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More state distinguishing 

problems
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More state distinguishing problems

Which of these states are distinguishable? Divide them into 

equivalence classes:

1.   0+ |1〉

2. −0− 1

3.   0 with prob. ½ 

1 with prob. ½

4.   0+ 1 with prob. ½ 

0− 1 with prob. ½

5.   0 with prob. ½ 

0+ 1 with prob. ½

6.   0 with prob. ¼  

1 with prob. ¼ 

0+ 1 with prob. ¼ 

0− 1 with prob. ¼ 

7. The first qubit of 01− 10

This is a probabilistic mixed state

Answers later on ...
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Density matrix formalism
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Density matrices (1)

Until now, we’ve represented quantum states as vectors (e.g. 

|𝜓〉, and all such states are called pure states).

An alternative way of representing quantum states is in terms 

of density matrices (a.k.a. density operators).

The density matrix of a pure state |𝜓〉 is the matrix 𝜌 = 𝜓 〈𝜓|

Example: the density matrix of 𝛼0 + 𝛽1 is 

𝜌 =
𝛼
𝛽 𝛼∗ 𝛽∗ =

𝛼 2 𝛼𝛽∗

𝛼∗𝛽 𝛽 2
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Density matrices (2)

Effect of a unitary operation on a density matrix 

Applying 𝑈 to 𝜌 yields 𝑈𝜌𝑈†.

Effect of a measurement on a density matrix 

Measuring state 𝜌 with respect to the basis |𝜑1〉, |𝜑2〉,…, |𝜑𝑑〉

yields the 𝑘th outcome with probability 𝜑𝑘 𝜌 𝜑𝑘 .

How do quantum operations work using density matrices?

This is because the modified state is 𝑈 𝜓 〈𝜓|𝑈†. 

This is because 𝜑𝑘 𝜌 𝜑𝑘 = 𝜑𝑘 𝜓〉〈𝜓 𝜑𝑘 = 𝜑𝑘 𝜓
2.

After the measurement, the state collapses to 𝜑𝑘 〈𝜑𝑘|.
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Density matrices (3)

A probability distribution on pure states is called a mixed state:

((|𝜓1〉, 𝑝1), (|𝜓2〉, 𝑝2),…(|𝜓𝑚〉, 𝑝𝑚))

The density matrix associated with such a mixed state is

Example: the density matrix for ((0, 1/2 ), (1, 1/2 )) is 

Question: what is the density matrix of

((0+ 1, 1/2 ), (0− 1, 1/2 )) ?

𝜌 = 

𝑘=1

𝑚

𝑝𝑘 𝜓𝑘 〈𝜓𝑘|

𝜌 =
1

2
1 0
0 0

+
1

2
0 0
0 1

=
1/2 0
0 1/2

.
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Density matrices (4)

Effect of a unitary operation on a density matrix: 

applying 𝑈 to 𝜌 still gives 𝑈𝜌𝑈†
.

How do quantum operations work for these mixed states?

This is because the modified state is



𝑘=1

𝑚

𝑝𝑘𝑈 𝜓𝑘 〈𝜓𝑘|𝑈
† = 𝑈 

𝑘=1

𝑚

𝑝𝑘 𝜓𝑘 〈𝜓𝑘| 𝑈† = 𝑈𝜌𝑈†.

Effect of a measurement on a density matrix: 

measuring state 𝜌 with respect to the basis |𝜑1〉, |𝜑2〉,…, |𝜑𝑑〉,

still yields the k th outcome with probability 𝜑𝑘 𝜌 𝜑𝑘 .

Why?
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Recap: density matrices

• Applying 𝑈 to 𝜌 gives 𝑈𝜌𝑈†

• Measuring state 𝜌 with respect to the basis |𝜑1〉, |𝜑2〉,…, |𝜑𝑑〉

yields: 𝑘𝑡ℎ outcome with probability 𝜑𝑘 𝜌 𝜑𝑘

—and causes the state to collapse to 𝜑𝑘 〈𝜑𝑘|.

Quantum operations in terms of density matrices:

Since these are expressible in terms of density matrices alone 

(independent of any specific probabilistic mixtures), states with 

identical density matrices are operationally indistinguishable
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Return to state distinguishing 

problems …
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State distinguishing problems (1)
The density matrix of the mixed state

((|𝜓1〉, 𝑝1), (|𝜓2〉, 𝑝2),…(|𝜓𝑑〉, 𝑝𝑚)) is

1. & 2. 0+ 1 and −0− 1 both have

3.   0 with prob. ½ 

1 with prob. ½

4.   0+ 1 with prob. ½ 

0− 1 with prob. ½

6.   0 with prob. ¼  

1 with prob. ¼ 

0+ 1 with prob. ¼ 

0− 1 with prob. ¼ 

Examples (from earlier in lecture):

𝜌 = 

𝑘=1

𝑚

𝑝𝑘 𝜓𝑘 〈𝜓𝑘|

𝜌 =
1

2
1 0
0 1

𝜌 =
1

2
1 1
1 1
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State distinguishing problems (2)

5.   0 with prob. ½ 

0+ 1 with prob. ½

7. The first qubit of 01− 10

Examples (continued):

has

...? (later)

𝜌 =
1

2
1 0
0 0

+
1

2

1/2 1/2
1/2 1/2

=
3/4 1/4
1/4 1/4
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Characterizing density matrices

Three properties of 𝜌:

• Tr𝜌 = 1 (Tr𝑀 = 𝑀11 +𝑀22 +⋯+𝑀𝑑𝑑)

• 𝜌 = 𝜌† (i.e. 𝜌 is Hermitian)

• 𝜑 𝜌 𝜑 ≥ 0, for all states |𝜑〉 (i.e. 𝜌 is positive semidefinite)

Moreover, for any matrix 𝜌 satisfying the above properties, 

there exists a probabilistic mixture whose density matrix is 𝜌

How do we show this?

