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Abstract

The Atiyah-Hitchin-Singer theorem states that the twistor almost complex
structure on a certain 2 bundle over an oriented Riemannian 4-manifold (M, g)
is integrable if and only if the Weyl curvature tensor of g is self-dual.

These ideas were developed by Roger Penrose connecting 4-dimensional
Riemannian geometry with complex geometry.

We present a new approach to the Atiyah-Hitchin-Singer theorem using
horizontal lifts and their respective flows, cross products and the quaternions
to show that the Nijenhuis tensor vanishes if and only if the Weyl curvature
tensor of ¢ is anti-self-dual. An eight dimensional generalization is presented

when the manifold is RS.
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1 Introduction

It is be possible that certain types of PDEs have underlying geometric structure.
Knowing the type of geometric structure can reduce the complexity of certain PDEs.

Penrose used twistors to describe solutions of these types of PDEs [5]. He first
showed how the wave equation on complexified Minkowski space was related to a con-
tour integral in complex geometry. A twistor space is a space Z with a projection to a
space M such that its fibres are complex manifolds. Penrose’s twistor space is a com-
plex 4 dimensional space Z which has a double fibration to the complex Grassmanian
and to CP®. Based on this construction, Richard Ward [14] showed that instantons
on complexified Minkowski space correspond to holomorphic vector bundles on CP?.
Other correspondences came about such as instantons on the 4-sphere correspond to
holomorphic bundles on complex projective 3-space [3] where instantons are special
kinds of solutions to the Yang-Mills equations in 4d. They are connections whose
curvature is self-dual or anti-self-dual. Atiyah, Hitchin, and Singer further developed
[2] the ideas of Penrose in the setting of 4-manifolds and produced the paper “Self
duality in four dimensional Riemannian geometry”. The Atiyah-Hitchin-Singer theo-
rem states that the twistor almost complex structure on a certain S? bundle over an

oriented Riemannian 4-manifold (M, g) is integrable if and only if the Weyl curvature



tensor of g is self-dual. The Newlander-Nirenberg Theorem states that the vanishing
of the Nijenhuis tensor corresponds to the integrability of an almost complex struc-
ture. In this thesis we show the Nijenhuis tensor vanishes hence the almost complex
structure is integrable if and only if the anti-self-dual part of the Weyl curvature van-
ishes.

In section 2 we introduce the vertical bundle, horizontal bundle, and horizontal
lifts of a vector fields. We then describe the flow of the horizontal lift which has
the property that it preserves the cross product and is an isometry in the vertical
direction. The Lie bracket of two horizontal lifts involves the curvature which will be
needed in calculating the Nijenhuis tensor. We then show how horizontal lifts act on
the tautological 2-form.

In section 3 we set up some linear algebra for our later calculations. We introduce
orthogonal complex structures and orientations. We show how 2-forms can be related
to endomorphisms, and define an almost complex structure on the 2-sphere.

In section 4, the results of the previous sections are applied in the case of the
vector bundle £ = A2 (T*M). We consider the y/2-sphere bundle Z C E and define
an almost complex structure on Z compatible with the horizontal and vertical split-
ting. The almost complex structure on HZ uses the tautological 2-form, while the
almost complex structure on V' Z is related to the quaternions and the cross product.

In section 5 we calculate the Nijenhuis tensor of the almost complex structure
defined in section 4. We show that the Nijenhuis tensor of a horizontal lift and of a
vertical vector field vanish and the Nijenhuis tensor of two horizontal lifts reduces to
curvature. The Nijenhuis tensor of two vertical vector fields vanishes and its calcula-
tion depends on the cross product on the fibre of E. Through the use of quaternions
in particular their relation to the cross product together with the Kulkarni-Nomizu
product, we arrive at a condition for integrability only involving the anti-self-dual

part of the Weyl curvature. We then show that this condition is satisfied if and only



if the anti-self-dual part of the Weyl curvature vanishes

In section 6 we show how self-dual instantons are related to holomorphic vector
bundles through the use of the techniques we built up in the previous sections.

In section 7 we apply the techniques of the previous sections to an 8-dimensional
generalization where the base is R® with standard Spin(7) structure and we calculate
the Nijenhuis tensor.

Some further references for further reading related to this topic are [12], [1 1], [0],

[14], [7], [10] and [1].

