Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 7 (2017)

Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/gic710

Continuing with the QFT for $m = 2^n$

Quantum Fourier transform

$$F_{m} = \frac{1}{\sqrt{m}} \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{m-1}\\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{2(m-1)}\\ 1 & \omega^{3} & \omega^{6} & \omega^{9} & \cdots & \omega^{3(m-1)}\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{m-1} & \omega^{2(m-1)} & \omega^{3(m-1)} & \cdots & \omega^{(m-1)^{2}} \end{pmatrix}$$

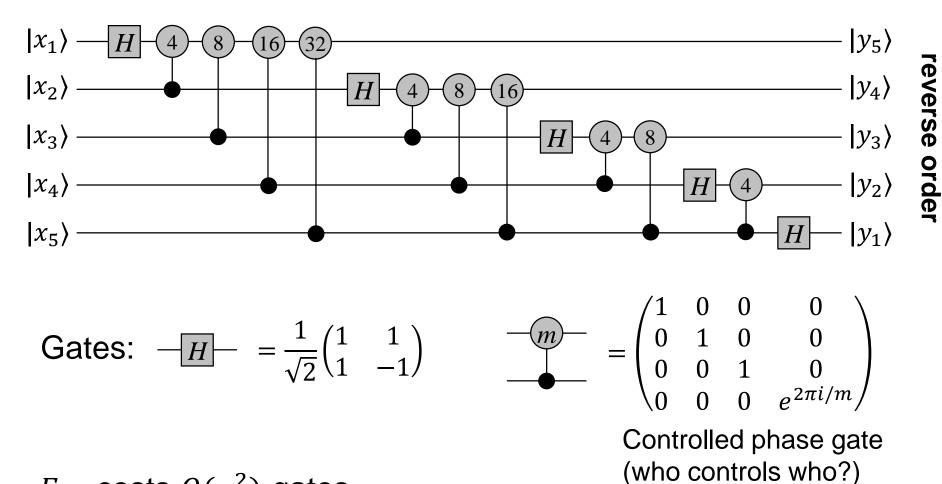
where $\omega = e^{2\pi i/m}$ (for *n* qubits, $m = 2^n$).

This is unitary and generalizes the Hadmard transform $F_2 = H$.

The quantum Fourier transform is an important component of several interesting quantum algorithms.

Computing the QFT for $m = 2^n$ (1)

Quantum circuit for F_{32}



 F_{2^n} costs $O(n^2)$ gates.

4

Computing the QFT for $m = 2^n$ (2)

One way on seeing why this circuit works is to show:

1. The output of the circuit (before reversing the qubits) is

 $(|0\rangle + e^{2\pi i (0.x_1 x_2 \cdots x_n)} |1\rangle) (|0\rangle + e^{2\pi i (0.x_2 \cdots x_n)} |1\rangle) \cdots (|0\rangle + e^{2\pi i (0.x_n)} |1\rangle)$

2. After reversing the qubits, $F_{2^n} | x_1 x_2 \cdots x_n \rangle =$

 $(|0\rangle + e^{2\pi i (0.x_n)}|1\rangle) \cdots (|0\rangle + e^{2\pi i (0.x_2 \cdots x_n)}|1\rangle) (|0\rangle + e^{2\pi i (0.x_1 x_2 \cdots x_n)}|1\rangle) = \sum_{y=0}^{2^{n}-1} \omega^{xy}|y\rangle$ 5

Hidden Subgroup Problem framework

Hidden subgroup problem (commutative version)

Let G be a known group and $H \subset G$ be an unknown subgroup

Let $f: G \to T$ have the property f(x) = f(y) iff $x - y \in H$ (i.e. x and y are in the same **coset** of H)

Problem: given a black-box for computing *f*, determine *H*

Example 1: $G = \mathbb{F}_2^n$ (the additive group) and $H = \{0, r\}$

Example 2:
$$G = (\mathbb{Z}_{p-1})^2$$
 and
 $H = \mathbb{Z}_{p-1}(r, 1) = \{(0,0), (r, 1), (2r, 2), \dots, ((p-2)r, p-2)\}$

Example 3: $G = \mathbb{Z}$ and $H = r\mathbb{Z}$ (Shor's factoring algorithm was originally approached this way. A complication that arises is that \mathbb{Z} is infinite. We'll use a different approach)

Hidden subgroup problem (noncommutative version)

Example 4: $G = S_n$ (the symmetric group, consisting of all permutations on *n* objects—which is not commutative) and *H* is any subgroup of *G* (and we use *left* cosets throughout)

A quantum algorithm for this instance of HSP *would* lead to an efficient quantum algorithm for the graph isomorphism problem ...

