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The story of bit commitment
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Bit-commitment

• Alice has a bit 𝑏 that she wants to commit to Bob:

• After the commit stage, Bob should know nothing about 

𝑏, but Alice should not be able to change her mind

• After the reveal stage, either: 

– Bob should learn 𝑏 and accept its value, or 

– Bob should reject Alice’s reveal message, if she deviates from 

the protocol

commit stage

reveal stage

bit 𝑏
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Simple physical implementation

• Commit: Alice writes 𝑏 down on a piece of paper, locks it in a 

safe, sends the safe to Bob, but keeps the key

• Reveal: Alice sends the key to Bob, who then opens the safe

• Desirable properties:

– Binding: Alice cannot change 𝑏 after commit

– Concealing: Bob learns nothing about 𝑏 until reveal

Question: why should anyone care about bit-commitment?

Answer: it is a useful primitive operation for other protocols, 

such as coin-flipping, and “zero-knowledge proof systems”
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Complexity-theoretic implementation

Alice and Bob agree on: 

• a one-way function* 𝑓: 0,1 𝑛 → 0,1 𝑛

(easy to compute but hard to invert) 

• a hard-core predicate ℎ: 0,1 𝑛 → {0,1} for 𝑓

(easy to compute from 𝑥 but hard to compute from 𝑓(𝑥)).

Commit: Alice picks a random 𝑥 {0,1}𝑛, sets 𝑦 = 𝑓(𝑥) and 

𝑐 = 𝑏 ⊕ ℎ(𝑥) and then sends 𝑦 and 𝑐 to Bob

Reveal: Alice sends 𝑥 to Bob, who verifies that 𝑦 = 𝑓(𝑥)
and then sets 𝑏 = 𝑐 ⊕ ℎ(𝑥)

This is (i) perfectly binding and (ii) computationally concealing, 

based on the hardness of predicate ℎ.

* should be one-to-one
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Quantum implementation

• Inspired by the success of QKD, one can try to use the 

properties of quantum mechanical systems to design an 

information-theoretically secure bit-commitment scheme

• One simple idea:

– To commit to 0, Alice sends a random state from {0, 1}

– To commit to 1, Alice sends a random state from {+, −}

– Bob measures each qubit received in a random basis

– To reveal, Alice tells Bob exactly which states she sent in the 

commitment stage (by sending its index 00, 01, 10, or 11), and 

Bob checks for consistency with his measurement results

• A FOCS paper appeared in 1993 proposing a quantum 

bit-commitment scheme and a proof of security.
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Impossibility proof (I)
• Not only was the 1993 scheme shown to be insecure, but it 

was later shown that no such scheme can exist!

• To understand the impossibility proof, recall that any two 

purifications are related by a unitary on the purifying system.

[Mayers ‘96][Lo & Chau ‘96]

If 𝜓0 , 𝜓1 are two bipartite states such that   

Tr1 𝜓0 〈𝜓0| = Tr1 𝜓1 〈𝜓1|

I explained a few lecture ago that there exists a 
unitary 𝑈 (acting on the first register) such that 
𝑈⊗ 𝐼 𝜓0 = |𝜓1〉. 

We will prove this momentarily.
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Impossibility proof (II)

• For the protocol to be concealing, Bob should see the same 
density matrix regardless of Alice’s commitment.

• Protocol can be “purified” so that Alice’s commit states are   

𝜓0 & 𝜓1 (where she sends the second register to Bob).

• By applying 𝑈 to her register, Alice can cheat and change 
her commitment from 𝑏 = 0 to 𝑏 = 1
(by changing from 𝜓0 to 𝜓1 ).

So if Alice has a quantum computer, any perfectly concealing 

protocol cannot be binding! 
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Schmidt decomposition
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Schmidt decomposition

Let 𝜓 be any bipartite quantum state: 

𝜓 = ෍

𝑎=1

𝑚

෍

𝑏=1

𝑛

𝛼𝑎,𝑏 𝑎 |𝑏〉

(where we can assume 𝑛 ≤ 𝑚)

Then there exist orthonormal states

𝜇1 , 𝜇2 , … , |𝜇𝑛〉 and 𝜙1 , 𝜙2 , … , |𝜙𝑛〉 such that

𝜓 = ෍

𝑥=1

𝑛

𝑝𝑥 𝜇𝑥 |𝜙𝑥〉

and where 𝜙1 , 𝜙2 , … , |𝜙𝑛〉 are the eigenvectors of

𝜌 = Tr1 𝜓 𝜓 =෍

𝑥

𝑝𝑥 𝜙𝑥 〈𝜙𝑥|

Theorem:

Proof uses singular value decomposition of matrices.
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Singular value decomposition

Let 𝐴 ∈ ℂ𝑚×𝑛 be an arbitrary matrix (assume 𝑛 ≤ 𝑚).
Then there exist unitaries 𝑈 ∈ ℂ𝑚×𝑚, 𝑉 ∈ ℂ𝑛×𝑛 and a 

“diagonal” matrix 

𝐷 =

𝑑1 0 0
0 ⋱ 0
0 0 𝑑𝑛
0 0 0

∈ ℂ𝑚×𝑛, 𝑑𝑖 ≥ 0

such that 𝐴 = 𝑈𝐷𝑉. 