2 Vector bundles

Let E be a rank k vector bundle over a smooth manifold M. Let 7 : E — M be
the projection map. Let U C M be a local chart on M. For p € M, let E, = 7 '(p)
be the fibre of E over p and v € E,,.

Recall that a section o € T'(F) is a smooth map o : M — FE such that moo = .
Suppose that E can be trivialized over U and let ¢y : By — U x R¥ be a trivialization
map. The standard basis in R* induces via ¢y a local frame {o;}¥_, for Ey. The
local coordinates induced on Ey by the local frame and the local coordinates on U
are (zt,..., 2"y, ..., y¥). In particular, a local section ¢ € I'(Ey) can be given by

o= Zle y'o;. The induced coordinates on E are given by the map

(yigi>p = (pa y17y27y37"'7yk) (1)

where p = (z!,...,2"). These adapted local coordinates for E are the only ones we
will use.
Recall the pullback bundle of E along 7 is denoted as 7*E, where 7*E = {(u,v) €

E x E :m(u) =n(v)}. For v € E, we have (7*E), = E,.

Definition 2.1. Let E* be the dual bundle of E. A fibre metric on F is a section



gr € I'(E* ® E*) so that gg(-,-) is symmetric and positive definite inner product for

each p € M.

2.1 The vertical subbundle VFE

The pushforward by 7 is denoted by 7, : TE — TM and we define the vertical
subbundle of TE as ker(m,) = VE. We will show that a local frame for the vertical
space is given by {Biyl’ 6%2, e a;:k}‘ We denote V,FE := (VE), for v € E.

Lemma 2.2. (Vector Bundle Construction Lemma [9] page 108)

Let M be a smooth manifold and suppose we are given:

e for each p € M, a real vector space E, of some fixed dimension k

e for each o € A a bijective map ®@,, : W_I(Ua) — U, x RF whose restriction to E,

is a linear isomorphism from E, to {p} x R*

e foreach o, € A such that U,NUs # 0, a smooth map pas : UsNUz — GL(k,R)

such that the composite map P, o@El from (U,NUg) x R* to itself has the form
D, 0 5! = (p, pas(p)v)
Then E has a unique smooth manifold structure making it into a smooth vector bundle

of rank k over M, with m as projection and the maps ®,, as smooth local trivializations.

Theorem 2.3. Let (v,() € (n*E),. The vertical subbundle V E is isomorphic to the

pullback bundle 7 E via the map

EW(U) 5 ( ll) —

where %|t:0(1} + tC) S TU(EF(U)> = EW(U).

Proof. Let v € E(, and define a map [, : (7*E), — V,E by

o (0,0) s &

7 (v+t¢) € V,E. (2)

t=0
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The map [, is one-to-one and onto and linear since % is linear hence it is an isomor-

phism of vector spaces. Then the inverse I;! : V,E — (7*E), is given by

d
2w e 0.0, (3)

t=0

We will show 7*F = V E using the vector bundle construction Lemma. Given
a frame {o;} for £ over U, we obtain a local frame {7*0;} for the pullback bundle
7 F over Ey. Let (v, k), (v, k') € (r*E),. We will show that the transition functions
on VE come from the transition functions on 7*E and by Lemma 2.2, V E will be
a vector bundle. As 7*E is a vector bundle 7*E = | | (7*E),. Let {U,} C M be a
trivializing open cover for £. Then on the intersection U, N Upg, there exists p,s on

7 (Ey.nu,) such that (v, k) = (v, pagk’). Since [ is linear and pas is linear we get

lo(v, ) = Ly(Pas(P)V; pas(p)K')
d

= |z (Pas(P)v + tpas (D))
d
- pal?(p)alt:()(v + tK')

= (paﬁ(p))lv(U’ /45,))‘ (4>

Hence the transition functions for (7*E), are the same as the transition functions
on V,E and the map [, varies smoothly over the fibres and similarly for the map
[,'. Then by Lemma 2.2 we get VE = | |, V,E, where VE is constructed from the
transition functions on 7*F, and we get vector bundle isomorphisms [ : 7*E — VE

and [7': VE — 1m*E. m

Corollary 2.4. Under the isomorphism between m*E and VE, and for local frames

.

