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The story of bit commitment



Bit-commitment

bit b g —| commit stage —— tg

— reveal stage

* Alice has a bit b that she wants to commit to Bob:

« After the commit stage, Bob should know nothing about
b, but Alice should not be able to change her mind

« After the reveal stage, either:

— Bob should learn b and accept its value, or

— Bob should reject Alice’ s reveal message, if she deviates from
the protocol



Simple physical implementation

« Commit: Alice writes b down on a piece of paper, locks it in a
safe, sends the safe to Bob, but keeps the key

 Reveal: Alice sends the key to Bob, who then opens the safe
* Desirable properties:
— Binding: Alice cannot change b after commit

— Concealing: Bob learns nothing about b until reveal

Question: why should anyone care about bit-commitment?

Answer: it is a useful primitive operation for other protocols,
such as coin-flipping, and “zero-knowledge proof systems”



Complexity-theoretic implementation

Alice and Bob agree on:

« aone-way function* f:{0,1}"* - {0,1}"

(easy to compute but hard to invert)

- ahard-core predicate h:{0,1}" — {0,1} for f

(easy to compute from x but hard to compute from f(x)).

Commit: Alice picks a random x €{0,1}*, sets y = f(x) and
c = b @ h(x) and then sends y and c to Bob

Reveal: Alice sends x to Bob, who verifies that y = f(x)
and then sets b = ¢ @ h(x)

This is (i) perfectly binding and (ii)) computationally concealing,
based on the hardness of predicate h.

* should be one-to-one



Quantum implementation

 Inspired by the success of QKD, one can try to use the
properties of quantum mechanical systems to design an
Information-theoretically secure bit-commitment scheme

* One simple idea:
— To commit to O, Alice sends a random state from {|0), |[1)}
— To commit to 1, Alice sends a random state from {|+), |-)}
— Bob measures each gubit received in a random basis

— To reveal, Alice tells Bob exactly which states she sent in the
commitment stage (by sending its index 00, 01, 10, or 11), and
Bob checks for consistency with his measurement results
« A FOCS paper appeared in 1993 proposing a quantum
bit-commitment scheme and a proof of security.



Impossibility proof (1)
* Not only was the 1993 scheme shown to be insecure, but it
was later shown that no such scheme can exist!

e To understand the impossibility proof, recall that any two
purifications are related by a unitary on the purifying system.

If |Y,), |Y,) are two bipartite states such that
Try|Yo) (ol = Try|h,) (W4

| explained a few lecture ago that there exists a
unitary U (acting on the first register) such that

U DIg) = [Yq).

We will prove this momentarily.

[Mayers ‘96][Lo & Chau ‘96] 7



Impossibility proof (Il)

* For the protocol to be concealing, Bob should see the same
density matrix regardless of Alice’s commitment.

« Protocol can be “purified” so that Alice’s commit states are
Vo) & |Y1) (where she sends the second register to Bob).

« By applying U to her register, Alice can cheat and change
her commitmentfromb =0tob =1

(by changing from |y,) to [11)).

So if Alice has a quantum computer, any perfectly concealing
protocol cannot be binding!




Schmidt decomposition




Schmidt decomposition

Theorem:
Let i) be any bipartite quantum state:

) = i 2 qp|0)1b)

a=1 b=1
(where we can assume n < m)

Then there exist orthonormal states
1), [uz), ..., |uy) and |¢1> |2), ..., @) such that

¥) = Z VBl 1)
and where |¢,), |¢,), .. |¢n) are the eigenvectors of

p =TI}l = ) puld)dyl

: X ... !
Proof uses singular value decomposition of matrices.
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Singular value decomposition

Theorem:

Let A € C™*™ be an arbitrary matrix (assume n < m).
Then there exist unitaries U € C™™ ¥V € C"*™ and a
“diagonal” matrix

d, 0 0
— 0 0 mxn >
D=|y o q |ECV  diz0
0O 0 O

such that A = UDV.

Note that if A is Hermitian, then V = UT.
Also note that Iif A is unitary or diagonal, there is nothing to do.

Application: Polar decomposition A = UP, where A € C"*"
and P Is positive semidefinite.
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Schmidt decomposition: proof

¥) = i 2 qp|0)1b)

a=1 b=1
View the coefficients a,;, as a matrix a« € C™*™,
By the singular value decomposition, we can write

a = udv for unitaries u € C"™™, v € C™*" and a “diagonal”
matrix d € C"™" with d,. > 0.

Because Y. d? =Trd? =Trata =Y, lal%? =1,

there exist probabilities p. such that d. = +/p..

Defining |pc) = X Ugcla) and |¢p.) = Xp vep|b), We get

W= > > agpla)lb) = 7 yyuacvmcblam = ) VPelu)le)

a=1 b=1 =
and the theorem is proved 12




Application: purifications

Theorem: If |Y,), |Y,) are two purifications of a density matrix
p, l.e. if they are bipartite states such that

p = Try|[Yo)(Wol = Trolp )|

then there exists a unitary U (acting on the first register) such

that
(U Q Do) = 1)

* Proof: By the Schmidt decomposition,

Po) = Y VBelulbc)and [¥:) = ¥ VFelubbe)
c=1 c=1

We can define U so that U|u,.) = |u.)forc=1,..,n l 13



Measuring

entanglement



Entangled vs product states

Consider the foIIowing pure states:
1) \/_|OO) +—|11)

2) I0>|1>
3) ~100) +101) +2[10) +~|11)

4) 7|00) +E|11>
5) .99|00) +.07|11) +.07|22) + .07|33) + .07|44)
Which are entangled and which are product states?

Which are more entangled than the others?

One approach: Schmidt rank

Another (more operational) approach: Entanglement entropy
15



Schmidt rank

Schmidt rank measures entanglement by number of nonzero
Schmidt coefficients ( = rank of Trq [yY){(Y])

Schmidt rank State

2 1) f|oo>+—|11>

1 2) I0>I1)

1 3) ~100) +-101) +2]10) + ~|11)

2 4) 7|oo>+5|11>

5 5) .99|00) +.07|11) +.07|22) +.07|33) + .07|44)
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Entanglement entropy

Entanglement entropy measures entanglement by the
entropy of Try [ Xy

Entropy State
1 1
1 1) +100) +=[11)
0 2) [0}1)
0 3) ~100) +[01) +[10) +11)

811 4) 200)+2]11)
18 5) .99|00) +.07|11) +.07|22) +.07|33) + .07|44)

Operationally motivated measure of the “information” each
System has about the other, via Schumacher compression.

Area laws...
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Some properties

1) Invariant under local unitaries
2) Non-increasing under Local Operations and
Classical Communication (LOCC)

Next time: More on entanglement measures, both
for pure and for mixed states
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