#### Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

#### Lecture 8 (2017)

Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/gic710

## Recap of: Eigenvalue estimation problem (a.k.a. phase estimation)

#### Generalized controlled-U gates $-|a\rangle$ $|a\rangle$ $\begin{bmatrix} I & 0 \\ 0 & U \end{bmatrix}$ $U = U^a |b\rangle$ $\ket{b}$ - $\begin{bmatrix} I & 0 & 0 & \cdots \\ 0 & U & 0 & \cdots \\ 0 & 0 & U^2 & \cdots \end{bmatrix}$ $|a_m\rangle$ $\begin{bmatrix} 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$ $U = U^{a_1 \cdots a_m | b \rangle}$

**Example:**  $|1101\rangle|0101\rangle \mapsto |1101\rangle U^{13}|0101\rangle$ 

### **Eigenvalue estimation problem**

*U* is a unitary operation on *n* qubits  $|\psi\rangle$  is an eigenvector of *U*, with eigenvalue  $e^{2\pi i \phi}$  ( $0 \le \phi < 1$ )



**Output:**  $\phi$  (*m*-bit approximation)

| Algorithm: | • | one query to generalized controlled-U gate $O(n^2)$ auxiliary gates<br>Success probability $4/\pi^2 \approx 0.4$ |
|------------|---|------------------------------------------------------------------------------------------------------------------|
|            |   |                                                                                                                  |

Note: with 2m-qubit control gate, error probability is exponentially small  $|_4$ 

# Order-finding via eigenvalue estimation

## **Order-finding problem**

Let m be an n-bit integer

**Def:**  $\mathbb{Z}_m^{\times} = \{x \in \{1, 2, ..., m - 1\} : gcd(x, m) = 1\}$  a group (mult.)

**Def:**  $\operatorname{ord}_m(a)$  is the minimum r > 0 such that  $a^r \equiv 1 \mod m$ 

**Order-finding problem:** given m and  $a \in \mathbb{Z}_m^{\times}$  find  $\operatorname{ord}_m(a)$ 

**Example:**  $\mathbb{Z}_{21}^{\times} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$ 

The powers of 5 are: 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5, ... Therefore,  $\operatorname{ord}_{21}(5) = 6$ 

**Note:** no *classical* polynomial-time algorithm is known for this problem—it turns out that this is as hard as factoring

## Order-finding algorithm (1)

**Define:** U (an operation on n qubits) as:  $U|y\rangle = |ay \mod m\rangle$  $|\psi_1\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} e^{-2\pi i(1/r)j} |a^j \mod m\rangle$ Define:  $U|\psi_1\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} e^{-2\pi i(1/r)j} |a^{j+1} \mod m\rangle$ Then  $=\frac{1}{\sqrt{r}}\sum_{i=1}^{r-1}e^{2\pi i(1/r)}e^{-2\pi i(1/r)(j+1)}|a^{j+1} \mod m\rangle$  $=e^{2\pi i(1/r)} |\psi_1\rangle$ 

Therefore  $|\psi_1\rangle$  is an eigenvector of *U*.

Knowing the eigenvalue is equivalent to knowing 1/r, from which r can be determined.

## Order-finding algorithm (2)



Corresponds to the mapping  $|x\rangle|y\rangle \mapsto |x\rangle|a^{x}y \mod m\rangle$ .

Moreover, this mapping can be implemented with roughly  $O(n^2)$  gates.

The eigenvalue estimation algorithm yields a 2n-bit estimate of 1/r (using the above mapping and the state  $|\psi_1\rangle$ ). From this, a good estimate of r can be calculated by taking the reciprocal, and rounding off to the nearest integer.

**Exercise:** why are 2n bits necessary and sufficient for this?

#### **Big problem:** how do we construct $|\psi_1\rangle$ to begin with?

\* We're now using m for the modulus and setting the number of control qubits to 2n. 8

## Bypassing the need for $|\psi_1\rangle$ (1)

Note: If we let 
$$|\psi_1\rangle = \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} e^{-2\pi i (1/r)j} |a^j \mod m\rangle$$
  
 $|\psi_2\rangle = \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} e^{-2\pi i (2/r)j} |a^j \mod m\rangle$   
 $\vdots$   
 $|\psi_k\rangle = \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} e^{-2\pi i (k/r)j} |a^j \mod m\rangle$   
 $\vdots$   
 $|\psi_r\rangle = \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} e^{-2\pi i (r/r)j} |a^j \mod m\rangle$ 

then **any** one of these could be used in the previous procedure, giving an estimate of k/r. Then  $r = k(k/r)^{-1}$ .

#### What if k is chosen randomly and kept secret?

## Bypassing the need for $|\psi_1 angle$ (2)

#### What if k is chosen randomly and kept secret?

Can *still* uniquely determine k and r from a 2n-bit estimate of k/r, provided they have no common factors, using the *continued fractions algorithm\*.* 

**Note:** If k and r have a common factor, it is impossible because, for example, 2/3 and 34/51 are indistinguishable

So this is fine as long as k and r are relatively prime ...