{m*0;}, {a%i} of ™ E and V E respectively, the map | sends {r*o;} — {fyi



Proof. Recall that for U C M, U a trivializing open set for F

oi(p) = ¢ (p, (0,0,...,1,0...,0))

where the 1 is in the ith position. Let y(t) = v +¢(0,0,...,1,0...,0) where the 1 is

in the ith position. For p € M, f a function on E,, then v*% at t = 0 applied to f is

0 d

Then 1,((7*0:)u) f = Ve f = a%i

o
v+1(0,0,...,1,0...,0)) = —
t:Of( ( ) .

f ()

e O

Definition 2.5. The fundamental vector field £ € I'(V E) is given by

Theorem 2.6. Forv e E, &, € V,E 1s given in local coordinates by &, = yia%i’

v°

Proof. Let v € E and &, € V,E. Then (v,v) = y'(7*0;), and &, = l,(v,v) =

%‘tzo(v + tv) € V,E. By Corollary 2.4 we get
lo(v,v) = lv(yi(ﬂ—*ai)v)
= yilv((ﬂ-*ai)v)
e,
=y'—|. O 6
Yol (6)
Given that we have 7 : F — M, we have the induced map m, : TE — TM. The
bundle TE will have a local frame {%, ce %, 8%1, ey a%k}'

For the local coordinates on E given by (1), let 7 be defined by



The matrix of 7, is given by

or! orl  oxb ort
ozl 0 dxzm Gyl T Oyk
= <]n><n Onxk)
on™ or™  on™ o™
SR =l w SR w3

and as a consequence we see that for v € E,, ci%

i 0
U—l—ba—MUETvEthen

L0 .0 L0 L0
m.(c 8xi|“+b 8yi|“) = m.(c 8xi‘v)+m(b 8yi‘“>
.0
- ox? |p (8)

and hence ker 7, has the basis { 831-

y

Theorem 2.7. Let A € I'(T'M). Suppose Ay € I'(TE) and assume that m,A; = A.
Let ¢ : M — M and oM . E — F be the flows of A and Ay respectively. Then the

following diagram commutes for all t.

Aq

E i y B
M " s M

Hence the flow ¢f1 1s a family of fibre preserving diffeomorphisms.

Proof. See [9] Lemma 18.4 page 468. O

2.2 The horizontal lift

Let v : [0,1] — U be an arbitrary curve in a coordinate chart U C M,
given in local coordinates by v(t) = (z'(¢),2*(t),...,2"(t)) with v(0) = p and
(0) = X, € T, M.



A lift of v to E is denoted 7 € I'(y*E). It is given in the local coordinates defined

by a local frame {o;} of E in (1) by

= (v(1), q()). (9)

where v(t) = (2'(t),2%(t),...,2"(t)) and q(t) = (y*(t),v*(t),...,y"(t)). In other

words, 7 = y%0;. In this chart the derivative of 7 is given by

More explicitly

) dy® 0
t —
¢(t) dt Jdy®l3
and
, dz' 0 ;o0

"0 =3 o . 1) )
Then we have

i vy O dy* 0

/7 (t) - X (t) a[[‘l Q dt aya :Y\ (10>

Let V be a connection on E. For ¢ € I'(E) and h € C*°(M) then V : I'(E) —
I(T*M ® E) and V(oh) = dh ® o + hVo. Denote V; := Vj, .

Definition 2.8. Given a local frame {o,} on E, and a connection V on FE, the

connection coefficients I'?; are defined by V;o, := I'%.0y.

Definition 2.9. Let v : [0, 1] — M be a smooth curve, and V a connection on E. A
lifting 7 : [0,1] — E of v to E is horizontal with respect to V if (v*V)7 = 0, where

~v*V is the pullback connection on v*E.

We will solve the equation

(Y'V)A = (Vywy (yto,)) = 0. (11)

10



We use {y*01,7*09,...,7 0%} as the induced frame on v*E from the local frame

{01,09,...,0k} on E. We drop the v* for convenience.

In local coordinates (7*V)7 = 0 is equivalent to

. dy® "
v’y”y = %Ua +y V'y’aa
dy® -
= o+ Y X Tl
dyp b
— (b axirh
(o Ty X Tai)ow

=0
which gives the system of equations for (y*)’s

dy’

=T, X'y".
di Y

We substitute equation (13) into equation (10) yielding

0
o lq(t)

- inXiyai

7t = X°

Notice that 7/(¢) given in (14) only depends on V and 7/(t).

