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𝐻𝐻⋯𝐻
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Viewing {𝟎, 𝟏}𝑛 as a vector space

𝔽2 = {0,1} with addition and multiplication mod 2 is a field.

𝑥𝑦 = 𝑥 ∧ 𝑦, 𝑥 ⊕ 𝑦 = 𝑥 + 𝑦, 𝑥 = −𝑥, ¬𝑥 = 𝑥 + 1

𝔽2
𝑛 = 0,1 𝑛 is a 𝑛-dimensional vector space over 𝔽2

𝑥 ⋅ 𝑦 = 𝑥1𝑦1 +⋯+ 𝑥𝑛𝑦𝑛 is like a “dot product” of the vectors

𝑥 ⋅ 𝑦 = 0 can be interpreted as the vectors being “orthogonal”

but this notion of orthogonality has some weird properties, 

such as the possibility that 𝑥 ⋅ 𝑥 = 0, even for non-zero vectors. 

Caution: For 𝑛-qubit systems, do not confuse the 𝑛-dimensional 

vector space 𝔽2
𝑛 with the 2𝑛-dimensional Hilbert space. 

The usual vector space notions like subspace and dimension 

make sense here.
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About  𝑯⊗𝑯⊗⋯⊗𝑯 = 𝑯⊗𝒏

Thus,  

Proof:  For all 𝑥𝑖 ∈ 𝔽2, 

Example: 𝐻⊗𝐻 =
1

2

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

Theorem: for 𝑥 ∈ 𝔽2
𝑛,

where 𝑥 ⋅ 𝑦 = 𝑥1𝑦1 +⋯+ 𝑥𝑛𝑦𝑛

𝐻⊗𝑛 𝑥 =
1

2𝑛/2
෍

𝑦∈𝔽2
𝑛

−1 𝑥⋅𝑦|𝑦〉

𝐻 𝑥𝑖 = 0 + −1 𝑥𝑖 1 = ෍

𝑦𝑖∈𝔽2

−1 𝑥𝑖|𝑦𝑖〉

𝐻⊗𝑛 𝑥1, … , 𝑥𝑛 = ෍

𝑦1∈𝔽2

−1 𝑥1 𝑦1 ⋯ ෍

𝑦𝑛∈𝔽2

−1 𝑥𝑛 𝑦𝑛

= ෍

𝑦∈𝔽2
𝑛

−1 𝑥1𝑦1+⋯+𝑥𝑛𝑦𝑛 𝑦1, 𝑦2, … , 𝑦𝑛
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Simon’s problem
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Quantum vs. classical separations

black-box problem quantum classical

constant vs. balanced 1 (query) 2 (queries)

1-out-of-4 search 1 3

constant vs. balanced 1 ½ 2n + 1

Simon’s problem

(only for exact)

(probabilistic)
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Simon’s problem
Let 𝑓: 𝔽2

𝑛 → 𝔽2
𝑛 have the property that there exists an 𝑟 ∈ 𝔽2

𝑛

such that 𝑓 𝑥 + 𝑟 = 𝑓 𝑥 for every 𝑥 ∈ 𝔽2
𝑛.

In other words, such that 𝑓 𝑥 = 𝑓(𝑦) iff 𝑥 + 𝑦 = 𝑟 or 𝑥 = 𝑦.

Simons problem: Find 𝑟.

x f (x)

000

001

010

011

100

101

110

111

011

101

000

010

101

011

010

000

Example:

What is r is this case? ________

Answer: r = 101
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A classical algorithm for Simon

Search for a collision, an x ≠ y such that  f (x) = f (y) 

A hard case is where 𝑟 is chosen randomly from nonzero 

vectors in 𝔽2
𝑛, and then the “table” for 𝑓 is filled out randomly 

subject to the structure implied by 𝑟.

1. Choose 𝑥1, 𝑥2, … , 𝑥𝑘 ∈ 𝔽2
𝑛 randomly (independently)

2. For all 𝑖 ≠ 𝑗, if 𝑓 𝑥𝑖 = 𝑓(𝑥𝑗), then output 𝑥𝑖 + 𝑥𝑗 and halt

How big does 𝑘 have to be for the probability of a collision 

to be a constant, such as 3/4?

Answer: order 2𝑛/2 (each (𝑥𝑖 , 𝑥𝑗) collides with prob. 𝑂(2−𝑛))
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Classical lower bound

Theorem: any classical algorithm solving Simon’s 

problem must make at least 
6

11
2𝑛 − 1 = 𝛀 𝟐𝒏/𝟐 queries

Proof is omitted here (see note on course website) —note 

that the performance analysis of the previous algorithm 

does not imply the theorem.

… how can we know that there isn’t a different algorithm 

that performs better?



