
1

Introduction to 

Quantum Information Processing
QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Jon Yard

QNC 3126

jyard@uwaterloo.ca

http://math.uwaterloo.ca/~jyard/qic710

Lecture 6 (2017)

mailto:jyard@uwaterloo.ca
http://math.uwaterloo.ca/~jyard/qic710


Homework on Crowdmark

• We will be using Crowdmard to grade homeworks.

• Upload .pdf once then drag each problem solution to the 

box for that problem.

• New page per solution (but okay this time if not, just scan 

relevant pages twice).

• Will accept paper for this assignment, but understand that 

we will need to scan it in.

• For this reason, okay to turn in on Friday.

2



Tuesday class in OPT 309

3

Sept. 19 QNC 1501 Sept. 21 MC 4058

Sept. 26 QNC 1501 Sept. 28 QNC 0101

Oct. 3 OPT 309 Oct. 5 QNC 1501

Oct. 10 QNC 0101 Oct. 12 QNC 0101

Oct. 17 QNC 0101 Oct. 19 QNC 0101

Oct. 24 QNC 0101 Oct. 26 QNC 1501

Oct. 31 QNC 0101 Nov. 2 QNC 0101

Nov. 7 QNC 0101 Nov. 9 QNC 0101

Nov. 14 QNC 0101 Nov. 16 QNC 0101

Nov. 21 QNC 0101 Nov. 23 QNC 0101

Nov. 28 QNC 0101 Nov. 30 QNC 0101



OPT 309

4



5

Discrete log problem



6

Discrete logarithm problem (DLP)

Input: 𝑝 (prime),  𝑔 (generator of ℤ𝑝
×),  𝑎 ∈ ℤ𝑝

×

Output: 𝑟 ∈ ℤ𝑝−1 such that 𝑔𝑟 ≡ 𝑎 mod 𝑝

Example: 𝑝 = 7, ℤ7
× = 1, 2, 3, 4, 5, 6 = {30, 32, 31, 34, 35, 33}

(hence 3 is a generator of ℤ7
×)

For 𝑎 = 6, since 33 = 6, the output should be 𝑟 = 3

Note: No efficient classical algorithm for DLP is known, 

and cryptosystems exist (El Gamal encryption, Diffie-

Hellman key exchange, Digital Signature Algorithm) whose 

security is based on the computational difficulty of DLP.

Efficient quantum algorithm for DLP? 

(Hint: it can be made to look like Simon’s problem!)



7

DLP similar to Simon’s problem
Clever idea (of Shor): define 𝑓: ℤ𝑝−1 × ℤ𝑝−1 → ℤ𝑝

× as

𝑓 𝑥1, 𝑥2 = 𝑔𝑥1𝑎−𝑥2 mod 𝑝. Can be efficiently computed

classically (e.g. in 𝑂(𝑛3)-time by repeated squaring).

We know 𝑎 = 𝑔𝑟 for some 𝑟, so 𝑓 𝑥1, 𝑥2 = 𝑔𝑥1−𝑟𝑥2 mod 𝑝

When is 𝑓(𝑥1 , 𝑥2) = 𝑓(𝑦1, 𝑦2) ?

Thus, 𝑓 𝑥1, 𝑥2 = 𝑓(𝑦1, 𝑦2) iff 𝑥1 − 𝑟𝑥2 ≡ 𝑦1 − 𝑟𝑦2 mod 𝑝 − 1

iff 𝑥1, 𝑥2 ⋅ 1, −𝑟 ≡ 𝑦1, 𝑦2 ⋅ 1, −𝑟 mod 𝑝 − 1

iff ( 𝑥1, 𝑥2 − 𝑦1, 𝑦2 ) ⋅ 1, −𝑟 ≡ 0 mod 𝑝 − 1

iff 𝑥1, 𝑥2 − 𝑦1, 𝑦2 ≡ 𝑘 𝑟, 1 mod 𝑝 − 1

ℤ𝑝1ℤ𝑝1

(1, 𝑟)

(𝑟, 1)

cf. Simon’s property: 𝑓(𝑥) = 𝑓(𝑦) iff 𝑥 − 𝑦 ≡ 𝑟 mod 2.



