
1

Introduction to

Quantum Information Processing
QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Jon Yard

QNC 3126

jyard@uwaterloo.ca

http://math.uwaterloo.ca/~jyard/qic710

Lecture 8 (2017)

mailto:jyard@uwaterloo.ca
http://math.uwaterloo.ca/~jyard/qic710

2

Recap of:

Eigenvalue estimation problem

(a.k.a. phase estimation)

3

Generalized controlled-U gates

U

I

0

0

U

𝑎

𝑏

𝑎

𝑈𝑎 𝑏

𝑎1

U

:

𝑎𝑚

𝑎1
:

𝑎𝑚

𝑏1
:

𝑏𝑛
𝑈𝑎1⋯𝑎𝑚 𝑏

12

2

000

000

000

000

m

U

U

U

I

Example: 11010101 ↦ 1101𝑈130101

4

Eigenvalue estimation problem

𝑈 is a unitary operation on 𝑛 qubits

|𝜓〉 is an eigenvector of 𝑈, with eigenvalue 𝑒2𝜋𝑖𝜙 (0 ≤ 𝜙 < 1)

Output: 𝜙 (𝑚-bit approximation)

Input: black-box for

U n qubits

m qubits
and a copy of |𝜓〉

• one query to generalized controlled-𝑈 gate

• 𝑂 𝑛2 auxiliary gates

• Success probability 4/2 0.4

Algorithm:

Note: with 2m-qubit control gate, error probability is exponentially small

5

Order-finding via

eigenvalue estimation

6

Order-finding problem
Let 𝑚 be an 𝑛-bit integer

Def: ℤ𝑚
× = {𝑥 ∈ {1,2,… ,𝑚 –1} ∶ gcd(𝑥,𝑚) = 1} a group (mult.)

Def: ord𝑚(𝑎) is the minimum 𝑟 > 0 such that 𝑎𝑟 ≡ 1mod 𝑚

Order-finding problem: given 𝑚 and 𝑎 ∈ ℤ𝑚
× find ord𝑚(𝑎)

Example: ℤ21
× = {1,2,4,5,8,10,11,13,16,17,19,20}

The powers of 5 are: 1, 5, 4, 20, 16, 17, 1, 5, 4, 20, 16, 17, 1, 5,…

Therefore, ord21(5) = 6

Note: no classical polynomial-time algorithm is known for

this problem—it turns out that this is as hard as factoring

7

Order-finding algorithm (1)
Define: 𝑈 (an operation on 𝑛 qubits) as: 𝑈 𝑦 = 𝑎𝑦 mod 𝑚

Define:

Then

Therefore 𝜓1 is an eigenvector of 𝑈.

Knowing the eigenvalue is equivalent to knowing 1/𝑟,

from which 𝑟 can be determined.

𝜓1 =
1

𝑟

𝑗=0

𝑟−1

𝑒−2𝜋𝑖 1/𝑟 𝑗|𝑎𝑗 mod 𝑚〉

𝑈 𝜓1 =
1

𝑟

𝑗=0

𝑟−1

𝑒−2𝜋𝑖 1/𝑟 𝑗|𝑎𝑗+1 mod 𝑚〉

=
1

𝑟

𝑗=0

𝑟−1

𝑒2𝜋𝑖(1/𝑟)𝑒−2𝜋𝑖 1/𝑟 (𝑗+1)|𝑎𝑗+1 mod 𝑚〉

= 𝑒2𝜋𝑖(1/𝑟) |𝜓1〉

8

Order-finding algorithm (2)

U 𝑛 qubits

2𝑛 qubits*
Corresponds to the mapping

𝑥 𝑦 ↦ 𝑥 𝑎𝑥𝑦 mod 𝑚 .

Moreover, this mapping can

be implemented with roughly

𝑂(𝑛2) gates.

The eigenvalue estimation algorithm yields a 2𝑛-bit estimate

of 1/𝑟 (using the above mapping and the state |𝜓1〉).