10

A quantum algorithm for Simon I

𝑥2
𝑥𝑛

𝑥1

f

𝑦2
𝑦𝑛

𝑦1

𝑥2
𝑥𝑛

𝑥1

|𝑦 + 𝑓 𝑥 〉

Queries:

Not clear how to apply old 

trick from Deutch.  Which 

eigenvector of target 

registers to use?

Proposed start of quantum 

algorithm: query all values 

of 𝑓 in superposition
f

H

H

0

0

0

H0

0

0

What is the output state of 

this circuit?

?
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A quantum algorithm for Simon II

Answer: the output state is

Let 𝑇 ⊂ 𝔽2
𝑛 be such that one element from 

each matched pair is in 𝑇 (assume 𝑟 ≠ 00...0)

x f (x)

000

001

010

011

100

101

110

111

011

101

000

010

101

011

010

000

Example: could take 𝑇 = {𝟎𝟎𝟎, 𝟎𝟎𝟏, 𝟎𝟏𝟏, 𝟏𝟏𝟏}

Then the output state can be written as

෍

𝑥∈𝔽2
𝑛

𝑥 |𝑓 𝑥 〉

෍

𝑥∈𝑇

𝑥 𝑓 𝑥 + 𝑥 + 𝑟 |𝑓(𝑥 + 𝑟))

= ෍

𝑥∈𝑇

𝑥 + |𝑥 + 𝑟〉) 𝑓 𝑥
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A quantum algorithm for Simon III
Measuring the second register yields 𝑥 + |𝑥 + 𝑟〉 in the 
first register, for a random 𝑥 ∈ 𝑇.

How can we use this to obtain some information about 𝑟?

Try applying 𝐻⊗𝑛 to the state, yielding

1/2 𝑛−1 if 𝑟 ∙ 𝑦 = 0
0 if 𝑟 ⋅ 𝑦 ≠ 0

Measuring this state yields 𝑦 with prob.  

෍

𝑦∈𝔽2
𝑛

−1 𝑥⋅𝑦 𝑦 + ෍

𝑦∈𝔽2
𝑛

−1 (𝑥+𝑟)⋅𝑦 𝑦

= ෍

𝑦∈𝔽2
𝑛

−1 𝑥⋅𝑦(1 + −1 𝑟⋅𝑦) 𝑦
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A quantum algorithm for Simon IV
Executing this algorithm 𝑘 = 𝑂(𝑛) times 

yields random 𝑦1, 𝑦2, … , 𝑦𝑘 ∈ 𝔽2
𝑛 such 

that 𝑟 ⋅ 𝑦1 = 𝑟 ⋅ 𝑦2 = ⋯ = 𝑟 ⋅ 𝑦𝑘 = 0.
f

H

H

0

0

0

H0

0

0

H

H

H

This is a system of  k linear equations:



























































0

0

0

2

1

21

22221

11211











nknkk

n

n

r

r

r

yyy

yyy

yyy

With high probability, there is a unique non-zero solution 

that is  r (which can be efficiently found by linear algebra) 

How does this help?
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Conclusion of Simon’s algorithm

• Any classical algorithm has to query the black box 𝛀 𝟐𝒏/𝟐

times, even to succeed with probability ¾ for a random 𝑓.

• There is a quantum algorithm that queries the black box 

only 𝑶(𝒏) times, performs only 𝑶 𝒏𝟑 auxiliary operations 

(for the Hadamards, measurements, and linear algebra), 

and succeeds with probability ¾

black-box problem quantum classical

constant vs. balanced 1 (query) 2 (queries)

1-out-of-4 search 1 3

constant vs. balanced 1 4

Simon’s problem 𝑶 𝒏𝟑 𝛀 𝟐𝒏/𝟐

for success 

probability 

≧¾ 
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Quantum vs classical

black-box problem quantum classical

constant vs. balanced 1 (query) 2 (queries)

1-out-of-4 search 1 3

constant vs. balanced 1 4

Simon’s problem 𝑶 𝒏𝟑 𝛀 𝟐𝒏/𝟐

for success 

probability 

≧¾ 

H f

H

H

1

0 f
H

H

H1

0

0

f
H

H

H1

0

0

H0



Thursday class in QNC 0101
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Sept. 19 QNC 1501 Sept. 21 MC 4058

Sept. 26 QNC 1501 Sept. 28 QNC 0101

Oct. 3 OPT 309 Oct. 5 QNC 1501

Oct. 10 QNC 0101 Oct. 12 QNC 0101

Oct. 17 QNC 0101 Oct. 19 QNC 0101

Oct. 24 QNC 0101 Oct. 26 QNC 1501

Oct. 31 QNC 0101 Nov. 2 QNC 0101

Nov. 7 QNC 0101 Nov. 9 QNC 0101

Nov. 14 QNC 0101 Nov. 16 QNC 0101

Nov. 21 QNC 0101 Nov. 23 QNC 0101

Nov. 28 QNC 0101 Nov. 30 QNC 0101


