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Entanglement



Separable states

A density matrix p2? is separable if there exist
probabilities p(x) and density matrices p#, p2 such that

ptP = z p()ps @ px -
X
If p48 is not separable, then it is called entangled.

Note: if p48 is separable, exists a decomposition with

p;él — |lpx><l/)x|A1 leCB — |lpx><l/)x|B

Separable

Operational meaning: separable states can be prepared
starting with only classical correlations.



Separable?

Theorem [Horodeckis ‘96]: p“? is entangled iff there
exists a positive (but not completely positive) linear map

A on C%*¢ such that (A ® id)(p4?) is not positive
semidefinite.

We have already seen examples of positive-but-not-
completely positive maps, such as...
Proof (Easy direction — only if): Let A be any positive map. If

ptP = z p()ps  px
X
IS a separable density matrix, then

z p(x)A(py) Q px

Is still positive semidefinite. Interpretation: every entangled ,
state is broken by some non-physical positive map.



Separable?

Example: The Werner state

5 = 1y WHOTHIODGTTH WD |y

has a Positive Partial Transpose (PPT) (T ® id)(p“8) = 0
iff p < % where T is the transpose map T(M) = M”.

It turns out that the PPT test is sufficient to decide
entanglement, i.e. the Werner state is entangled iff p > 1/2.

In fact, the PPT test is sufficient to decide whether an
arbitrary 2 x 2 or 2 X 3 density matrix is entangled.



Separable?

Fundamental problem: Given a description of p42, (i.e.
as a d* x d? matrix), determine whether it is separable or
entangled.

Bad news: This problem is NP-hard [Gurvits '02].

Good news: There exists [BCY’12] an efficient
(quasipolynomial-time exp(e 20 (log(d)?)) algorithm for
deciding this given a promise that p4? is either separable
or a constant distance (in || ||,-norm) from separable.

lo = oll, = Tr(p — 0)2




How entangled?




Entanglement measures

An entanglement measure is a function E(p“48) on bipartite
density matrices p“? that quantifies, in one way or another,
the amount of bipartite entanglement in p45.

Last time, we saw two examples for pure states:
e Schmidt rank
« Entanglement entropy

Some nice properties for such a measure to satisfy:

1) Invariant under local unitaries

2) Non-increasing under Local Operations and Classical
Communication (LOCC)

3) Monogamous

4) Additive

5) Faithful |



Monogamy of entanglement

Many nice entanglement measures are monogamous:
The more A is entangled with B, the less it can be
entangled with C.

E(p4P1) + E(p%2) < E(p”P172).
Implies that quantum correlations cannot be shared.
Application of this idea: Quantum Key Distribution.

Extreme example: p4BiBz = |p (|48 ® pPz,
where |¢) = |00) + |11) is a Bell state
1+40<1



Entanglement of formation

How much entanglement does it take to make p“4? using
LOCC?

Entanglement of formation: How much entanglement
does it take, on average, to create a single copy of p487?

Er(pA8) = min z x)S (A :z X AB = 4B
F(p77) p(x),lt/Jx)AB{ C p(x)S(x) 4 P () [P X P
Faithful, not monogamous, not additive...

Entanglement cost: how much entanglement does it
take, per copy, to create many copies of p48?

1
Ec(p™®) = lim ~Ep (pS5') < Er (%)
Shor '01, Hastings ‘08: Can have E; < Ep (explicit example?),
Faithful, not monogamous. Additive?



Distillable entanglement

How much entanglement can be extracted from p45Z, in
the limit of many copies?does it take, on average, to
create a single copy of p45?

Ep(pAB) = the largest rate R such that, by local operations
and classical communication, Alice and Bob can produce
nR Bell states (ebits)

(10)10) + [ITHY™ = > 1))
x€{0,1}"R
from pf%", with vanishing errors in the limit as n — oo.
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Bound entanglement

There exist “bound entangled states” with E, < Ex

[Horodeckis '97]
Analogous to bound energy in thermodynamics.

Sa + 1

Has E, = 0 since it is PPT.
So Ep not faithful.
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Big open question: do there exist NPT bound entangled states?
Would imply E, not additive.
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Sguashed entanglement

Esq(0*) = inf 1(4; BIC)

Conditional mutual information
I(4; B|C) = H(AC) + H(BC) — H(C) — H(ABC)
Satisfies strong subadditivity I(4; B|C) = 0 (not easy proof)
Generalizes mutual information
I(A;B) =S(A)+S(B) —S(AB)

It is monogamous, additive and faithful!