\* For a discussion of the *continued fractions algorithm*, please see Appendix A4.4 in [Nielsen & Chuang]

## Bypassing the need for $|\psi_1 angle$ (3)

#### What is the probability that *k* and *r* are relatively prime?

Recall that k is randomly chosen from  $\{1, ..., r\}$ .

The probability that this occurs is  $\phi(r)/r$ , where  $\phi$  is *Euler's totient function* (defined as the cardinality of  $\mathbb{Z}_r^{\times}$ ).

It is known that  $\phi(r) = \Omega(r/\log\log(r))$ , which implies that this probability is at least  $\Omega(1/\log\log(r)) = \Omega(1/\log(n))$ .

Therefore, the success probability is at least  $\Omega(1/\log(n))$ .

Is this good enough? Yes, because it means that the success probability can be amplified to any constant < 1 by repeating  $O(\log n)$  times (so still polynomial in n).

#### But we'd still need to generate a random $|\psi_k angle$ here ... 11

## Bypassing the need for $|\psi_1\rangle$ (4)

Returning to the phase estimation problem, suppose that  $|\psi_1\rangle$  and  $|\psi_2\rangle$  are orthogonal, with eigenvalues  $e^{2\pi i \phi_1}$  and  $e^{2\pi i \phi_2}$ , and that  $\alpha_1 |\psi_1\rangle + \alpha_2 |\psi_2\rangle$  is used in place of an eigenvector:



#### What will the outcome of the measurement be?

It can be shown\* that the outcome will be an estimate of  $\begin{cases} \phi_1 & \text{with probability } |\alpha_1|^2 \\ \phi_2 & \text{with probability } |\alpha_2|^2 \end{cases}$ 

\* Showing this is straightforward, but not entirely trivial.

# Bypassing the need for $|\psi_1\rangle$ (5)

Along these lines, the state  $\frac{1}{\sqrt{r}}\sum_{k=1}^{r}|\psi_k\rangle$ 

yields the same outcome as using a random  $|\psi_k\rangle$  (but not being given k), where each  $k \in \{1, ..., r\}$  occurs with probability 1/r.

This is a case that we've already solved.

#### So now all we have to do is construct the state.

In fact, *this* is something that is easy, since

$$\frac{1}{\sqrt{r}} \sum_{k=1}^{r} |\psi_k\rangle = \frac{1}{r} \sum_{k=1}^{r} \sum_{j=0}^{r-1} e^{-2\pi i (k/r)j} |a^j \mod m\rangle = |1\rangle$$

This is how the previous requirement for  $|\psi_1\rangle$  is bypassed.

#### **Quantum algorithm for order-finding**



Number of gates for  $\Omega(1/\log n)$  success probability is:  $O(n^2 \log(n) \log \log(n))$ 

For *constant* success probability, repeat  $O(\log n)$  times and take the smallest resulting r such that  $a^r \equiv 1 \mod m$ 

# Reducing factoring to order finding

#### The integer factorization problem

**Input:** *m* (*n*-bit integer; we can assume it is composite)

**Output:** h, h' > 1 such that hh' = m.

**Note 1:** no efficient (polynomial-time) classical algorithm is known for this problem.

Note 2: given any efficient algorithm for the above, we can recursively apply it to fully factor m into primes efficiently.

**Note 3:**  $\exists$  polynomial-time classical algorithms for primality testing:

- Miller-Rabin randomized
- Agrawal–Kayal–Saxena (AKS) deterministic, but slower
- sage: is\_prime(m) uses PARI implementation of ECPP (Elliptic Curve Primality Proving) - randomized and faster

## **Factoring prime-powers**

There is a straightforward efficient *classical* algorithm for recognizing and factoring numbers of the form  $m = p^k$ , for some (unknown) prime p.

What is this algorithm?

Hint: If in fact  $m = p^k$ , then  $k \le \log_2 m \le n$ .

Therefore, the interesting remaining case is where m has at least two distinct prime factors.

#### Numbers other than prime-powers

**Problem.** Given odd composite  $m \neq p^k$ , compute nontrivial divisor h of m.

Proposed quantum algorithm (repeatedly do): 1. randomly choose  $a \in \{2, 3, ..., m-1\}$ 2. compute  $h = \gcd(a, m)$ 3. **<u>if</u>** h > 1 **<u>then</u>** output h, m/helse compute  $r = \operatorname{ord}_m(a)$  (quantum part) if r is even then compute  $x = a^{r/2} - 1 \mod m$ compute  $h = \gcd(x, m)$ if h > 1 then output h, m/h

Analysis

Assume we find an awith  $r = \text{ord}_m(a)$  even.

This means  $m \mid a^r - 1$ .

So  $m \mid (a^{r/2} + 1)(a^{r/2} - 1)$ .

Thus, <u>either</u>  $m|a^{r/2} + 1$ <u>or</u>  $gcd(a^{r/2} - 1, m)$  is a nontrivial divisor of m.

At least half (actually a  $1 - 2^{-\#odd \text{ prime factors of } m}$  fraction) of the  $a \in \{2, 3, ..., m-1\}$  have  $\operatorname{ord}_m(a)$  even and result in  $\operatorname{gcd}(a^{r/2} - 1, m)$  being a nontrivial divisor of m (see Shor's 1995 paper for details).