Dyt lgt)’

(12)

(13)

(14)

This section of

v*(TE) is known as a horizontal lift of X € I'(T'M) along 7. Soon we will see that

this will lead to a splitting of T'E into horizontal and vertical subbundles where the

horizontal lift is a section of the horizontal bundle.

Definition 2.10. Let v : [0,1] — M be a curve in M. A horizontal lift of v at v € E,

is %}j(t) :[0,1] = E, such that %‘(O) =wv, To 77’} =~ and 75 is horizontal.

Theorem 2.11. For v € E,, in local coordinates (z*,...,2") on M, let

0 0 0
H,E = {X!:= X’ My X' — eT,B|X = X'~

ot @ oyb

11
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Then H,FE is a subspace of T, E and

0 0 0
hy : T,M — T,F, Xi— i X' — Tl Xt — 16
p — al’l = 8:1:1 ail ayb ( )

is a linear injection and HE = | | _p H,E is a vector bundle.

Proof. Let X,Z € T,M, and X" Z" € T,E be the respective horizontal lifts at v.
Denote I'f, = T'f.(p) and y* = y*(v). (We are dropping the p and v for convenience).

Write X = X2 Z = Z' %, Let

0 )
XM= X' —Tl X —
o' @ oy’

0 . 0

h _ 71 b arzi
Z _Z%_Fazyza_yba (17)
and for A, B € R,

AXh 4+ BZM
i i 0 b i i a0

= (AX'+ BZ )% —T(AX"+ BZ")y (9_yb (18)

hence AX" + BZ" is a horizontal lift of AX + BX at v.
We show that . is a left inverse of h:
(m o h)(X)
-0
= (m, 0o h)(X'—
(me 0 W)X )
_ 1 _Tbayxi 2
_ ﬂ-*( axz ai¥ 8yb>
-0 » 0
— *XZ : —Fb- aXZ*_
m (X5~ T X'm (5 5)

_Y? 9
T O
=X. (19)

12



Thus 7, is the inverse of h when restricted to the codomain im(h) and we showed
H,E = T,M is a linear isomorphism. Given a local frame for T'M using the horizontal
lift one can construct a local frame for HE.

The map h is linear and HE = | |, H,E = | | (7*T'M),, the transition functions
for HE on U,NUg C M will be exactly the transition functions for M on U,NUsz C
M. Similar to Theorem 2.3, the bundle structure on HFE is built from the linear

injection and from the bundle structure on | | (7*T'M), = 7*T'M. O
We have now that TE = ker(w,) @ im(h) =VE & HE.

Definition 2.12. The horizontal lift of X € ['(T'M) is X" € T'(HE) such that at
each point p € M,v € E, , X" = h,(X,) € H,E C T, E.

v

We now calculate the integral curves of

.0 . 0
X=X~ - X'y 20
R (20)
We need to solve the equations
dz* , dy® ,
—ox, B xiye (21)

with initial conditions (0) = (z!(0),...,2"(0)) = p,y(0) = (y'(0),...,4*(0)) such

that v = y*(0)o,. The solution is given by

Y () = e~ o TaX dtya ), (22)

where ~y(t) is the integral curve of X with initial conditions v(0) = p. Then the flow
for X" is given by
h [t Xidt a
X)) = (y(t), e Jo Ty (0) ). (23)

13



Let X" be the horizontal lift of X, ¢ be the flow of X then ¢"(E,) C Eyx

h . . .
and ¢;" is a fibrewise morphism.

2.3 Properties of the flow gbtxh

We now define parallel transport of a point v € E along a curve v : [0,1] — M.

Definition 2.13. The parallel transport of v € E, along v starting at v(0) = p is
the endpoint of the unique horizontal lift v (¢) of (¢) such that +"(0) = v. For each

v € E, the integral curve of X" associated with the flow ¢;X" is ¢;X" (v) := 7" ().

