Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Lecture 9 (2017)

Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/gic710

More state distinguishing problems

More state distinguishing problems

Which of these states are distinguishable? Divide them into equivalence classes:

- 1. |0
 angle + |1
 angle
- 2. -|0
 angle |1
 angle
- 3. $\begin{cases} |0\rangle \text{ with prob. } \frac{1}{2} \\ |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$
- 4. $\begin{cases} |0\rangle + |1\rangle \text{ with prob. } \frac{1}{2} \\ |0\rangle |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$

- 5. $\begin{cases} |0\rangle & \text{with prob. } \frac{1}{2} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{2} \end{cases}$
- $\begin{array}{ll} \textbf{6.} & |0\rangle & \text{with prob. } \frac{1}{4} \\ |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle |1\rangle & \text{with prob. } \frac{1}{4} \end{array}$
- 7. The first qubit of $|01\rangle |10\rangle$

Answers later on ...

This is a probabilistic mixed state

Density matrix formalism

Density matrices (1)

Until now, we've represented quantum states as *vectors* (e.g. $|\psi\rangle$, and all such states are called *pure states*).

An alternative way of representing quantum states is in terms of *density matrices* (a.k.a. *density operators*).

The density matrix of a pure state $|\psi\rangle$ is the matrix $\rho = |\psi\rangle\langle\psi|$

Example: the density matrix of $\alpha |0\rangle + \beta |1\rangle$ is

$$\rho = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} (\alpha^* \quad \beta^*) = \begin{pmatrix} |\alpha|^2 & \alpha\beta^* \\ \alpha^*\beta & |\beta|^2 \end{pmatrix}$$

Density matrices (2)

How do quantum operations work using density matrices?

Effect of a unitary operation on a density matrix Applying U to ρ yields $U\rho U^{\dagger}$.

This is because the modified state is $U|\psi\rangle\langle\psi|U^{\dagger}$.

Effect of a measurement on a density matrix Measuring state ρ with respect to the basis $|\varphi_1\rangle$, $|\varphi_2\rangle$,..., $|\varphi_d\rangle$ yields the *k*th outcome with probability $\langle \varphi_k | \rho | \varphi_k \rangle$.

This is because $\langle \varphi_k | \rho | \varphi_k \rangle = \langle \varphi_k | \psi \rangle \langle \psi | \varphi_k \rangle = |\langle \varphi_k | \psi \rangle|^2$.

After the measurement, the state collapses to $|\varphi_k\rangle\langle\varphi_k|$.

Density matrices (3)

A probability distribution on pure states is called a *mixed state*: $((|\psi_1\rangle, p_1), (|\psi_2\rangle, p_2), ..., (|\psi_m\rangle, p_m))$

The **density matrix** associated with such a mixed state is $\rho = \sum_{k=1}^{m} p_k |\psi_k\rangle \langle \psi_k|$

Example: the density matrix for $((|0\rangle, 1/2), (|1\rangle, 1/2))$ is

$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}.$$

Question: what is the density matrix of $((|0\rangle + |1\rangle, 1/2), (|0\rangle - |1\rangle, 1/2))$?

Density matrices (4)

How do quantum operations work for these *mixed* states?

Effect of a unitary operation on a density matrix: applying *U* to ρ *still* gives $U\rho U^{\dagger}$.

This is because the modified state is

$$\sum_{k=1}^{m} p_k U |\psi_k\rangle \langle \psi_k | U^{\dagger} = U \left(\sum_{k=1}^{m} p_k |\psi_k\rangle \langle \psi_k | \right) U^{\dagger} = U \rho U^{\dagger}.$$

Effect of a measurement on a density matrix:

measuring state ρ with respect to the basis $|\varphi_1\rangle$, $|\varphi_2\rangle$,..., $|\varphi_d\rangle$, *still* yields the k^{th} outcome with probability $\langle \varphi_k | \rho | \varphi_k \rangle$.

Why?

Recap: density matrices

Quantum operations in terms of density matrices:

- Applying U to ρ gives $U\rho U^{\dagger}$
- Measuring state ρ with respect to the basis $|\varphi_1\rangle$, $|\varphi_2\rangle$,..., $|\varphi_d\rangle$ yields: k^{th} outcome with probability $\langle \varphi_k | \rho | \varphi_k \rangle$ —and causes the state to collapse to $|\varphi_k\rangle\langle\varphi_k|$.