... **but still,** no polynomial-time quantum has been found for this instance of HSP, despite significant effort by many people. **However**, Babai recently claimed (then retracted, then unretracted) a quasi-polynomial-time $(\exp(O(\operatorname{polylog}(n)))$ *classical* algorithm. Still not peer-reviewed...

Eigenvalue estimation problem (a.k.a. phase estimation)

Note: this will lead to a factoring algorithm similar to Shor's

A simplified example

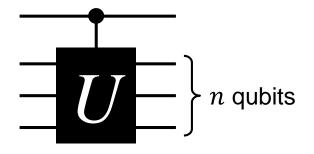
U is an unknown unitary operation on *n* qubits $|\psi\rangle$ is an eigenvector of *U*, with eigenvalue $\lambda = +1$ or -1

Input: a black-box for a controlled-*U*

and a copy of the state $|\psi\rangle$

Output: the eigenvalue λ

Exercise: solve this making a single query to the controlled-U



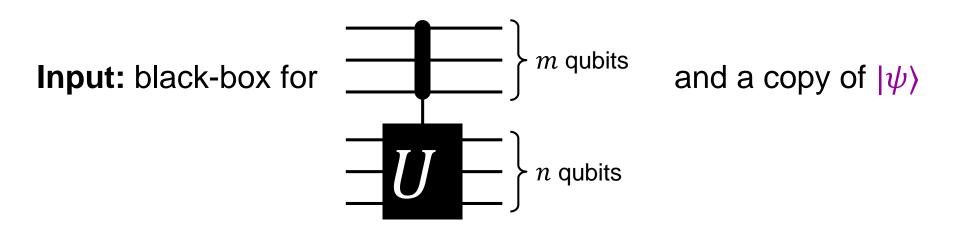
Generalized controlled-U gates $-|a\rangle$ $|a\rangle$ $\begin{bmatrix} I & 0 \\ 0 & U \end{bmatrix}$ $U^{a}|b\rangle$ \ket{b} - $\begin{bmatrix} I & 0 & 0 & \cdots & 0 \\ 0 & U & 0 & \cdots & 0 \\ 0 & 0 & U^2 & \cdots & 0 \end{bmatrix}$ $|a_m\rangle$ $\begin{bmatrix} 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \dots & U \end{bmatrix}$ U = $U^{a_1 \cdots a_m} | b \rangle$

Example: $|1101\rangle|0101\rangle \mapsto |1101\rangle U^{13}|0101\rangle$

Eigenvalue estimation problem

U is a unitary operation on n qubits

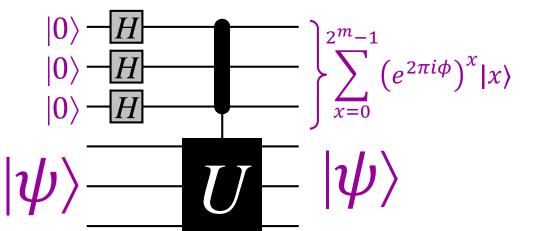
 $|\psi\rangle$ is an eigenvector of U, with eigenvalue $e^{2\pi i \phi}$ $(0 \le \phi < 1)$



Output: ϕ (*m*-bit approximation)

Algorithm for eigenvalue estimation (1)

Starts off as:



 $\mapsto (|0\rangle + e^{2\pi i\phi}|1\rangle + (e^{2\pi i\phi})^2|2\rangle + (e^{2\pi i\phi})^3|3\rangle + \dots + (e^{2\pi i\phi})^{2^{m-1}}|2^m-1\rangle)|\psi\rangle$