𝜌 = 

𝑘=1

𝑚

𝑝𝑘 𝜓𝑘 〈𝜓𝑘|
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Taxonomy of various 

normal matrices



15

Normal matrices
Definition: A matrix 𝑀 is normal if 𝑀†𝑀 = 𝑀𝑀†

Theorem: 𝑀 is normal iff there exists a unitary 𝑈 such that 

𝑀 = 𝑈†𝐷𝑈, where 𝐷 is diagonal (i.e. unitarily diagonalizable)

Examples of abnormal matrices: 
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11 is not even 

diagonalizable 
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11 is diagonalizable, 

but not unitarily

eigenvectors:
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Unitary and Hermitian matrices
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00
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1 with respect to some

orthonormal basis

Normal:

Unitary: 𝑀†𝑀 = 𝐼, which implies 𝜆𝑘
2 = 1, for all 𝑘.

Hermitian: 𝑀 = 𝑀† which implies 𝜆𝑘 ∈ ℝ for all 𝑘.

Question: Which matrices are both unitary and Hermitian?

Answer: Reflections (𝜆𝑘 ∈ +1,−1 for all 𝑘).
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Positive semidefinite

Positive semidefinite: Hermitian and 𝜆𝑘 ≥ 0 for all 𝑘.

Theorem: 𝑀 is positive semidefinite iff 𝑀 is Hermitian and, 

for all |𝜑〉, 〈𝜑|𝑀|𝜑〉  0.

(Positive definite: 𝜆𝑘 > 0 for all 𝑘)
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Projections and density matrices

Projector: Hermitian and 𝑀2 = 𝑀, which implies that 𝑀 is 

positive semidefinite and 𝜆𝑘 ∈ {0,1}, for all 𝑘.

Density matrix: positive semidefinite and Tr 𝑀 = 1, so 1
1




d

k

kλ

Question: which matrices are both projections and density 

matrices?

Answer: rank-1 projections (𝜆𝑘 = 1 if 𝑘 = 𝑗, otherwise 𝜆𝑘 = 0)
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Taxonomy of normal matrices

normal

unitary Hermitian

Reflection*
*through hyperplane

positive 

semidefinite

projection
density

matrix

rank one

projection
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Bloch sphere for qubits
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Bloch sphere for qubits (1)

Consider the set of all 2 × 2 density matrices 

Note: Coefficient of 𝐼 must be 
1

2
, since 𝑋, 𝑌 and 𝑍 are traceless.

They have a nice representation in terms of the Pauli matrices

Note that these matrices, combined with 𝐼, form a basis for 

the vector space of all 2 × 2 matrices.

We will express density matrices 𝜌 in this basis.

𝜎𝑥 = 𝑋 =
0 1
1 0

,     𝜎𝑦 = 𝑌 =
0 −𝑖
𝑖 0

,     𝜎𝑧 = 𝑍 =
1 0
0 −1

. 
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Bloch sphere for qubits (2)

We can express

First consider the case of pure states 𝜓 〈𝜓|, where, without 

loss of generality, 𝜓 = cos 𝜃/2 0 + 𝑒𝑖𝜙 sin 𝜃/2 |1〉
for 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 < 2𝜋 (unique if 𝜃 ≠ 0, 𝜋).

Therefore 𝒓 = (sin 𝜃 cos 𝜙 , sin(𝜃)sin 𝜙 , cos(𝜃))

These are polar coordinates of a unit vector 𝒓 ∈ ℝ3

𝜌 =
1

2
(𝐼 + 𝑟𝑥𝑋 + 𝑟𝑦𝑌 + 𝑟𝑧𝑍).

𝜌 =
cos2(𝜃/2) 𝑒−𝑖𝜙 cos 𝜃/2 sin(𝜃/2)

𝑒𝑖𝜙 cos 𝜃/2 sin(𝜃/2) sin2(𝜃/2)

=
1

2

1 + cos 𝜃 𝑒−𝑖𝜙sin(𝜃)

𝑒𝑖𝜙sin(𝜃) 1 − cos(𝜃)
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Bloch sphere for qubits (3)

− 

0

1

+ 

− 𝑖

+ 𝑖

𝑖 = 0+ 𝑖1

− 𝑖 = 0− 𝑖1

−  = 0− 1

+ = 0+ 1

Pure states are on the surface ( 𝒓 = 1), and mixed states are 

inside ( 𝒓 < 1, being weighted averages of pure states).

Note that orthogonal corresponds to antipodal here.

The maximally mixed state 𝜌 =
1

2
𝐼 has 𝒓 = 0.

ෝ𝒙

ෝ𝒚

ො𝒛