Since these are expressible in terms of density matrices alone (independent of any specific probabilistic mixtures), states with identical density matrices are *operationally indistinguishable*

Return to state distinguishing problems ...

State distinguishing problems (1)

The *density matrix* of the mixed state $((|\psi_1\rangle, p_1), (|\psi_2\rangle, p_2), \dots, (|\psi_d\rangle, p_m))$ is $\rho = \sum_{k=1}^{m} p_k |\psi_k\rangle \langle \psi_k |$

Examples (from earlier in lecture):

1. & 2. $|0\rangle + |1\rangle$ and $-|0\rangle - |1\rangle$ both have $\rho = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

- 3. $\begin{cases} |0\rangle \text{ with prob. } \frac{1}{2} \\ |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$
- 4. $\begin{cases} |0\rangle + |1\rangle \text{ with prob. } \frac{1}{2} \\ |0\rangle |1\rangle \text{ with prob. } \frac{1}{2} \end{cases}$

6. $\begin{cases} |0\rangle & \text{with prob. } \frac{1}{4} \\ |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{4} \\ |0\rangle - |1\rangle & \text{with prob. } \frac{1}{4} \end{cases}$

$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

11

State distinguishing problems (2)

Examples (continued):

5. $\begin{cases} |0\rangle & \text{with prob. } \frac{1}{2} \\ |0\rangle + |1\rangle & \text{with prob. } \frac{1}{2} \end{cases}$

has
$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 1/4 \end{pmatrix}$$

7. The first qubit of $|01\rangle - |10\rangle$...? (later)

Characterizing density matrices

Three properties of ρ :

- $\mathrm{Tr}\rho = 1 (\mathrm{Tr}M = M_{11} + M_{22} + \dots + M_{dd})$
- $\rho = \rho^{\dagger}$ (i.e. ρ is Hermitian)

$$\rho = \sum_{k=1}^{m} p_k |\psi_k\rangle \langle \psi_k|$$

• $\langle \varphi | \rho | \varphi \rangle \ge 0$, for all states $| \varphi \rangle$ (i.e. ρ is positive semidefinite)

Moreover, for **any** matrix ρ satisfying the above properties, there exists a probabilistic mixture whose density matrix is ρ

How do we show this?

Taxonomy of various normal matrices

Normal matrices

Definition: A matrix *M* is *normal* if $M^{\dagger}M = MM^{\dagger}$

Theorem: *M* is normal iff there exists a unitary *U* such that $M = U^{\dagger}DU$, where *D* is diagonal (i.e. unitarily diagonalizable)

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix}$$

Examples of *ab*normal matrices:

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not even diagonalizable $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ is diagonalizable, but not unitarily \cdots

Unitary and Hermitian matrices

Normal:

$$M = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix}$$

with respect to **some** orthonormal basis

Unitary: $M^{\dagger}M = I$, which implies $|\lambda_k|^2 = 1$, for all k.

Hermitian: $M = M^{\dagger}$ which implies $\lambda_k \in \mathbb{R}$ for all k.

Question: Which matrices are both unitary and Hermitian?

Answer: Reflections ($\lambda_k \in \{+1, -1\}$ for all k).

Positive semidefinite

Positive semidefinite: Hermitian and $\lambda_k \ge 0$ for all *k*.

Theorem: *M* is positive semidefinite iff *M* is Hermitian and, for all $|\varphi\rangle$, $\langle \varphi | M | \varphi \rangle \ge 0$.

(Positive definite: $\lambda_k > 0$ for all k)

