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Shuffling rooms

• Thursday, Sept. 21st class is in MC4058

• Tuesday, Sept. 26th class is in…?
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No-cloning 

theorem
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Classical information can be copied

0

a a

a 0

a a

a

What about quantum information?

ψ

0

ψ

ψ ?
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works fine for 𝜓 = |0〉 and 𝜓 = |1〉

... but it fails for 𝜓 = + =
0 +|1〉

2

... where it yields output 
1

2
00 +

1

2
11

instead of + |+〉 =
1

4
00+

1

4
01+

1

4
10+

1

4
11

Candidate:
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No-cloning theorem

Theorem: there is no valid quantum operation that maps 

an arbitrary state |𝜓〉 to 𝜓 |𝜓〉

Proof: Suppose there is an operation that is 

capable of cloning two different states  

𝜓 and 𝜓′, yielding outputs 

𝜓𝜓𝑔 and 𝜓′𝜓′𝑔′ respectively.

Since 𝑈 preserves inner products, 

𝜓𝜓′ = 𝜓𝜓′𝜓𝜓′𝑔|𝑔′ so

𝜓𝜓′(1 − 𝜓𝜓′𝑔|𝑔′) = 0 so

𝜓𝜓′ = 0 or 1

𝜓

0

0

𝜓

𝜓

𝑔

U



No-cloning theorem
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Classical computations as circuits
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Classical (boolean logic) gates

NOT gate a a a a

ΛAND gate
b

a
a Λ b

a

b
a Λ b

“old” notation “new” notation

Note: an OR gate can be simulated by one AND gate 

and three NOT gates (since  a V b = (a Λ b) )
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Models of computation
Classical 

circuits:

0

1

1

0

1

1

0

1

0

1

Quantum 

circuits:

1

0

Λ

Λ

Λ







Λ

Λ

Λ

Λ

Λ
1

1

0

1

Λ



0

1

1

1

0



Λ

Λ



Λ
1

Λ

data flow
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Multiplication problem

• “Grade school” algorithm costs O(n2)  [scales up polynomially]

• Best currently-known classical algorithm costs slightly less 

than O(n log n loglog n)   

[to be precise, 𝑂(𝑛 log 𝑛 2𝑂(log
∗ 𝑛)) – see Fürer's algorithm) ]

• Best currently-known quantum method: same

Input: two n-bit numbers (e.g. 101 = 5 and 111 = 7)

Output: their product (e.g. 100011 = 35)
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Factoring problem

• Trial division costs   2𝑛/2

• Best currently-known classical algorithm costs  ≈ 2𝑛
1/3

[more precisely, 2𝑂(𝑛
1/3 log2/3 𝑛) ≠ 𝑂(poly 𝑛 ) (general number field sieve)] 

• The presumed hardness of factoring is the basis of the 

security of many cryptosystems (e.g. RSA)

• Shor’s quantum algorithm costs ≈ 𝑛2 [less than 

𝑂(𝑛2 log 𝑛 log log 𝑛)]

• Implementation would break RSA — and many other public-

key cryptosystems

Input: an n-bit number (e.g. 100011 = 35)

Output: their prime factors (e.g. 101 = 3, 111 = 7)
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Simulating classical circuits 

with quantum circuits
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(Sometimes called a “controlled-controlled-NOT” gate)

 𝑎 ∧ 𝑏 ⊕ 𝑐 

𝑏

𝑎𝑎

𝑏

𝑐

Toffoli gate

































01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

Matrix representation:

In the computational basis, it 

negates the third qubit iff the 

first two qubits are both 1
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Quantum simulation of classical 

Theorem: a classical circuit of size 𝑠 can be simulated by a 

quantum circuit of size 𝑂(𝑠)

Idea: using Toffoli gates, one can simulate: 

AND gates

𝑎 ∧ 𝑏

𝑏

𝑎𝑎

𝑏

0

NOT gates

𝑎

1

11

1

𝑎

We will have to deal with the garbage later on
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Simulating probabilistic algorithms

Since quantum gates can simulate AND and NOT, the 

outstanding issue is how to simulate randomness

To simulate “coin flips”, 
one can use the circuit:

It can also be done without intermediate measurements:

0 𝐻 random bit

0

0 use in place of coin flip

isolate this qubit

𝐻

Exercise: prove that this works
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Simulating quantum circuits 

with classical circuits
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Classical simulation of quantum

Theorem: a quantum circuit of size 𝑠 acting on n qubits can 
be simulated by a classical circuit of size 𝑂(𝑠𝑛22𝑛) = 𝑂(2𝑐𝑛)

Idea: to simulate an 𝑛-qubit state, use an array of size 2𝑛

containing values of all 2𝑛 amplitudes within precision 2−𝑛

000

001

010

011

:

111

Can adjust this state vector whenever a unitary 

operation is performed at cost 𝑂(𝑛22𝑛)

From the final amplitudes, can determine how to 

set each output bit

Exercise: show how to do the simulation using 

only a polynomial amount of space (memory) 

(see Preskill’s lecture notes)
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Some complexity classes

• P (polynomial time): the problems solved by 𝑂(𝑛𝑐)-size 

classical circuits [technically, we restrict to decision problems 

and to “uniform circuit families”]

• BPP (bounded error probabilistic polynomial time):

the problems solved by 𝑂(𝑛𝑐)-size probabilistic circuits that 

are correct with probability ≥ 2/3

• BQP (bounded error quantum polynomial time):

the problems solved by 𝑂(𝑛𝑐)-size quantum circuits that are 

correct with probability ≥ 2/3

• EXP (exponential time):

the problems solved by 𝑂 2𝑛
𝑐

-size circuits
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Summary of basic containments

P

BPP

BQP

PSPACE

EXP

We will return to this picture 

in more detail later in the course.  

See Aaronson’s book or the 

Complexity Zoo for (much) more.

https://complexityzoo.uwaterloo.ca/Complexity_Zoo

P ⊆ BPP ⊆ BQP ⊆ PSPACE ⊆ EXP


