
1

Introduction to

Quantum Information Processing
QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Jon Yard

QNC 3126

jyard@uwaterloo.ca

http://math.uwaterloo.ca/~jyard/qic710

Lecture 4 (2017)

mailto:jyard@uwaterloo.ca
http://math.uwaterloo.ca/~jyard/qic710

Rooms and enrollment cap

2

Sept. 19 QNC 1501 Sept. 21 MC 4058

Sept. 26 QNC 1501 Sept. 28 QNC 0101

Oct. 3 TBD Oct. 5 QNC 1501

Oct. 10 QNC 0101 Oct. 12 QNC 0101

Oct. 17 QNC 0101 Oct. 19 QNC 0101

Oct. 24 QNC 0101 Oct. 26 QNC 1501

Oct. 31 QNC 0101 Nov. 2 QNC 0101

Nov. 7 QNC 0101 Nov. 9 QNC 0101

Nov. 14 QNC 0101 Nov. 16 QNC 0101

Nov. 21 QNC 0101 Nov. 23 QNC 0101

Nov. 28 QNC 0101 Nov. 30 QNC 0101

Enrollment cap raised from 50 to 60. Spaces

available in CO 681 and in QIC 710.

Webpage and homework

3

http://math.uwaterloo.ca/~jyard/qic710

I will not be posting new assignments and

lecture slides to LEARN. We would like to receive

electronic submissions via LEARN or email if

possible, though paper will be accepted in class. No

poorly formatted phone pictures please!! If you

discuss the homework with other classmates, please

write up your own solutions and mention who you

worked with in your writeup.

http://math.uwaterloo.ca/~jyard/qic710

4

5

Simple quantum algorithms

in the query scenario

6

Query scenario

Input: a function 𝑓, given as

a black box (a.k.a. oracle) 𝑓𝑥 𝑓(𝑥)

Goal: determine some information about f making as few

queries to 𝑓 (and other operations) as possible

Example: polynomial interpolation

Let: 𝑓 𝑥 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 +⋯+ 𝑐𝑑 𝑥

𝑑

Goal: Determine 𝑐0 , 𝑐1 , 𝑐2 ,… , 𝑐𝑑.

Question: How many queries of 𝑓 does

this require?
Answer: 𝑑 + 1

Proof

7

𝑦0
𝑑 𝑦0

𝑑−1 ⋯ 1

𝑦1
𝑑 𝑦1

𝑑−1 ⋯ 1
⋮ ⋮ ⋱ ⋮
𝑦𝑑
𝑑 𝑦𝑑

𝑑−1 ⋯ 1

𝑐𝑑
𝑐𝑑−1
⋮
𝑐0

=

𝑓(𝑦0)
𝑓(𝑦1)
⋮

𝑓(𝑦𝑑)

𝑦0 𝑦1 𝑦𝑑

𝑓(𝑦0)

𝑓(𝑦1)
𝑓(𝑦𝑑)

Vandermonde

matrix

8

Deutsch’s problem

9

Deutsch’s problem

Let 𝑓 ∶ {0,1} → {0,1} f

There are four possibilities:

𝑥 𝑓1(𝑥)

0

1

0

0

𝑥 𝑓2(𝑥)

0

1

1

1

𝑥 𝑓3(𝑥)

0

1

0

1

𝑥 𝑓4(𝑥)

0

1

1

0

Goal:

Determine whether or not 𝑓(0) = 𝑓(1) (i.e. 𝑓 0 ⊕ 𝑓 1 = 0).

Or in other words, whether 𝑓 ∈ {𝑓1, 𝑓2} or 𝑓 ∈ 𝑓3, 𝑓4 .

Any classical method requires two queries.

What about a quantum method?

10

Reversible black box for f

Uf

𝑎

𝑏

𝑎

𝑏 ⊕ 𝑓 𝑎

A classical algorithm:
(still requires 2 queries)

f f0

0

1

𝑓 0 ⊕ 𝑓(1)

2 queries + 1 auxiliary operation

falternate

notation:
𝑎 𝑎

b 𝑏 ⊕ 𝑓(𝑎)

11

Quantum algorithm for Deutsch

𝐻 f

𝐻

𝐻

1

0 𝑓 0 ⊕ 𝑓(1)

1 query + 4 auxiliary operations

How does this algorithm work?

Each of the three 𝐻 operations can be seen as playing

a different role ...

1

2 3

𝐻 =
1

2

1 1
1 −1

12

Quantum algorithm (1)

𝐻 𝑓

𝐻

𝐻

1

0

1. Creates the state 0− 1, which is an eigenvector of

1

2 3

𝑵𝑶𝑻 = 𝑿 with eigenvalue –1

I with eigenvalue +1

This causes f to induce a phase shift of −1 𝑓(𝑥) to 𝑥

𝑓

0− 1

𝑥 −1 𝑓(𝑥)|𝑥〉

0− 1

13

Quantum algorithm (2)

2. Causes f to be queried in superposition (at 0+ 1)

f

0− 1

0 −1 𝑓(0) 0 + −1 𝑓(1)|1〉

0− 1

H

x 𝑓1(𝑥)

0

1

0

0

x 𝑓2(𝑥)

0

1

1

1

x 𝑓3(𝑥)

0

1

0

1

x 𝑓4(𝑥)

0

1

1

0

(0 + 1) (0 – 1)