Note that if 𝐴 is Hermitian, then 𝑉 = 𝑈†.

Theorem:

Also note that if 𝐴 is unitary or diagonal, there is nothing to do.

Application: Polar decomposition 𝐴 = 𝑈𝑃, where 𝐴 ∈ ℂ𝑛×𝑛

and 𝑃 is positive semidefinite.
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Schmidt decomposition: proof

View the coefficients 𝛼𝑎𝑏 as a matrix 𝛼 ∈ ℂ𝑚×𝑛.

By the singular value decomposition, we can write

𝛼 = 𝑢𝑑𝑣 for unitaries 𝑢 ∈ ℂ𝑚×𝑚, 𝑣 ∈ ℂ𝑛×𝑛 and a “diagonal” 

matrix 𝑑 ∈ ℂ𝑚×𝑛 with 𝑑𝑐 ≥ 0.

𝜓 = ෍

𝑎=1

𝑚

෍

𝑏=1

𝑛

𝛼𝑎,𝑏 𝑎 |𝑏〉

Defining 𝜇𝑐 = σ𝑎 𝑢𝑎𝑐|𝑎〉 and 𝜙𝑐 = σ𝑏 𝑣𝑐𝑏|𝑏〉, we get

𝜓 = ෍

𝑎=1

𝑚

෍

𝑏=1

𝑛

𝛼𝑎,𝑏 𝑎 |𝑏〉 = ෍

𝑎=1

𝑚

෍

𝑏=1

𝑛

෍

𝑐=1

𝑛

𝑢𝑎𝑐 𝑝𝑐𝑣𝑐𝑏 𝑎 |𝑏〉 = ෍

𝑐=1

𝑛

𝑝𝑐 𝜇𝑐 |𝜙𝑐〉

and the theorem is proved.

Because σ𝑐 𝑑𝑐
2 = Tr 𝑑2 =Tr 𝛼†𝛼 = σ𝑎𝑏 𝛼𝑎𝑏

2 = 1 ,
there exist probabilities 𝑝𝑐 such that 𝑑𝑐 = 𝑝𝑐.
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Application: purifications
Theorem: If 𝜓0 , 𝜓1 are two purifications of a density matrix 
𝜌, i.e. if they are bipartite states such that   

𝜌 = Tr1 𝜓0 〈𝜓0| = Tr1 𝜓1 〈𝜓1|

then there exists a unitary 𝑈 (acting on the first register) such 
that 

𝑈⊗ 𝐼 𝜓0 = |𝜓1〉

• Proof: By the Schmidt decomposition,

and

We can define 𝑈 so that 𝑈 𝜇𝑐 = |𝜇𝑐
′ 〉 for 𝑐 = 1,… , 𝑛 █

𝜓0 =෍

𝑐=1

𝑛

𝑝𝑐 𝜇𝑐 |𝜙𝑐〉 𝜓1 =෍

𝑐=1

𝑛

𝑝𝑐 𝜇𝑐
′ |𝜙𝑐〉
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Measuring 

entanglement
(brief)
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Entangled vs product states
Consider the following pure states:

1)
1

2
00 +

1

2
11

2) 0 1

3)
1

2
00 +

1

2
01 +

1

2
10 +

1

2
11

4)
3

2
00 +

1

2
11

5) . 99 00 + .07 11 + .07 22 + .07 33 + .07|44〉

Which are entangled and which are product states?

Which are more entangled than the others?

One approach: Schmidt rank

Another (more operational) approach: Entanglement entropy
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Schmidt rank

1)
1

2
00 +

1

2
11

2) 0 1

3)
1

2
00 +

1

2
01 +

1

2
10 +

1

2
11

4)
3

2
00 +

1

2
11

5) . 99 00 + .07 11 + .07 22 + .07 33 + .07|44〉

Schmidt rank measures entanglement by number of nonzero 

Schmidt coefficients ( = rank of Tr1 𝜓 〈𝜓|)

Schmidt rank   State

2

1

1

2

5
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Entanglement entropy

1)
1

2
00 +

1

2
11

2) 0 1

3)
1

2
00 +

1

2
01 +

1

2
10 +

1

2
11

4)
3

2
00 +

1

2
11

5) . 99 00 + .07 11 + .07 22 + .07 33 + .07|44〉

Entanglement entropy measures entanglement by the 

entropy of Tr1 𝜓 𝜓

Entropy                    State

1

0

0

.811

.18

Operationally motivated measure of the “information” each 

System has about the other, via Schumacher compression.

Area laws…
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Some properties

1) Invariant under local unitaries

2) Non-increasing under Local Operations and 

Classical Communication (LOCC)

Next time: More on entanglement measures, both 

for pure and for mixed states


