Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 2 (2017)

Jon Yard QNC 3126 jyard@uwaterloo.ca

Superdense coding

How much classical information in *n* qubits?

 $2^{n}-1$ complex numbers apparently needed to describe an arbitrary *n*-qubit pure quantum state:

 $\alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{010}|010\rangle + \dots + \alpha_{111}|111\rangle$

Does this mean that an exponential amount of classical information is somehow "stored" in n qubits?

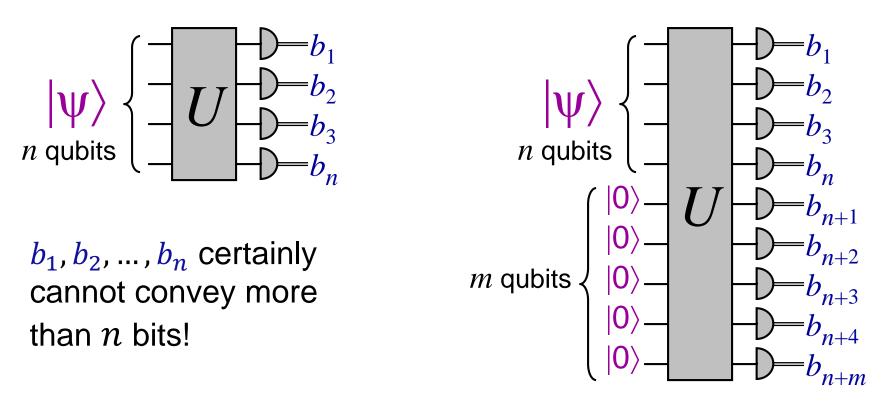
Not in an operational sense ...

For example, Holevo's Theorem (from 1973) implies: one cannot convey more than n classical bits of information in n qubits

Holevo's Theorem

Easy case:

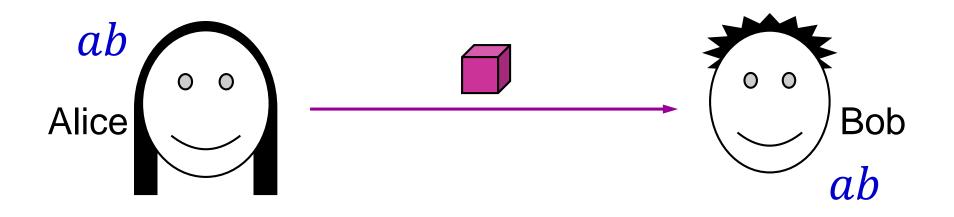
Hard case (the general case):



Proof is beyond the scope of this course (but see CS 766 / QIC 820)

Superdense coding (prelude)

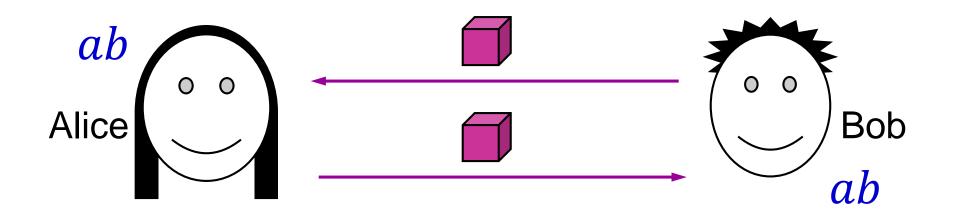
Suppose that Alice wants to convey *two* classical bits to Bob sending just *one* qubit



By Holevo's Theorem, this is *impossible*

Superdense coding

In *superdense coding*, Bob is allowed to send a qubit to Alice first

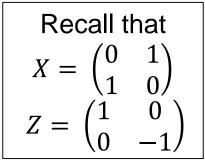


How can this help?