14

Quantum algorithm (3)

3. Distinguishes between (0 + 1) and (0 – 1)

H

(0 + 1) 0

(0 – 1) 1

H

𝐻 𝑓

𝐻

𝐻

1

0

1

2 3

−1 𝑓(0) 0 + −1 𝑓(1)|1〉

15

Summary of Deutsch’s algorithm

H f

H

H

|1〉

|0〉 𝑓 0 ⊕ 𝑓(1)

1

2 3

constructs eigenvector so 𝑓-queries

induce phases: 𝑥 → –1 𝑓(𝑥)|𝑥〉

produces superposition

|0〉 + |1〉 of inputs to 𝑓
extracts phase differences from

−1 𝑓(0) 0 + −1 𝑓(1)|1〉

Makes only one query, whereas two are needed classically

16

One-out-of-four search

17

One-out-of-four search

Let 𝑓 ∶ 0,1 2 → {0,1} have the property that there is

exactly one 𝑥 ∈ {0,1}2 with 𝑓 𝑥 = 1.

4 possibilities 𝑥 𝑓00(𝑥)

00

01

10

11

1

0

0

0

Goal: Find the 𝑥 ∈ 0,1 2 such that 𝑓(𝑥) = 1.

In other words, determine if 𝑓 = 𝑓00, 𝑓 = 𝑓01, 𝑓 = 𝑓10 or 𝑓 = 𝑓11.

𝑥 𝑓01(𝑥)

00

01

10

11

0

1

0

0

𝑥 𝑓10(𝑥)

00

01

10

11

0

0

1

0

𝑥 𝑓11(𝑥)

00

01

10

11

0

0

0

1

What is the minimum number of queries classically? ____

Quantumly? ____

18

Quantum algorithm (I)

f
𝑥1

𝑥2

𝑦

𝑥2

𝑥1

𝑦 ⊕ 𝑓(𝑥1, 𝑥2)

(−1 𝑓 00 00 + −1 𝑓 01 01 + −1 𝑓 10 10 + −1 𝑓 11 |11〉)(0 − |1〉)

Output state of query?

Black box for 1-4 search:

Start by creating phases in superposition of all inputs to f:

Input state to query?

f
H

H

H1

0

0

(00 + 01 + 10 + |11〉)(0 − |1〉)

19

Quantum algorithm (II)

Output state of the first two qubits in the four cases:

f
H

H

H1

0

0

Case of 𝑓00?

𝜓01 = +00− 01+ 10+ 11

𝜓10 = +00+ 01 – 10+ 11

𝜓11 = +00+ 01+ 10 – 11

What noteworthy property do these states have?

U

Challenge Exercise: simulate the above 𝑈 in terms of 𝐻,

CNOT and NOT gates

𝜓00 = −00+ 01+ 10+ 11

Case of 𝑓01?

Case of 𝑓10?

Case of 𝑓11?

Orthogonal!

 Apply the 𝑈 that maps

 𝜓00, 𝜓01, 𝜓10, 𝜓11 to

 00, 01, 10, 11 (resp.)

20

one-out-of-𝑁 search?

Natural question: what about search problems in spaces

larger than four (and without uniqueness conditions)?

For spaces of size eight (say), the previous method breaks

down—the state vectors will not be orthogonal.

Later on, we’ll see how to search a space of size 𝑁 with

𝑂 𝑁 queries ...

21

Constant vs. balanced

22

Constant vs. balanced

Let 𝑓: 0,1 𝑛 → {0,1} be either constant or balanced, where

• constant means 𝑓(𝑥) = 0 for all 𝑥, or 𝑓(𝑥) = 1 for all 𝑥.

• balanced means σ𝑥 𝑓 𝑥 = 2𝑛−1 (i.e. half 0s, half 1s).

Goal: Determine whether 𝑓 is constant or balanced.

How many queries are needed classically? ____

Quantumly? ____

Example: It could still be either if

𝑓 0000 = 𝑓 0001 = 𝑓 0010 = ⋯ = 𝑓(0111) = 0

[Deutsch & Jozsa, 1992]

23

Quantum algorithm

f
H

H

H1

0

0

H0

Constant case: |𝜓〉 = σ𝑥 |𝑥〉 Why?

How to distinguish between the cases? What is 𝐻𝑛𝜓?

Last step of the algorithm: If the measured result is 000 then

output “constant”, otherwise output “balanced”.

ψ

Constant case: 𝐻𝑛𝜓 =  00⋯0

Balanced case: 𝐻𝑛 𝜓 is orthogonal to 0⋯00

H

f
H

H

H1

0

0

H0

H

H

Balanced case: 𝜓 is orthogonal to σ𝑥 |𝑥〉 Why?

24

Probabilistic classical algorithm

solving constant vs balanced

But here’s a classical procedure that makes only 2 queries

and performs fairly well probabilistically:

1. pick 𝑥1, 𝑥2 ∈ 0,1 𝑛 randomly

2. if 𝑓(𝑥1) ≠ 𝑓(𝑥2) then output “balanced” else output

“constant”

What happens if 𝑓 is constant?

Succeeds with probability
1

2
.

By repeating the above procedure 𝑘 times:

2𝑘 queries and one-sided error probability 2−𝑘

Therefore, for large 𝑛, we see ≪ 2𝑛 queries are likely sufficient

The algorithm always succeeds.

What happens 𝑓 if is balanced?