8

Simon’s problem modulo 𝒎

Goal: determine (𝑟1, 𝑟2)

Given:  𝑓: ℤ𝑚 × ℤ𝑚 → 𝑇 with the property that

where (𝑟1, 𝑟2) is the hidden data.

𝑓(𝑥1 , 𝑥2) = 𝑓(𝑦1, 𝑦2) iff 𝑥1, 𝑥2 − 𝑦1, 𝑦2 ≡ 𝑘 𝑟1, 𝑟2 mod 𝑚,

𝑥2
𝑥1

𝑦

f
𝑥1
𝑥2

𝑦 + 𝑓(𝑥1,𝑥2)

The reversible query box for 𝑓 is

The function arising in DLP can be abstracted to the following: 

Not a “black” box, because we can simulate it by 1-qubit  

and 2-qubit gates (and this can be done efficiently)…

where each “wire” 

denotes many qubit 

wires, to represent 

elements of ℤ𝑚 like: ˚̊˚̊

f

Note: in DLP case, 𝑟1, 𝑟2 = (𝑟, 1)



9

Digression: 

on simulating black boxes



10

How not to simulate a black box

Given an efficiently (classically) computable function, over 

some finite domain, such as 𝑓 𝑥 = 𝑔𝑥1𝑎−𝑥2 mod 𝑝,

need to simulate 𝑓-queries over that domain.

Easy to compute mapping 𝑥 𝑦 0⋯0 ↦ 𝑥 𝑦 + 𝑓 𝑥 |𝑔 𝑥 〉, 
where the third register is “work space” with accumulated 

“garbage” (e.g., two such bits arise when a Toffoli gate is used 

to simulate an AND gate inside a classical circuit).

If  f is queried in superposition then the resulting state can be 
σ𝑥 𝛼𝑥 𝑥 𝑦 + 𝑓 𝑥 |𝑔 𝑥 〉.
Can’t we just discard the third register?

No ... there could be entanglement ...

This works fine as long as 𝒇 is not queried in superposition



Intermediate AND gates

11

1

0

Λ

Λ

Λ







Λ

Λ

Λ

Λ

Λ
1

1

0

1

Λ



0

1

1

1

0



Λ

Λ



Λ
1

Λ

𝑎 ∧ 𝑏

𝑏

𝑎𝑎

𝑏

0



12

How to simulate a black box

Simulate the mapping 𝑥 𝑦 0⋯0 ↦ 𝑥 𝑦 + 𝑓 𝑥 0⋯0 , 

(i.e., clean up the “garbage”)

To do this, use an additional register, and:

1. compute 𝑥 𝑦 0⋯0 0⋯0 ↦ 𝑥 𝑦 𝑓 𝑥 𝑔(𝑥)
(ignoring the 2nd register in this step)

2. compute 𝑥 𝑦 𝑓 𝑥 𝑔(𝑥) ↦ 𝑥 𝑦 + 𝑓(𝑥) 𝑓 𝑥 𝑔(𝑥)
(using CNOT gates between the 2nd and 3rd registers)

3. compute 𝑥 𝑦 + 𝑓(𝑥) 𝑓 𝑥 𝑔(𝑥) ↦ 𝑥 𝑦 + 𝑓(𝑥) 0⋯0 0⋯0
(by reversing, i.e. “uncomputing”, the procedure in step 1)

Total cost about twice the classical cost of computing 𝑓, 

plus 𝑛 auxiliary CNOT gates. 



13

Simon’s problem modulo m

𝑥2
𝑥1

𝑦

f
𝑥1
𝑥2

𝑦 + 𝑓(𝑥1,𝑥2)

So now we have an efficient way of implementing the 

reversible black box for  f

OK, so what about a quantum algorithm for this problem?