Projections and density matrices

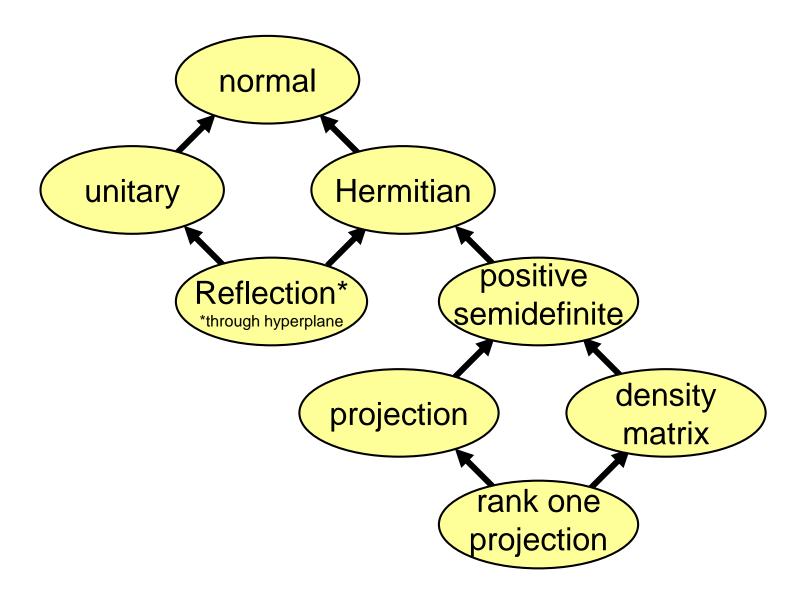
Projector: Hermitian and $M^2 = M$, which implies that *M* is positive semidefinite and $\lambda_k \in \{0,1\}$, for all *k*.

Density matrix: positive semidefinite and Tr M = 1, so $\sum_{k=1}^{a} \lambda_k = 1$

Question: which matrices are both projections **and** density matrices?

Answer: rank-1 projections ($\lambda_k = 1$ if k = j, otherwise $\lambda_k = 0$)

Taxonomy of normal matrices



Bloch sphere for qubits

Bloch sphere for qubits (1)

Consider the set of all 2 \times 2 density matrices ρ

They have a nice representation in terms of the Pauli matrices

$$\sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Note that these matrices, combined with *I*, form a **basis** for the vector space of all 2×2 matrices.

We will express density matrices ρ in this basis.

Note: Coefficient of *I* must be $\frac{1}{2}$, since *X*, *Y* and *Z* are traceless.

Bloch sphere for qubits (2)

We can express $\rho = \frac{1}{2}(I + r_x X + r_y Y + r_z Z).$

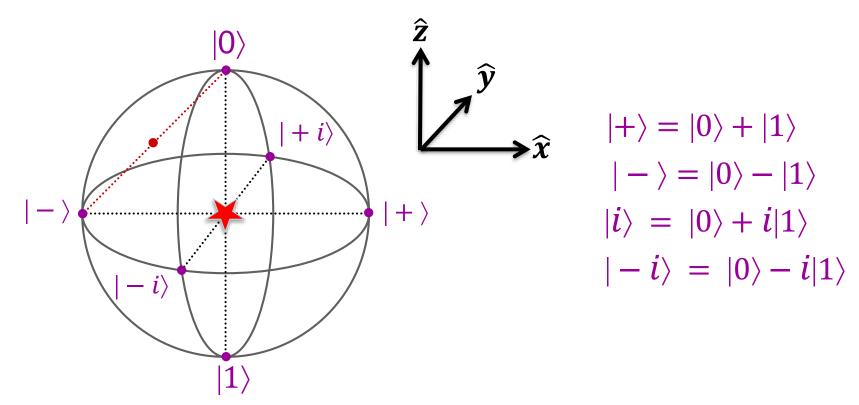
First consider the case of pure states $|\psi\rangle\langle\psi|$, where, without loss of generality, $|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$ for $0 \le \theta \le \pi, 0 \le \phi < 2\pi$ (unique if $\theta \ne 0, \pi$).

 $\rho = \begin{pmatrix} \cos^2(\theta/2) & e^{-i\phi}\cos(\theta/2)\sin(\theta/2) \\ e^{i\phi}\cos(\theta/2)\sin(\theta/2) & \sin^2(\theta/2) \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1 + \cos(\theta) & e^{-i\phi}\sin(\theta) \\ e^{i\phi}\sin(\theta) & 1 - \cos(\theta) \end{pmatrix}$

Therefore $\mathbf{r} = (\sin(\theta) \cos(\phi), \sin(\theta) \sin(\phi), \cos(\theta))$

These are *polar coordinates* of a unit vector $r \in \mathbb{R}^3$

Bloch sphere for qubits (3)



Note that orthogonal corresponds to antipodal here.

Pure states are on the surface $(|\mathbf{r}| = 1)$, and mixed states are inside $(|\mathbf{r}| < 1)$, being weighted averages of pure states).

The *maximally mixed state*
$$\rho = \frac{1}{2}I$$
 has $r = 0$. 23