is straightforward to check that two 𝜙+ states 

remain unchanged when two CNOT gates are applied 

bilaterally across them as follows:
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Methodology of bilateral CNOTS (4)

Xa1

Xa2

Z e1

Z e2𝜙+

𝜙+

Z e1

Z e2𝜙+

𝜙+

Xa1

Xa1+a2

𝜙+

𝜙+

Xa1

Xa1+a2Z e2

Z e1+e2

𝜙+

𝜙+

Xa1

Xa1+a2Z e2

Z e1+e2

bilateral 

CNOT
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Methodology of bilateral CNOTS (5)

+

+

+

+

+

+

+

+

This detects 𝑎 ≠ 00⋯0 with probability ½  

This test in Hadamard basis detects 𝑒 ≠ 00⋯0 with probability ½  

By randomly selecting which one of these two tests to perform, 

can detect (𝑎 ≠ 00⋯0 or 𝑒 ≠ 00⋯0 ) with probability ¼. 
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Conclusion of Lo-Chau scheme

Sacrificing say half the qubit pairs, Alice and Bob can establish 

a key that Eve has exponentially small information about.

Unlike BB84, this protocol requires Alice and Bob to have 

quantum computers—to store and perform nontrivial 

operations on states of several qubits. Shor-Preskill 

adapts this proof to BB84.

What if Eve provides a states that is not of the form 

?

Rough idea: every 2𝑛-qubit state is a superposition of the form

and it fails test with prob. ≥
1− 𝜇|Φ+ 2

2

If 𝜇 Φ+ 2 is not close to 1 then it is likely to fail the test;            

if 𝜇 Φ+ 2 is close to 1 then Alice and Bob can safely use it in 

place of           to generate their secret key. 