Reminder: each “thick wire” denotes several qubits, to represent an 

element of ℤ𝑚 (e.g. {0, 1, 2, 3, 4, 5, 6} = {000, 001, 010, 011, 100, 101, 110})

𝑥2
𝑥1

𝑦

𝑥1
𝑥2

𝑦 + 𝑓(𝑥1,𝑥2)
˚̊˚̊

f

To get one, we go beyond the Hadamard transform, which 

has been our main tool so far, to…



14

Quantum Fourier transform (QFT)



15

Quantum Fourier transform

where 𝜔 = 𝑒2𝜋𝑖/𝑚 (for 𝑛 qubits, 𝑚 = 2𝑛).

This is unitary and generalizes the Hadmard transform 𝐹2 = 𝐻.

The quantum Fourier transform is an important component 

of several interesting quantum algorithms …

𝐹𝑚 =
1

𝑚

1 1 1 1 ⋯ 1
1 𝜔 𝜔2 𝜔3 ⋯ 𝜔𝑚−1

1 𝜔2 𝜔4 𝜔6 ⋯ 𝜔2(𝑚−1)

1 𝜔3 𝜔6 𝜔9 ⋯ 𝜔3(𝑚−1)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

1 𝜔𝑚−1 𝜔2 𝑚−1 𝜔3(𝑚−1) ⋯ 𝜔 𝑚−1 2



16

Quantum algorithm for Simon mod 𝒎

fF0
F0

0

F†

F†

Turns out that the result is a random (𝑠1, 𝑠2)
such that 𝑠1, 𝑠2 ⋅ 𝑟, 1 ≡ 0 mod 𝑚.

(generalizes idea from Simon’s algorithm)

If gcd 𝑠1, 𝑚 = 1, then 𝑠1 has an inverse mod 𝑚, and 𝑟 can 

be computed as 𝑟 ≡ −𝑠2/𝑠1 mod 𝑚.
(The details of computing 𝑠1

−1 mod 𝑚 follow from the 

extended Euclidean algorithm).

Moreover, the probability that gcd 𝑠1, 𝑚 = 1 occurs is not 

too small (if it fails the algorithm can be run again).

𝑓 𝑥1, 𝑥2 = 𝑓(𝑦1, 𝑦2) iff 𝑥1, 𝑥2 − 𝑦1, 𝑦2 ≡ 𝑘 𝑟, 1 mod 𝑚



17

Quantum algorithm for Simon mod 𝒎
Steps that have been shown to be efficiently implementable 

(i.e., in terms of a number of 1- and 2-qubit/bit gates that 

scales polynomially with respect to the number of bits of 𝑚):

• Implementation of reversible gate for 𝑓
• The classical post-processing at the end

What’s missing?

• Implementation of the QFT 𝑓 modulo 𝑚 (= 𝑝 − 1 for DLP)

• Proof that outcome is random s.t. 𝑠1, 𝑠2 ⋅ 𝑟, 1 ≡ 0 mod 𝑚

Next time, we’ll show how to implement the QFT for 𝑚 = 2𝑛.

Shor did this too, and showed that if the modulus is within a 

factor of 2 from 𝑝 − 1, by using careful error-analysis, this 

was good enough, though the calculations and analysis 

become more complicated (we’ll omit the details of this).



Tuesday class in OPT 309

18

Sept. 19 QNC 1501 Sept. 21 MC 4058

Sept. 26 QNC 1501 Sept. 28 QNC 0101

Oct. 3 OPT 309 Oct. 5 QNC 1501

Oct. 10 QNC 0101 Oct. 12 QNC 0101

Oct. 17 QNC 0101 Oct. 19 QNC 0101

Oct. 24 QNC 0101 Oct. 26 QNC 1501

Oct. 31 QNC 0101 Nov. 2 QNC 0101

Nov. 7 QNC 0101 Nov. 9 QNC 0101

Nov. 14 QNC 0101 Nov. 16 QNC 0101

Nov. 21 QNC 0101 Nov. 23 QNC 0101

Nov. 28 QNC 0101 Nov. 30 QNC 0101



OPT 309

19