 $|00\cdots0\rangle|\psi\rangle$

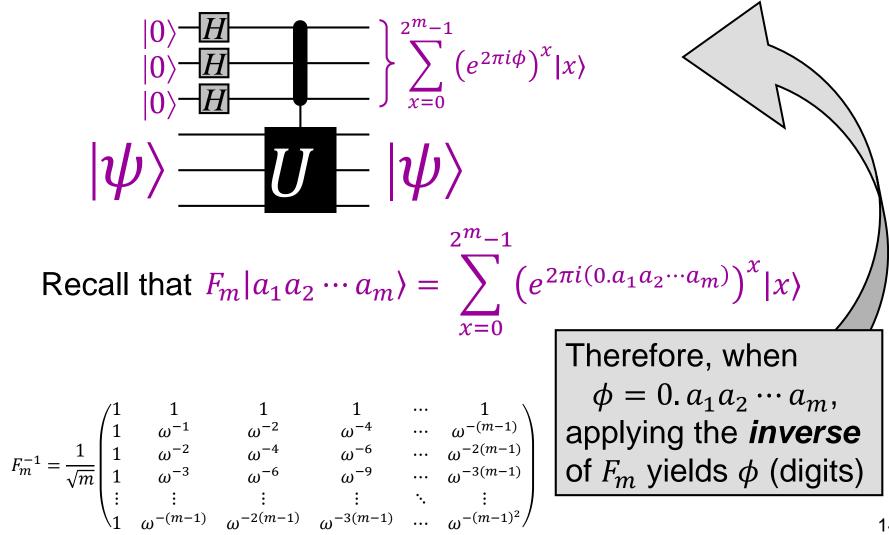
 $|a\rangle|b\rangle \rightarrow |a\rangle U^{a}|b\rangle$

 $\mapsto (|0\rangle + |1\rangle)(|0\rangle + |1\rangle) \cdots (|0\rangle + |1\rangle)|\psi\rangle$

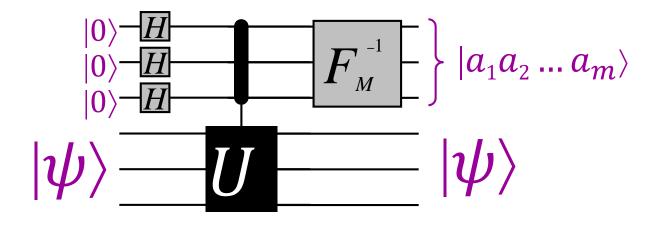
 $= (|000\rangle + |001\rangle + |010\rangle + |011\rangle + \dots + |111\rangle)|\psi\rangle$

 $= (|0\rangle + |1\rangle + |2\rangle + |3\rangle + \dots + |2^{m-1}\rangle)|\psi\rangle$

Algorithm for eigenvalue estimation (2)



Algorithm for eigenvalue estimation (3)



If $\phi = 0. a_1 a_2 \cdots a_m$ then the above procedure yields $|a_1 a_2 \dots a_m\rangle$ (from which ϕ can be deduced exactly)

But what ϕ if is not of this nice form?

Example:
$$\phi = \frac{1}{3} = 0.01010101010101$$
...

Algorithm for eigenvalue estimation (4)