How superdense coding works

1. Bob creates the state $|00\rangle + |11\rangle$ and sends the *first* qubit to Alice

2. Alice: If a = 1, apply X to her qubit. Then if b = 1, apply Z to her qubit. Then send the qubit back to Bob.

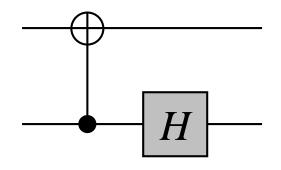


ab	$(Z^b X^a \otimes I)(00\rangle + 11\rangle)$	
00	$ 00 angle+ 11 angle= \Psi_{+} angle$	
01	$ 00 angle - 11 angle = \Psi angle$	Bell basis
10	$ 01 angle+ 10 angle= \Phi_+ angle$	
11	$ 01\rangle - 10\rangle = \Phi_{-}\rangle$	

3. Bob measures the two qubits in the Bell basis

Measurement in the Bell basis

Specifically, Bob applies



input	output
$ 00\rangle + 11\rangle$	00>
$ 00\rangle - 11\rangle$	01>
$ 01\rangle + 10\rangle$	10>
$ 01\rangle - 10\rangle$	- 11>

to his two qubits ...

and then measures them, yielding *ab*

This concludes superdense coding

Teleportation

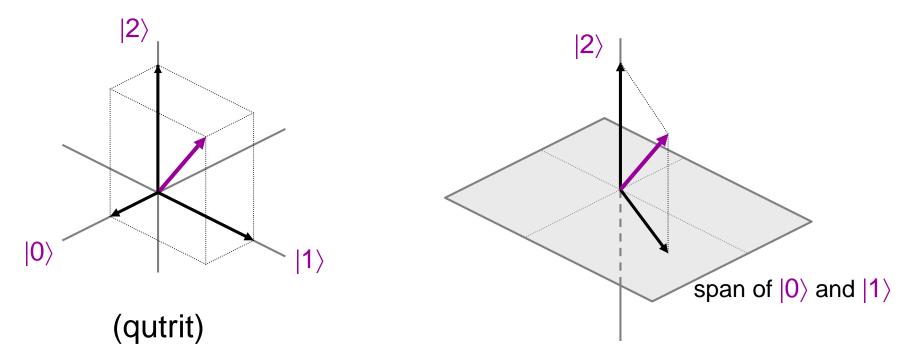
Recap

- *n*-qubit quantum state: 2^{*n*}-dimensional unit vector
- Unitary op: 2ⁿ×2ⁿ linear operation U such that U[†]U = I (where U[†] denotes the conjugate transpose of U)
 U|0000> = the 1st column of U
 U|0001> = the 2nd column of U
 the columns of U
 are orthonormal

 $U|1111\rangle$ = the (2^n) th column of U

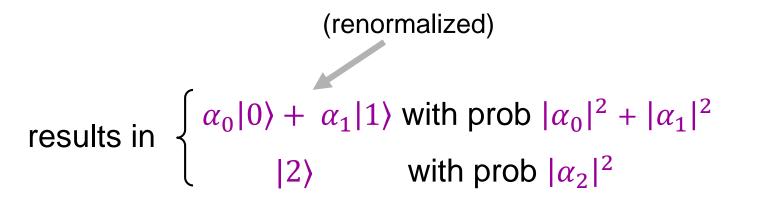
Incomplete measurements (I)

Measurements up until now are with respect to orthogonal one-dimensional subspaces: The orthogonal subspaces can have other dimensions:



Incomplete measurements (II)

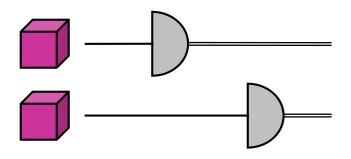
Such a measurement on $\alpha_0 |0\rangle + \alpha_1 |1\rangle + \alpha_2 |2\rangle$



Measuring the first qubit of a two-qubit system

- **Defined** as the incomplete measurement with respect to the two dimensional subspaces:
- span of $|00\rangle \& |01\rangle$ (all states with first qubit 0), and
- span of $|10\rangle \& |11\rangle$ (all states with first qubit 1)

