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Continuing with the 

QFT for 𝑚 = 2𝑛
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Quantum Fourier transform

where 𝜔 = 𝑒2𝜋𝑖/𝑚 (for 𝑛 qubits, 𝑚 = 2𝑛).

This is unitary and generalizes the Hadmard transform 𝐹2 = 𝐻.

The quantum Fourier transform is an important component 

of several interesting quantum algorithms.

𝐹𝑚 =
1

𝑚

1 1 1 1 ⋯ 1
1 𝜔 𝜔2 𝜔3 ⋯ 𝜔𝑚−1

1 𝜔2 𝜔4 𝜔6 ⋯ 𝜔2(𝑚−1)

1 𝜔3 𝜔6 𝜔9 ⋯ 𝜔3(𝑚−1)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

1 𝜔𝑚−1 𝜔2 𝑚−1 𝜔3(𝑚−1) ⋯ 𝜔 𝑚−1 2
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Computing the QFT for 𝑚 = 2𝑛 (1)
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Quantum circuit for 𝐹32

Gates:

𝐹2𝑛 costs 𝑂(𝑛2) gates.
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|𝑥1〉

|𝑥2〉

|𝑥3〉

|𝑥4〉

|𝑥5〉

|𝑦5〉

|𝑦4〉

|𝑦3〉

|𝑦2〉

|𝑦1〉

Controlled phase gate

(who controls who?)
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Computing the QFT for 𝑚 = 2𝑛 (2)

1. The output of the circuit (before reversing the qubits) is

( 0 + 𝑒2𝜋𝑖 0.𝑥1𝑥2⋯𝑥𝑛 |1〉)( 0 + 𝑒2𝜋𝑖 0.𝑥2⋯𝑥𝑛 |1〉)⋯ ( 0 + 𝑒2𝜋𝑖 0.𝑥𝑛 |1〉)

2. After reversing the qubits, 

𝐹2𝑛 𝑥1𝑥2⋯𝑥𝑛 =

( 0 + 𝑒2𝜋𝑖 0.𝑥𝑛 |1〉)⋯ ( 0 + 𝑒2𝜋𝑖 0.𝑥2⋯𝑥𝑛 |1〉)( 0 + 𝑒2𝜋𝑖 0.𝑥1𝑥2⋯𝑥𝑛 |1〉)

= 

𝑦=0

2𝑛−1

𝜔𝑥𝑦|𝑦〉

One way on seeing why this circuit works is to show:
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Hidden Subgroup Problem framework



7

Hidden subgroup problem 
(commutative version)

Let 𝐺 be a known group and 𝐻 ⊂ 𝐺 be an unknown subgroup 

Let 𝑓: 𝐺 → 𝑇 have the property 𝑓 𝑥 = 𝑓(𝑦) iff 𝑥 − 𝑦 ∈ 𝐻
(i.e. 𝑥 and 𝑦 are in the same coset of 𝐻)

Problem: given a black-box for computing 𝑓, determine 𝐻

Example 1: 𝐺 = 𝔽2
𝑛 (the additive group) and 𝐻 = {0, 𝑟}

Example 2: 𝐺 = ℤ𝑝−1
2

and 

𝐻 = ℤ𝑝−1 𝑟, 1 = {(0,0), (𝑟, 1), (2𝑟, 2),… , (( 𝑝 – 2)𝑟, 𝑝 – 2)}

Example 3: 𝐺 = ℤ and 𝐻 = 𝑟ℤ (Shor’s factoring algorithm 

was originally approached this way. A complication that arises 

is that ℤ is infinite. We’ll use a different approach)
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Hidden subgroup problem 
(noncommutative version)

Example 4: 𝐺 = 𝑆𝑛 (the symmetric group, consisting of all 

permutations on 𝑛 objects—which is not commutative) and 𝐻
is any subgroup of 𝐺 (and we use left cosets throughout)

A quantum algorithm for this instance of HSP would

lead to an efficient quantum algorithm for the graph 

isomorphism problem …

…but still, no polynomial-time quantum has been found for 

this instance of HSP, despite significant effort by many people.  

