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Recap of:

Eigenvalue estimation problem
(a.k.a. phase estimation)




Generalized controlled-U gates
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Eigenvalue estimation problem

U Is a unitary operation on n qubits
) is an eigenvector of U, with eigenvalue e?™® (0 < ¢ < 1)

~

~ M qubits

Input: black-box for and a copy of |)

~ N qubits

7

Output: ¢ (m-bit approximation)

Algorithm: < one query to generalized controlled-U gate
e 0(n?) auxiliary gates
. Success probability 4/m2% ~ 0.4

Note: with 2m-qubit control gate, error probability is exponentially small |4




Order-finding via

eigenvalue estimation



Order-finding problem

Let m be an n-bit integer
Def: Z;;, ={x € {1,2, ..., m -1} : gcd(x,m) = 1} a group (mult.)

Def: ord,,(a) is the minimum r > 0 such that a” = 1 mod m

Order-finding problem: given m and a € Z;, find ord,,,(a)

Example: Z5; = {1,2,4,5,8,10,11,13,16,17,19,20}

The powers of 5 are: 1,5,4,20,16,17,1,5,4,20,16,17,1,5, ...
Therefore, ord,,(5) = 6

Note: no classical polynomial-time algorithm is known for
this problem—it turns out that this is as hard as factoring




Order-finding algorithm (1)
Define: U (an operation on n qubits) as: U|y) = |ay mod m)
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Therefore |1),) is an eigenvector of U.

Knowing the eigenvalue is equivalent to knowing 1/r,
from which r can be determined.



Order-finding algorithm (2)

. Corresponds to the mapping
AP x)ly) = |x)a*y mod m),

Moreover, this mapping can
}n qubits be implemented with roughly
0(n?) gates.

The eigenvalue estimation algorithm yields a 2n-bit estimate

of 1/r (using the above mapping and the state |i,)).

From this, a good estimate of r can be calculated by taking
the reciprocal, and rounding off to the nearest integer.

Exercise: why are 2n bits necessary and sufficient for this?

Big problem: how do we construct |y, ) to begin with?

* We're now using m for the modulus and setting the number of control qubits to 2n. 8



Bypassing the need for |1) (1)

1 . .
Note: If we let [y,) = T_z e~2m(1/MJ|qJ mod m)
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then any one of these could be used in the previous procedure,
giving an estimate of k/r. Thenr = k(k/r)~1.

What if k is chosen randomly and kept secret? 9



Bypassing the need for [)4) (2)

What if k is chosen randomly and kept secret?

Can still uniquely determine k and r from a 2n-bit estimate
of k/r, provided they have no common factors, using the
continued fractions algorithm*.

Note: If kK and r have a common factor, it is impossible
because, for example, 2/3 and 34/51 are indistinguishable

So this is fine as long as k and r are relatively prime ...

* For a discussion of the continued fractions algorithm, please see
Appendix A4.4 in [Nielsen & Chuang]
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Bypassing the need for [1;) (3)

What is the probability that k and r are relatively prime?

Recall that k is randomly chosen from {1, ..., r}.

The probability that this occurs is ¢ (r)/r, where ¢ Is
Euler’s totient function (defined as the cardinality of Zy).

It is known that ¢(r) = Q(r/loglog(r)), which implies that
this probability is at least Q(1/loglog(r)) = Q(1/log(n)).

Therefore, the success probabillity is at least Q(1/log(n)).

Is this good enough? Yes, because it means that the success
probability can be amplified to any constant < 1 by repeating
O (logn) times (so still polynomial in n).

But we’d still need to generate a random |y, ) here ... 1



Bypassing the need for |4 ) (4)

Returning to the phase estimation problem, suppose that [y,)
and |, ) are orthogonal, with eigenvalues e?™®1 and e?™¢z,
and that o |y,) + a,|,) iIs used in place of an eigenvector:

)
ailp,) + az|Py)

What will the outcome of the measurement be?

0) R
0)—{H
0)—{A

It can be shown* that the outcome will be an estimate of
¢, with probability |a4|?
@, with probability |a,|?

* Showing this is straightforward, but not entirely trivial. 12



Bypassing the need for |1;) (5)

_ 1
Along these lines, the state N Z 1Y)

yields the same outcome as using a random |y, ) (but not being
given k), where each k € {1, ...,r} occurs with probability 1/r.

This is a case that we've already solved.

So now all we have to do Is construct the state.

In fact, this is something that is easy, since

th— zzl “2mik/Mi |l mod m) = |1)

This Is how the previous requirement for |1, ) Is bypassed.
13



Quantum algorithm for order-finding
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a,m|Y> = |ay modm)

measure these qubits and
apply continued fractions
algorithm to determine a
guotient, whose

denominator divides r

Number of gates for Q(1/logn) success probability is:

0 (n?log(n)loglog(n))

For constant success probability, repeat O(logn) times and
take the smallest resulting r such that a" = 1 mod m

14



Reducing factoring to

order finding




The integer factorization problem

Input: m (n-bit integer; we can assume it iIs composite)

Output: h,h' > 1 such that hh' = m.

Note 1: no efficient (polynomial-time) classical algorithm is
known for this problem.

Note 2: given any efficient algorithm for the above, we can
recursively apply it to fully factor m into primes efficiently.

Note 3: 3 polynomial-time classical algorithms for primality testing:
« Miller-Rabin - randomized
« Agrawal-Kayal-Saxena (AKS) - deterministic, but slower
e sage: is_prime(m) uses PARI implementation of ECPP
(Elliptic Curve Primality Proving) - randomized and faster
16



Factoring prime-powers

There is a straightforward efficient classical algorithm for
recognizing and factoring numbers of the form m = p*, for

some (unknown) prime p.

What is this algorithm?

Hint: If in fact m = p*, then k < log, m < n.

Therefore, the interesting remaining case is where m has
at least two distinct prime factors.

17



Numbers other than prime-powers

Problem. Given odd composite m # p*, compute nontrivial divisor h of m.

Proposed quantum algorithm (repeatedly do):

1. randomly choose a € {2,3, ..., m-1}
2. compute h = gcd(a, m)
3. if h>1then
output h,m/h
else
compute r = ord,, (a)
If r I1Is even then
compute x = a”™/? -1 mod m
compute h = gcd(x, m)
if h > 1 then output h,m/h

Analysis

Assume we find an a
with r = ord,,(a) even.

This means m | a"-1.
So m|(a™?+1)(a"?-1).

Thus, either m|a"™/? + 1
or ged(a™/2—1,m)is
a nontrivial divisor of m.

At least half (actually a 1 — 2~#odd prime factors of m fraction) of the
a € {2,3,...,m- 1} have ord,,(a) even and result in gcd(a™? — 1,m )

being a nontrivial divisor of m (see Shor’s 1995 paper for details).
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