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How much classical information in n qubits?

2𝑛1 complex numbers apparently needed to describe 

an arbitrary 𝑛-qubit pure quantum state:

𝛼000 000 + 𝛼001 001 + 𝛼010 010 +⋯+ 𝛼111 111

Does this mean that an exponential amount of 

classical information is somehow “stored” in 𝑛 qubits?

Not in an operational sense ...

For example, Holevo’s Theorem (from 1973) implies: 

one cannot convey more than 𝑛 classical bits of 

information in 𝑛 qubits
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Holevo’s Theorem

Uψ
n qubits

b1

b2

b3

bn

Easy case:

𝑏1, 𝑏2, … , 𝑏𝑛 certainly 

cannot convey more 

than 𝑛 bits!

Hard case (the general case):

ψ
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U
0

0
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0
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Proof is beyond the scope of this course 

(but see CS 766 / QIC 820)
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Superdense coding (prelude)

By Holevo’s Theorem, this is impossible

Alice Bob

𝑎𝑏

Suppose that Alice wants to convey two classical bits to Bob 

sending just one qubit

𝑎𝑏
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Superdense coding

How can this help?

Alice Bob

𝑎𝑏

In superdense coding, Bob is allowed to send a qubit 

to Alice first

𝑎𝑏
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How superdense coding works

1. Bob creates the state |00〉 + |11〉 and sends the first qubit 

to Alice

2. Alice: If 𝑎 = 1, apply 𝑋 to her qubit. 

Then if 𝑏 = 1, apply 𝑍 to her qubit. 

Then send the qubit back to Bob.

𝑎𝑏 (𝑍𝑏𝑋𝑎 ⊗ 𝐼)(|00〉 + |11〉)

00 |00〉 + |11〉 = |Ψ+〉

01 00 − 11 = |Ψ−〉

10 01 + 10 = |Φ+〉

11 01 − 10 = |Φ−〉

3. Bob measures the two qubits in the Bell basis

Bell basis

Recall that 

𝑋 =
0 1
1 0

𝑍 =
1 0
0 −1
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Measurement in the Bell basis

H

Specifically, Bob applies

to his two qubits ...

input output

|00〉 + |11〉 |00〉

|00〉 − |11〉 |01〉

|01〉 + |10〉 |10〉

|01〉 − |10〉 −|11〉

and then measures them, yielding 𝑎𝑏

This concludes superdense coding
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Teleportation
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Recap

• n-qubit quantum state: 2𝑛-dimensional unit vector

• Unitary op: 2𝑛2𝑛 linear operation 𝑈 such that 𝑈†𝑈 = 𝐼
(where 𝑈† denotes the conjugate transpose of 𝑈 ) 

𝑈|0000〉 = the 1st column of 𝑈

𝑈 0001 = the 2nd column of 𝑈 the columns of 𝑈

:     :            :     :      :           : are orthonormal

𝑈 1111 = the (2𝑛)th column of 𝑈
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Incomplete measurements (I)

Measurements up until now 

are with respect to orthogonal 

one-dimensional subspaces:

0 1

2

The orthogonal subspaces 

can have other dimensions:

span of 0 and 1

2

(qutrit)
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Incomplete measurements (II)

Such a measurement on 𝛼0 0 + 𝛼1 1 + 𝛼2 2

𝛼0 0 + 𝛼1 1 with prob 𝛼0
2 + 𝛼1

2

|2〉 with prob 𝛼2
2

(renormalized)

results in 
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Measuring the first qubit of a 

two-qubit system

0, 𝛼00 00 + 𝛼01 01 with prob 𝛼00
2 + 𝛼01

2

1, 𝛼10 10 + 𝛼11 11 with prob 𝛼10
2 + 𝛼11

2

Defined as the incomplete measurement with respect 

to the two dimensional subspaces:

• span of 00 & 01 (all states with first qubit 0), and

• span of 10 & 11 (all states with first qubit 1)

𝛼00 00 + 𝛼01 01 + 𝛼10 01 + 𝛼11 11

Result is
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Easy exercise: show that measuring the first qubit and 

then measuring the second qubit gives the same result 

as measuring both qubits at once
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Teleportation (prelude)
Suppose Alice wishes to convey a qubit to Bob by sending 

just classical bits 

𝛼 0 + 𝛽|1〉

𝛼 0 + 𝛽|1〉

If Alice knows 𝛼 and 𝛽, she can send approximations of them 

―but this still requires infinitely many bits for perfect precision

Moreover, if Alice does not know 𝛼 or 𝛽, she can at best 

acquire one bit about them by a measurement
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Teleportation scenario

𝛼0+ 𝛽1

1

2
00+

1

2
11

In teleportation, Alice and Bob also start with a Bell state

and Alice can send two classical bits to Bob

Note that the initial state of the three qubit system is

𝛼0 + 𝛽1
1

2
00 +

1

2
11 =

𝛼

2
000 +

𝛼

2
011 +

𝛽

2
100 +

𝛽

2
111
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How teleportation works

Protocol: Alice measures her two qubits in the Bell basis

and sends the result to Bob (who then “corrects” his state)

𝛼 0 + 𝛽 1 )
1

2
00 +

1

2
|11〉

=
𝛼

2
000 +

𝛼

2
011 +

𝛽

2
100 +

𝛽

2
111

=
1

2

1

2
00 +

1

2
|11〉 𝛼 0 + 𝛽 1 )

+
1

2

1

2
01 +

1

2
|10〉 𝛼 1 + 𝛽 0 )

+
1

2

1

2
00 −

1

2
|11〉 𝛼 0 − 𝛽 1 )

+
1

2

1

2
01 −

1

2
|10〉 𝛼 1 − 𝛽 0 )

Initial state
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Measuring the Bell basis

Alice applies to her two qubits, yielding:

Then Alice sends her two classical bits to Bob, who then 

adjusts his qubit to be 𝛼|0〉 + 𝛽 1 depending on the values 

of the bits.

(00, 𝛼|0〉 + 𝛽 1 )   with prob. ¼ 

(01, 𝛼 1 + 𝛽|0〉)   with prob. ¼ 

(10, 𝛼 0 − 𝛽|1〉)   with prob. ¼ 

(11, 𝛼 1 − 𝛽|0〉)   with prob. ¼ 

H

1

2
00 𝛼 0 + 𝛽 1 )

+
1

2
|01〉 𝛼 1 + 𝛽 0 )

+
1

2
|10〉 𝛼 0 − 𝛽 1 )

+
1

2
|11〉 𝛼 1 − 𝛽 0 )
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Bob’s adjustment procedure

if 𝑏 = 1 he applies 𝑋 to qubit 

if 𝑎 = 1 he applies 𝑍 to qubit 

Bob receives two classical bits 𝑎, 𝑏 from Alice, and: 

00, 𝛼|0〉 + 𝛽 1

01,     𝑋(𝛼 1 + 𝛽|0〉) = 𝛼|0〉 + 𝛽 1

10, 𝑍(𝛼 0 − 𝛽|1〉) = 𝛼|0〉 + 𝛽 1

11, 𝑍𝑋(𝛼 1 − 𝛽|0〉) = 𝛼|0〉 + 𝛽 1

yielding:

Note that Bob acquires the correct state in each case

𝑋 =
0 1
1 0

, 𝑍 =
1 0
0 −1



20

Summary of teleportation

H

X Z

0+ 1

00+ 11

0+ 1

b

a

Alice

Bob

Quantum circuit exercise: try to work through the 

details of the analysis of this teleportation protocol