However, Babai recently claimed (then retracted, then 

unretracted) a quasi-polynomial-time (exp(𝑂(polylog 𝑛 ))
classical algorithm. Still not peer-reviewed…
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Eigenvalue estimation problem

(a.k.a. phase estimation)

Note: this will lead to a factoring algorithm similar to Shor’s
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A simplified example
𝑈 is an unknown unitary operation on 𝑛 qubits

|𝜓〉 is an eigenvector of 𝑈, with eigenvalue 𝜆 = +1 or −1

Output: the eigenvalue 𝜆

Input: a black-box for a controlled-𝑈

U 𝑛 qubitsand a copy of the state |𝜓〉

Exercise: solve this making a single query to the controlled-𝑈



11

Generalized controlled-U gates
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Example: 11010101 ↦ 1101𝑈130101
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Eigenvalue estimation problem

𝑈 is a unitary operation on 𝑛 qubits

|𝜓〉 is an eigenvector of 𝑈, with eigenvalue 𝑒2𝜋𝑖𝜙 (0 ≤ 𝜙 < 1)

Output: 𝜙 (𝑚-bit approximation)

Input: black-box for

𝑈 𝑛 qubits

𝑚 qubits
and a copy of |𝜓〉
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Algorithm for eigenvalue estimation (1)

U𝜓

H

H

H

0
0
0

Starts off as:

↦ 0+ 1 0+ 1 ⋯(0+ 1)|𝜓〉

= (000+ 001+ 010+ 011+⋯+ 111)|𝜓〉

= (|0〉 + |1〉 + |2〉 + |3〉 + ⋯+ |2𝑚−1〉)|𝜓〉

00⋯0𝜓

↦ (|0〉 + 𝑒2𝜋𝑖𝜙 1 + 𝑒2𝜋𝑖𝜙
2
2 + 𝑒2𝜋𝑖𝜙

3
3 +⋯+ 𝑒2𝜋𝑖𝜙

2𝑚−1
|2𝑚– 1〉) |𝜓〉

𝑎 |𝑏〉 → 𝑎 𝑈𝑎|𝑏〉

𝜓



𝑥=0

2𝑚−1

𝑒2𝜋𝑖𝜙
𝑥
|𝑥〉
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Algorithm for eigenvalue estimation (2)

𝑈𝜓

H
H
H

0
0
0

𝜓

Therefore, when 

𝜙 = 0. 𝑎1𝑎2⋯𝑎𝑚,

applying the inverse

of 𝐹𝑚 yields 𝜙 (digits)

Recall that   𝐹𝑚 𝑎1𝑎2⋯𝑎𝑚 = 

𝑥=0

2𝑚−1

𝑒2𝜋𝑖 0.𝑎1𝑎2⋯𝑎𝑚
𝑥
|𝑥〉



𝑥=0

2𝑚−1

𝑒2𝜋𝑖𝜙
𝑥
|𝑥〉

𝐹𝑚
−1 =

1

𝑚

1 1 1 1 ⋯ 1
1 𝜔−1 𝜔−2 𝜔−4 ⋯ 𝜔−(𝑚−1)

1 𝜔−2 𝜔−4 𝜔−6 ⋯ 𝜔−2(𝑚−1)

1 𝜔−3 𝜔−6 𝜔−9 ⋯ 𝜔−3(𝑚−1)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

1 𝜔−(𝑚−1) 𝜔−2 𝑚−1 𝜔−3(𝑚−1) ⋯ 𝜔− 𝑚−1 2
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Algorithm for eigenvalue estimation (3)

If 𝜙 = 0. 𝑎1𝑎2⋯𝑎𝑚 then the above procedure yields 𝑎1𝑎2…𝑎𝑚

(from which 𝜙 can be deduced exactly)

But what 𝜙 if is not of this nice form?