From this, a good estimate of 𝑟 can be calculated by taking

the reciprocal, and rounding off to the nearest integer.

Big problem: how do we construct |𝜓1〉 to begin with?

Exercise: why are 2𝑛 bits necessary and sufficient for this?

* We’re now using 𝑚 for the modulus and setting the number of control qubits to 2𝑛.

9

Bypassing the need for 𝜓1 (1)

Note: If we let

then any one of these could be used in the previous procedure,

giving an estimate of 𝑘/𝑟. Then 𝑟 = 𝑘 𝑘/𝑟 −1.

What if 𝑘 is chosen randomly and kept secret?

𝜓1 =
1

𝑟

𝑗=0

𝑟−1

𝑒−2𝜋𝑖 1/𝑟 𝑗|𝑎𝑗 mod 𝑚〉

𝜓2 =
1

𝑟

𝑗=0

𝑟−1

𝑒−2𝜋𝑖 2/𝑟 𝑗|𝑎𝑗 mod 𝑚〉

𝜓𝑘 =
1

𝑟

𝑗=0

𝑟−1

𝑒−2𝜋𝑖 𝑘/𝑟 𝑗|𝑎𝑗 mod 𝑚〉

𝜓𝑟 =
1

𝑟

𝑗=0

𝑟−1

𝑒−2𝜋𝑖 𝑟/𝑟 𝑗|𝑎𝑗 mod𝑚〉

10

Bypassing the need for |𝜓1〉 (2)

Note: If 𝑘 and 𝑟 have a common factor, it is impossible

because, for example, 2/3 and 34/51 are indistinguishable

What if 𝑘 is chosen randomly and kept secret?

Can still uniquely determine 𝑘 and 𝑟 from a 2𝑛-bit estimate

of 𝑘/𝑟, provided they have no common factors, using the

continued fractions algorithm*.

* For a discussion of the continued fractions algorithm, please see

Appendix A4.4 in [Nielsen & Chuang]

So this is fine as long as 𝑘 and 𝑟 are relatively prime …

11

Bypassing the need for |𝜓1〉 (3)

Recall that 𝑘 is randomly chosen from {1,… , 𝑟}.

What is the probability that 𝑘 and 𝑟 are relatively prime?

Therefore, the success probability is at least Ω(1/ log(𝑛)).

The probability that this occurs is 𝜙(𝑟)/𝑟, where 𝜙 is

Euler’s totient function (defined as the cardinality of ℤ𝑟
×).

It is known that 𝜙 𝑟 = Ω(𝑟/ log log(𝑟)), which implies that

this probability is at least Ω(1/ log log(𝑟)) = Ω(1/ log(𝑛)).

Is this good enough? Yes, because it means that the success

probability can be amplified to any constant < 1 by repeating

𝑂(log 𝑛) times (so still polynomial in 𝑛).

But we’d still need to generate a random |𝜓𝑘〉 here …

12

Bypassing the need for |𝜓1〉 (4)

Returning to the phase estimation problem, suppose that |𝜓1〉
and |𝜓2〉 are orthogonal, with eigenvalues 𝑒2𝜋𝑖𝜙1 and 𝑒2𝜋𝑖𝜙2,

and that 𝛼1 𝜓1 + 𝛼2|𝜓2〉 is used in place of an eigenvector:

U

H

H

H

0
0
0

𝐹𝑚
†

What will the outcome of the measurement be?

It can be shown* that the outcome will be an estimate of
𝜙1 with probability 𝛼1

2

𝜙2 with probability 𝛼2
2

* Showing this is straightforward, but not entirely trivial.

𝛼1 𝜓1 + 𝛼2|𝜓2〉

13

Bypassing the need for |𝜓1〉 (5)

Along these lines, the state

So now all we have to do is construct the state.

yields the same outcome as using a random |𝜓𝑘〉 (but not being

given 𝑘), where each 𝑘 ∈ {1,… , 𝑟} occurs with probability 1/𝑟.