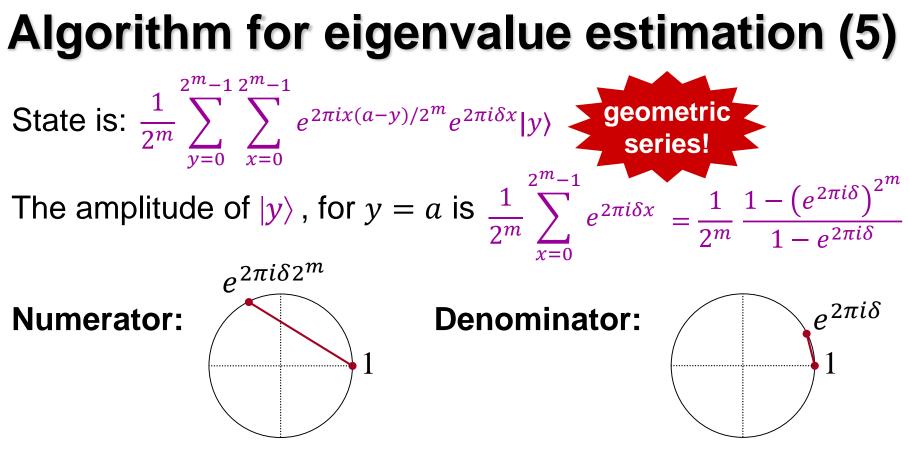
What if ϕ is not of the nice form $\phi = 0. a_1 a_2 \cdots a_m$? **Example:** $\phi = \frac{1}{3} = 0.01010101010101...$

Let's calculate what the previously-described procedure does:

16

Let $a/2^m = 0. a_1 a_2 \cdots a_m$ be an *m*-bit approximation of ϕ , in the sense that $\phi = a/2^m + \delta$, where $|\delta| \le 1/2^{m+1}$

$$F_{m}^{-1} \sum_{x=0}^{2^{m}-1} (e^{2\pi i\phi})^{x} |x\rangle = \frac{1}{2^{m}} \sum_{y=0}^{2^{m}-1} \sum_{x=0}^{2^{m}-1} e^{-2\pi i x y/2^{m}} e^{2\pi i \phi x} |y\rangle$$
$$= \frac{1}{2^{m}} \sum_{y=0}^{2^{m}-1} \sum_{x=0}^{2^{m}-1} e^{-2\pi i x y/2^{m}} e^{2\pi i (\frac{a}{2^{m}} + \delta)x} |y\rangle$$
What is the amplitude of $|a_{1}a_{2}...a_{m}\rangle$?



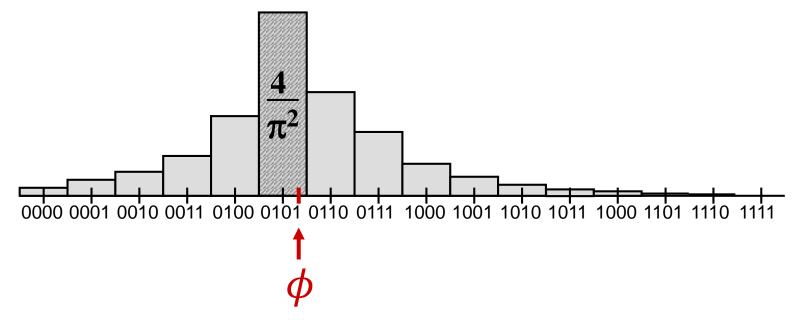
lower bounded by upper bounded by $2\pi\delta$ $2\pi\delta 2^m(2/\pi) = 4|\delta|2^m$ for $|\delta| \le 1/2^{m+1}$.

Therefore, the absolute value of the amplitude of $|y\rangle$ is at least $(1/2^m) \times (\text{numerator/denominator}) = 2/\pi$.

Algorithm for eigenvalue estimation (6)

Therefore, the probability of measuring an *m*-bit approximation of ϕ is always at least $4/\pi^2 \approx 0.4$.

For example, when $\phi = \frac{1}{3} = 0.01010101010101$..., the outcome probabilities look roughly like this:



Note: with **2***m***-qubit** control gate, error probability is exponentially 18 small

Thursday class in QNC 1501

Oct. 3	OPT 309	Oct. 5	QNC 1501
Oct. 10	QNC 0101	Oct. 12	QNC 0101
Oct. 17	QNC 0101	Oct. 19	QNC 0101
Oct. 24	QNC 0101	Oct. 26	QNC 1501
Oct. 31	QNC 0101	Nov. 2	QNC 0101
Nov. 7	QNC 0101	Nov. 9	QNC 0101
Nov. 14	QNC 0101	Nov. 16	QNC 0101
Nov. 21	QNC 0101	Nov. 23	QNC 0101
Nov. 28	QNC 0101	Nov. 30	QNC 0101