Example: 𝜙 =
1

3
= 0.01010101010101…

𝑈𝜓

H
H
H

0
0
0

𝜓

FM
𝑎1𝑎2…𝑎𝑚

–1
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Algorithm for eigenvalue estimation (4)
What if 𝜙 is not of the nice form 𝜙 = 0. 𝑎1𝑎2⋯𝑎𝑚?

Example: 𝜙 =
1

3
= 0.01010101010101…

Let’s calculate what the previously-described procedure does:

Let 𝑎/2𝑚 = 0. 𝑎1𝑎2⋯𝑎𝑚 be an 𝑚-bit approximation of 

𝜙, in the sense that 𝜙 = 𝑎/2𝑚+𝛿, where 𝛿 ≤ 1/2𝑚+1

What is the 

amplitude of

a1a2…am ?

𝐹𝑚
−1 

𝑥=0

2𝑚−1

𝑒2𝜋𝑖𝜙
𝑥
𝑥 =

1

2𝑚


𝑦=0

2𝑚−1



𝑥=0

2𝑚−1

𝑒−2𝜋𝑖𝑥𝑦/2
𝑚
𝑒2𝜋𝑖𝜙𝑥|𝑦〉

=
1

2𝑚


𝑦=0

2𝑚−1



𝑥=0

2𝑚−1

𝑒−2𝜋𝑖𝑥𝑦/2
𝑚
𝑒
2𝜋𝑖

𝑎
2𝑚

+𝛿 𝑥
|𝑦〉

=
1

2𝑚


𝑦=0

2𝑚−1



𝑥=0

2𝑚−1

𝑒2𝜋𝑖𝑥(𝑎−𝑦)/2
𝑚
𝑒2𝜋𝑖𝛿𝑥|𝑦〉



17

Algorithm for eigenvalue estimation (5)

geometric

series!

The amplitude of 𝑦 , for 𝑦 = 𝑎 is

State is:

Numerator:

1

𝑒2𝜋𝑖𝛿

lower bounded by 

2𝜋𝛿2𝑚 2/𝜋 = 4|𝛿|2𝑚 for 𝛿 ≤ 1/2𝑚+1.

Denominator:

1

𝑒2𝜋𝑖𝛿2
𝑚

upper bounded by 2𝜋𝛿

Therefore, the absolute value of the amplitude of 𝑦 is at least 

1/2𝑚 × (numerator/denominator) = 2/𝜋.

1

2𝑚


𝑦=0

2𝑚−1



𝑥=0

2𝑚−1

𝑒2𝜋𝑖𝑥(𝑎−𝑦)/2
𝑚
𝑒2𝜋𝑖𝛿𝑥|𝑦〉

1

2𝑚


𝑥=0

2𝑚−1

𝑒2𝜋𝑖𝛿𝑥 =
1

2𝑚
1 − 𝑒2𝜋𝑖𝛿

2𝑚

1 − 𝑒2𝜋𝑖𝛿
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Algorithm for eigenvalue estimation (6)

Therefore, the probability of measuring an 𝑚-bit approximation 

of 𝜙 is always at least 4/𝜋2 ≈ 0.4.

For example, when 𝜙 =
1

3
= 0.01010101010101… ,

the outcome probabilities look roughly like this:

4

2

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1000 1101 1110 1111

𝜙
Note: with 𝟐𝒎-qubit control gate, error probability is exponentially 

small



Thursday class in QNC 1501
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Oct. 3 OPT 309 Oct. 5 QNC 1501

Oct. 10 QNC 0101 Oct. 12 QNC 0101

Oct. 17 QNC 0101 Oct. 19 QNC 0101

Oct. 24 QNC 0101 Oct. 26 QNC 1501

Oct. 31 QNC 0101 Nov. 2 QNC 0101

Nov. 7 QNC 0101 Nov. 9 QNC 0101

Nov. 14 QNC 0101 Nov. 16 QNC 0101

Nov. 21 QNC 0101 Nov. 23 QNC 0101

Nov. 28 QNC 0101 Nov. 30 QNC 0101