Easy to show that Eg, = 0 on separable states.
0) We don’t know how to compute it...
N :



State redistribution problem

Alice Bob Reference

Multi-part pure state |)4B¢P

Alice wants to give C to Bob

Many independent copies

Satisfied with approximate transfer

Alice may send Bob qubits

Alice and Bob can use preexisting ebits: \—‘f-é (100) + |11))

How much does this cost?



State redistribution problem

Reference

Alice

Bob

Multi-part pure state [p)45¢P

Alice wants to give C to Bob

Many independent copies

Satisfied with approximate transfer

Alice may send Bob qubits

Alice and Bob can use preexisting ebits: % (100) + [11))

How much does this cost?



Cost of state redistribution

. : Q
Flrst know_n operational A [Devetak & Y. — PRL0S]
interpretation of [Y. & Devetak — IEEE TIT ’09]
guantum conditional
mutual information achievable
1(C;D|B) = H(BC) + H(BD) cost pairs
—H(BCD) — H(B) \ M
(C:DIB)/2 - - @
. a~— Q+E = H(CIB)
- > E

e (Q. E) achievable iff Q > 5/(C; D|B) and Q + E > H(C|B)

Q" = }/(C; D|B) and E* = }/(C; A) — }I(C; B)



Cost of state redistribution

o

!:II’S'[ know_n operational A [Devetak & Y. — PRL'0S]
Interpretation of - [Y. & Devetak — IEEE TIT 09]
guantum conditional
mutual information achievable

I(C;D|B) = H(BC) + H(BD) cost pairs
—H(BCD) — H(B)
I(C;DIB)/2
optimal /‘Q+E H(CIB)
cost pair
T > E

I(C;A)/2 - |(C'B)/2
(Q. E) achievable iff Q > 3/(C; D|B) and Q + E > H(C|B)

Q* = 3I(C; D|B) and E* = I(C; A) — 3/(C; B)



Cost of state redi

>0

First known operational
interpretation of
guantum conditional
mutual information
1(C;D|B) = H(BC) + H(BD)
—H(BCD) — H(B)

achievable
cost pairs

stribution

[Devetak & Y. — PRL'08]
[Y. & Devetak — IEEE TIT ’09]

I(C;DIB)/2

- Q+E = H( CIB ‘.

< T

Q" = 3/(C;D|B) and E* =

T\)l

I(C;A)2 - 1(C;B)/2
* (Q, E) achievable iff Q > 3/(C; D|B) and Q + E > H(C|B)

31(C; A) -

11(C; B)

N —



Optimal protocol for state
redistribution

SO A B"

A" C™
Simple proof: decoupling via random unitaries: l ‘ 1/\
[

[Oppenheim — arXiv:0805.1065]
achieves different 1-shot quantities.

Explains the identity
n

21(C;DIB) =
~1(C; D|4)

‘enc

Applications:

« Proof that E, is faithful.

» Proof of existence of quasipolynomial-time
algorithm for deciding separability.

« Communication complexity

Let’'s see how to prove a special case: A"

To emphasize the role of D as a reference
system, relabel D - R



State merging

Bob

Alice

e |f only Bob has side information ‘

Q*=3I(C;:R), E*=-1I(C;B)

N —
NI



State merging

Bob

Al
e |f only Bob has side information e

Q" =1I(C;R), E*=-1I(C:B)

NI



State merging

e If only Bob has side information e ‘BO b‘
Q= 3I(C:R), E*=-}IC;B)
 Alice projects C onto typical subspace C B
« then does random unitary U¢—¢1C |
U

C Cs
31(C;B)  3I(C:R)



State merging

Al B
If only Bob has side information e ‘0 b.
Q* = 3I(C;R), E*=-3}I(C;B)
Alice projects C onto typical subspace o B
then does random unitary U°¢—¢1Cz |
Cy maximally mixed, decoupled from R U
C; therefore maximally entangled with C>B

notation: C1 1 R, C1 —— CzB Ci 'y

(C:B)  3I(C;R)



State merging

If only Bob has side information

Q"= 1I(C;R), E*=-1IC:;B)

N —

Alice projects C onto typical subspace
then does random unitary U¢—¢1Cz

C1 maximally mixed, decoupled from R

C; therefore maximally entangled with CoB
notation: C; L R, Ci == CoB

Unitarity = Bob can extract entanglement
and reconstruct CB

Original motivation: distilling entanglement

Alice

Bob