This is a case that we’ve already solved.

In fact, this is something that is easy, since

This is how the previous requirement for |𝜓1〉 is bypassed.

1

𝑟

𝑘=1

𝑟

|𝜓𝑘〉

1

𝑟

𝑘=1

𝑟

|𝜓𝑘〉 =
1

𝑟

𝑘=1

𝑟

𝑗=0

𝑟−1

𝑒−2𝜋𝑖 𝑘/𝑟 𝑗|𝑎𝑗 mod 𝑚〉 = |1〉

14

Quantum algorithm for order-finding

𝑈𝑎,𝑚

H

H

H

0

0

0

0

0

1

H

H 4

4 8H

measure these qubits and

apply continued fractions

algorithm to determine a

quotient, whose

denominator divides r

𝑈𝑎,𝑚𝑦 = 𝑎 𝑦 mod 𝑚

inverse QFT

For constant success probability, repeat 𝑂(log 𝑛) times and

take the smallest resulting 𝑟 such that 𝑎𝑟 ≡ 1mod 𝑚

Number of gates for Ω(1/ log 𝑛) success probability is:

𝑂(𝑛2 log 𝑛 log log(𝑛))

15

Reducing factoring to
order finding

16

The integer factorization problem

Input: 𝑚 (𝑛-bit integer; we can assume it is composite)

Output: ℎ, ℎ′ > 1 such that ℎℎ′ = 𝑚.

Note 2: given any efficient algorithm for the above, we can

recursively apply it to fully factor 𝑚 into primes efficiently.

Note 1: no efficient (polynomial-time) classical algorithm is

known for this problem.

Note 3: ∃ polynomial-time classical algorithms for primality testing:

• Miller-Rabin - randomized

• Agrawal–Kayal–Saxena (AKS) - deterministic, but slower

• sage: is_prime(m) uses PARI implementation of ECPP

(Elliptic Curve Primality Proving) - randomized and faster

17

Factoring prime-powers

There is a straightforward efficient classical algorithm for

recognizing and factoring numbers of the form 𝑚 = 𝑝𝑘, for

some (unknown) prime 𝑝.

What is this algorithm?

Therefore, the interesting remaining case is where 𝑚 has

at least two distinct prime factors.

Hint: If in fact 𝑚 = 𝑝𝑘, then 𝑘 ≤ log2𝑚 ≤ 𝑛.

18

Proposed quantum algorithm (repeatedly do):

1. randomly choose 𝑎 ∈ {2, 3, … ,𝑚–1}
2. compute ℎ = gcd(𝑎,𝑚)
3. if ℎ > 1 then

output ℎ,𝑚/ℎ
else

compute 𝑟 = ord𝑚(𝑎) (quantum part)

if 𝑟 is even then

compute 𝑥 = 𝑎𝑟/2 – 1mod 𝑚
compute ℎ = gcd(𝑥,𝑚)
if ℎ > 1 then output ℎ,𝑚/ℎ

Numbers other than prime-powers

So 𝑚 | 𝑎𝑟/2 + 1 𝑎𝑟/21 .

This means 𝑚 | 𝑎𝑟– 1.

Thus, either 𝑚|𝑎𝑟/2 + 1

or gcd 𝑎𝑟/2 − 1,𝑚 is

a nontrivial divisor of 𝑚.

At least half (actually a 1 − 2−#odd prime factors of 𝑚 fraction) of the

𝑎 ∈ {2, 3, … ,𝑚–1} have ord𝑚(𝑎) even and result in gcd 𝑎𝑟/2 − 1,𝑚

being a nontrivial divisor of 𝑚 (see Shor’s 1995 paper for details).

Analysis

Problem. Given odd composite 𝑚 ≠ 𝑝𝑘, compute nontrivial divisor ℎ of 𝑚.

Assume we find an 𝑎
with 𝑟 = ord𝑚 𝑎 even.