Let g = (-,-)g be a metric on E and suppose V preserves g. If {o,} is a local

frame for F/, this means that
X(0a,00) 5 = (Vx0a,00)E + (00, VxOu) - (24)

Let X € D(TM) and X" be its horizontal lift to TE. We claim that ¢;X" is an

isometry in the vertical direction, that is ¢;X " preserves the metric g on E.
Theorem 2.14. gzﬁf(h - E — FE is an isometry with respect to g the metric on E.

Proof. Let {o,} be a local orthonormal frame for E, in local coordinates (z?,...,z"),

let X € (T'M), X = X'2. Then

0= X{(0o4,0p)E
= (Vx04,00)E + (00, VxOu)E
= X'((Tg0¢,00) 5 + (04, Thi04) )
= X"(I'%0e + Tiidaa)

= Xi(FZZ. + FZz) (25)

Hence I'2; is antisymmetric in a and b thus the exponent in (23) is antisymmetric in a

14



and b. Tt follows that ¢;* " given by (23) is an orthogonal transformation in the second

argument hence an isometry in the vertical direction. O]

Next we show that (¢ h)* is an isometry when restricted to the subbundle V E.

Corollary 2.15. The pushforward of gbf(h, (qbf(h)*, 15 an isometry with respect to the

metric (-, )yvp on VE.
Proof. By (23) the pushforward of ¢:X", (¢:X"), is given in local coordinates (¢X"), by

ny , 0 o oyt 0o
X — JEE—
@ )50 = a0t * au oy
_ 0 0e hTye0) 0
- Ot ox’ oyt
0 oz’ 0 oy® 0
x9N _ 9 9 9 9
0

¢ i O
= N = Jo rhXidt_©
(O)be +e o7 (26)

(Xh)*:( 1 ’ \

t tpb xi
a(eif()raix dtya,(o)) _rtrb .

In matrix form

The restriction of (¢X"), to VE is (¢"). = ¢ JoTuX'd By Theorem 2.14,

VE

_ [tmd i . . . h .
e~ JoTaiX'd is an orthogonal transformation hence an isometry. Thus (¢;° )*‘VE is
an isometry.

We make a note that the metric on E and the metric on VE are related by

(), l(B))ve = (o, B)g for a, B € E, where [ is defined in Theorem 2.3. O

2.4 The Lie bracket of two horizontal lifts

For s € I'(E), let s* := n*s € I'(n*E) = I'(VE) be the section of V E using the
identification of 7*E and V E in Theorem 2.4, and is called the vertical lift.

For f € C®(M), let f*:=n*f € C®(E).

15



Lemma 2.16. Let X" be the horizontal lift of X € T(TM), let f € C®(M) then
(Xf)r=X"fr.

Proof. Working out X" f¥ yields

XM= (wrdf)(X")
= (df (m.X"))
= (df (X)) om
= (X[f)om
= (Xf)
= (X[)". (27)

]

Theorem 2.17. Let s € I'(VE) be the vertical lift as above, let X" be the horizontal
lift of X € T(T'M). Then
(Vxs)’ = [X" 5.

Proof. Let f € C*°(M) and s € ['(F). Then s* € I'(VE) is a vertical vector field on

E. Note that 7*(fs) = n*fr*s = fUs". Then ((X f)s)" = (X" f¥)s" and we have

(Vx(fs))" = (fVxs+(X[)s)"

= [*(Vxs)" + (X [)s" 28)

and

(Vixs)" = (fVxs)") = [*(Vxs)® (29)

Evaluating [X", (fs)"] = [X", f’s"] and [(fX)",s"] and noting that sU(f") = 0, we

16



have
XM o] = FX0 8]+ (X )

(FX)" ] = [F'X". 1
= P - S ()X
= PIX" s, (30)

Equation (30) shows that [X", %] has all the properties of a connection. In a

local frame {o,,} for E, k,, € C®°(M), s = > knoy, then s* = 7> knon) =

v LU ; v SN : 0 _ 0
Y m kot Using Corollary 2.4 then o, € I'(V E) coincides with gy et X = 55
so X" = 5% —T%,y" 50 then
xh, 9| L a0 O
oym ox’ oyt oy™
0
=TIt e
ia mayb
9
m 8yb.
It follows that [X", ¢%] = (V o _0p,)" Using Corollary 2.4. (31)
ozt
By (30) [X", s"] = (Vxs)? for all X € T(TM) and s € T'(E). O

Theorem 2.18. For X" Y" € T(HE) horizontal lifts of X,Y € T'(T'M) respectively,
n € E then

[Xh7 Yh]ﬁ - [X7 Y]Z = _R<X7 Y)77 (32)

where R(X,Y) : I'(E) — I'(E) is the curvature operator for V. The right hand side

R(X,Y)n is interpreted as an element in T, E via the identification ™ E = V E.