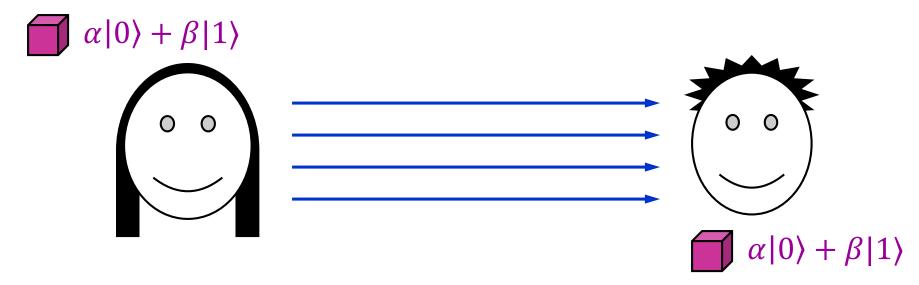
Result is
$$\begin{cases} 0, \, \alpha_{00} |00\rangle + \alpha_{01} |01\rangle \text{ with prob } |\alpha_{00}|^2 + |\alpha_{01}|^2 \\ 1, \, \alpha_{10} |10\rangle + \alpha_{11} |11\rangle \text{ with prob } |\alpha_{10}|^2 + |\alpha_{11}|^2 \end{cases}$$



Easy exercise: show that measuring the first qubit and *then* measuring the second qubit gives the same result as measuring both qubits at once

Teleportation (prelude)

Suppose Alice wishes to convey a qubit to Bob by sending just classical bits

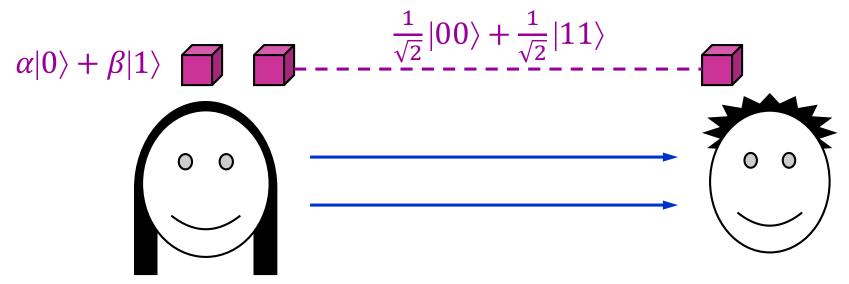


If Alice **knows** α and β , she can send approximations of them —but this still requires infinitely many bits for perfect precision

Moreover, if Alice does **not** know α or β , she can at best acquire **one bit** about them by a measurement