Proof. Let (x,... 2" y', 9? ..., 9") be adapted local coordinates on E from (1). Let

17



(X" Y =

Expanding the Lie brackets

(X" Y =

and Y" be horizontal lifts of X and Y. We compute

X = Tt ) Yy — L' )
B [Xiaii’ j%]
—[Xi%, TSy aae]
- X Y o)
Xy VT
w20 v 25 0
— (X %YZ Iy aae z%yﬁﬂ'%)
+ 7 aajgrwy aab Ty aaz; az )
+ XT3, YT 4 (40 0 — gydor— 0 -).
oy° oyb

After rearranging and collecting terms and relabelling indicies, we get

X" Y] = <X@<%§f ) - w’(%ff»% - <Xi5;’;f I
B e

- (@) - Yf(%ff))% (e %Y %

L P
Note that [X,Y]" = (X7(95) — YI(25)) 52 — (X1 25Ty

18

a

YJ

Xz'
81“

d
B ")

+ TP T2y

iat jdY
ae J

YJ

0X?

or Jrzed )

§OX e
- Y151

0

a e
a0
8 oy
0

oy°

e a € a
id jayda_ye + Fiarjdydaye)'

v .

(33)

(34)



Rearranging, we get

o 0
XH Y = (X Y] = XYy R, (36)
ye
Evaluating the expression at n = y%o,,
Xt yh X, Y] = —xviyire O _pexy 37
[ ) ]77_[ ) ]77__ Y ijdaye__ ( ’ )777 ( )
where the last step is the identification of V E with n*FE. n

2.5 Tautological 2-form

On A?(T*M) there is a natural tautological 2-form ©. Let a € A*(T*M), X,Y €
T.(A*(T*M)), then 1, X, m.Y € TyroyM. The value of © at « is given by

Oa(X,Y) = o) (m. X, 1.Y). (38)

Let (x',...,2") be local coordinates on M then {dz’ A dz’|i < j} is a local
frame for A%2(T*M). The corresponding induced local coordinates on T*(A?(T*M))
are ', .., 2" and y;;, 1 <4,5 <n.

In this local frame

1 . )
© = —y;;(dz* Nda?).

2 (39)

2.6 Horizontal vector fields acting on tautological 2-forms

For a Riemannian manifold M, let V7™ be the Levi-Civita connection on T'M.
Let {X;} be a local frame for TM and {a'} its dual local frame for T*M. The

connection coefficents with respect to V'™ are ', i.e. V{™X; = I',;X;. The induced
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connection V™™ on T*M is then given by
VIMak = —Thal. (40)

An induced connection VI MET™M on T*M @ T*M is defined as follows, for

a,fel(T*M)andi=1,...,n
Vi MET e @ p) = Vi Mawf+aeViME. (41)

The local frame on T*M @ T*M is {a' ®@a? | i =1...n,j =1...n}. The connection

coefficents are given by
viMET M (of @ §7) = (-T,0" @ B) + (o @ =T, B™). (42)

Definition 2.19. For {o' Ao’ | i =1 < i < j < n} the induced frame on A*T*M
from the local frame {o' ® o’ | 1 < 4,5 < n} of T*M ® T*M, the induced connection

VA*T"M g defined by
vy Tl A B7) = ((<Tha)a™ A B) + (0 A (=T4,,8™)). (43)

Following the construction in determining (14), using (40) and Theorem 2.11, we
apply the derivation of the horizontal lift to the vector bundle A?(T*M).
In the induced local coordinates for A*T*M, given by (a', ..., 2", y;;) for i < j, solving
equation (12) gives

dy;;  da_, dz° _,
= S pd g
dt  dt e T g el

Hence the horizontal lift of X € T'(TM) to X" € T'(A*T*M) is given in local
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coordinates by

0
0x¢

0 0
V' = X + Chyg + Thyia) 5—).