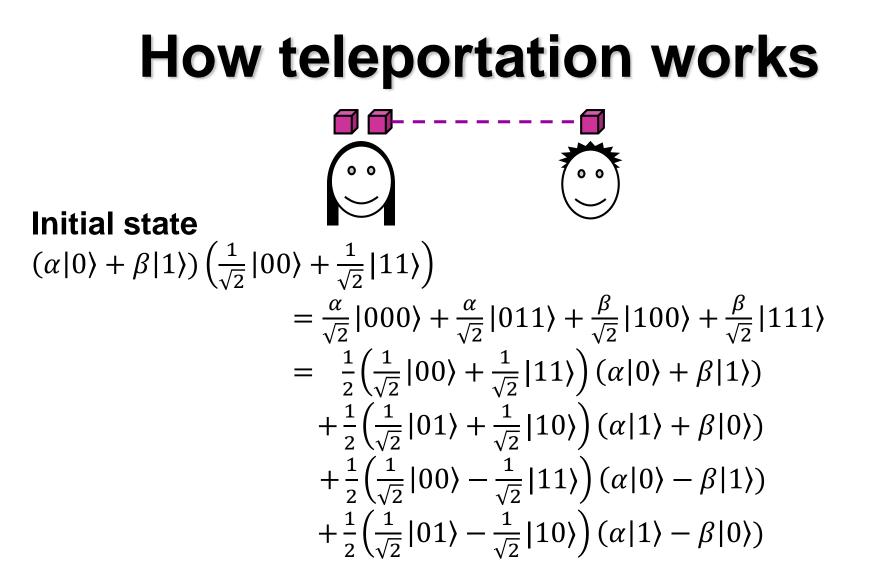
Teleportation scenario

In teleportation, Alice and Bob also start with a Bell state

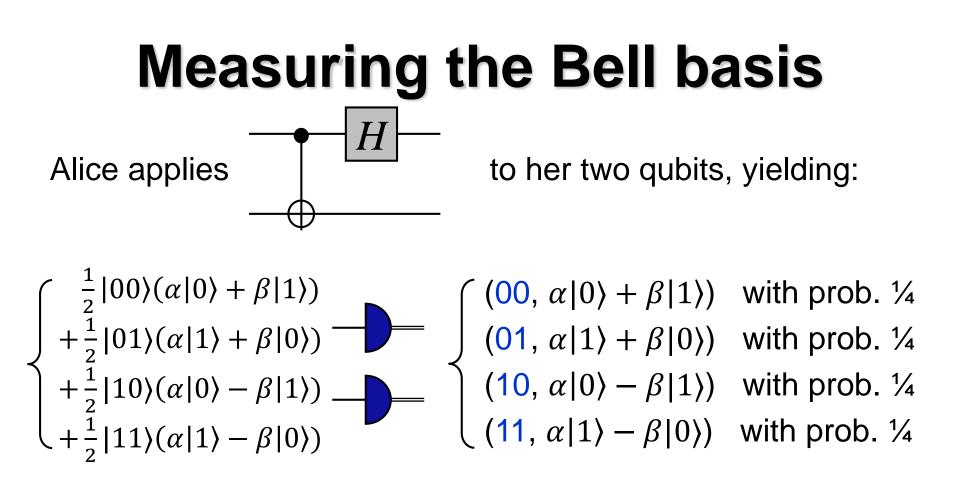


and Alice can send two classical bits to Bob

Note that the initial state of the three qubit system is $(\alpha|0\rangle + \beta|1\rangle) \left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right) = \frac{\alpha}{\sqrt{2}}|000\rangle + \frac{\alpha}{\sqrt{2}}|011\rangle + \frac{\beta}{\sqrt{2}}|100\rangle + \frac{\beta}{\sqrt{2}}|111\rangle$



Protocol: Alice measures her two qubits *in the Bell basis* and sends the result to Bob (who then "corrects" his state) ¹⁷



Then Alice sends her two classical bits to Bob, who then adjusts his qubit to be $\alpha|0\rangle + \beta|1\rangle$ depending on the values of the bits.

Bob's adjustment procedure

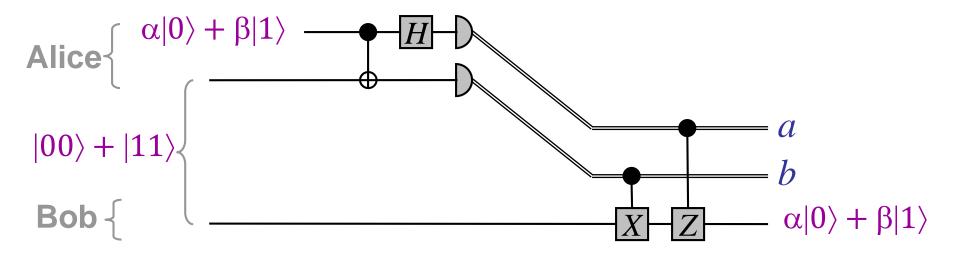
Bob receives two classical bits a, b from Alice, and:

if b = 1 he applies X to qubit if a = 1 he applies Z to qubit $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

yielding:
$$\begin{cases} 00, & \alpha|0\rangle + \beta|1\rangle \\ 01, & X(\alpha|1\rangle + \beta|0\rangle) = \alpha|0\rangle + \beta|1\rangle \\ 10, & Z(\alpha|0\rangle - \beta|1\rangle) = \alpha|0\rangle + \beta|1\rangle \\ 11, & ZX(\alpha|1\rangle - \beta|0\rangle) = \alpha|0\rangle + \beta|1\rangle \end{cases}$$

Note that Bob acquires the correct state in each case

Summary of teleportation



Quantum circuit exercise: try to work through the details of the analysis of this teleportation protocol