X" =(x°
( oxe 8@/13

For X" Y" € T(T(A*(T*M))) horizontal lifts of X,Y € T(T M), let w € E,, let local

coordinates on T*(A*(T*M)) be (z*,.., 2", y12, .., yi;), © < j. Then applying this to

(38) we get
1 ) .
(X" Y" = 3 (yij(dz' Ada?)(X,Y)) om. (44)
Evaluating (44) at w then
@w (X£7 Y:) = Wr(w) (Xﬂ'(w)7 YTI'(UJ)) (45)

We now apply the horizontal lift to the tautological 2-form (45) and work out Z"(©(X", V")),

Theorem 2.20. Let Z" X" Y" be horizontal lifts of Z,X,Y € T(TM). Let © be the
tautological 2-form (45). Then

ZMOX"MYM) =0(VzX)", Yh) + (X", (VY)M).
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Proof. Let X = X4 Y =Y™m:0 7 = 7' 2

ZMOX"Y™")

= Z'(5:)"0(X ()" Y™ (55)")

)" (X'Y™O((50)" (55)")

oz™

= Zz(amz
= ZY™(ED)0((3)" (%)) + Z X (O ((2)", (32:)") + Z' XY™ (3)" (yim)
)" (Yim))

= O(Z(X") ()" Y") + O(X", Z(Y™)(55)") + Z'X'Y ™ (Dyjm + Tlths):

=0 Z(XH ()" Y +o(X", Z(Y™)(5%)") + Z' XY™ (L

(46)

We now look at the term Z!X'Y™ (T + T,41;) which becomes

Z' XY "Dy + Z' XY "y

= 7'X! meym(dx (V 9 Bz z)) +7'X! melj(dxj<v 9 Bi’))
81‘7‘ 8xm

= Z' XY™y (da? (Vo o) + 2 X! melj(dxj(vaa 57))

— Zinyjm(dmj(W*(Vi %)h)) A dxm(W*Yh)
Ozt

+ ZY M ydat (7, XM A (da? T (Vs aii)h))

oxr™

= O(X (Vz2)", Y™ + (X", Y™ (V52:)"). (47)

ox™

Combining the equations (46) and (47) yields

ZMOX"YM) =0(Z(X") (&) + X (Vz:2)", Y")
FOX", Z(Y™) (%) + Y™ (V252"

=0((VzX)", Y + (X" (V)" O (48)
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3 Linear algebra

3.1 Orthogonal complex structures and oriented manifolds

Let V' be a 2n dimensional real vector space with metric g. Let {eq, ..., ea,} be an
orthonormal basis for V. We let i be the volume form on V' defined by . = e A. . . Aea,.
Using the metric g on V' we can identify elements of V* with V| that is e’ = g(e;, -).
The volume form on V is e A ... Ae*™. Let {€1,...,€e3,} be another orthonormal
frame with volume form g =¢é; A ... Aey,. Let A € O(n) so that Aé-ei = ¢, then the

two volume forms p and fi are related by
det(A)(ey A ... ANegp) = €1 A ... Aeay. (49)

When det(A) = +1, the two bases define the same orientation and when det(A) = —1
the two bases define opposite orientation.

We now define an orthogonal almost complex structure.

Definition 3.1. Let V be a 2n dimensional real vector space with metric g. An

orthogonal complex structure on V is a linear map J : V' — V such that J? = —idy

and g(JX,JX) =g(X,X) forall X € V.

Given an orthogonal complex structure J there is an orthonormal basis such that
J is given by

J 1 egii1 — €94, €25 — —€2i_1

for all i = 1,2,...,n. Then J induces a natural orientation on V' given by
€1 N J€1 VANRRAN €Coan—1 N Jegn_l (50)

We show this orientation is well defined on V.

Theorem 3.2. Given an orthogonal complex structure J there is an orthonormal
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basis {e;} such that J is given by J : eg;_1 > €9, €9; — —ea;—1. Then the orientation

on 'V given by

er N J@l N...Negp1 N J@anl
is well defined, i.e. independent of the choice of {e;}.

Proof. Let {¢&;} be another such basis. We can write

Jék == AZJ(?Z - B]iez‘,

where A}, Bl are real n X n matrices. Subsituting (52) into

él /\Jél VAN /\égn_l /\JéQn_l

we get

(Allgel + JB;&l) VAN (A,lf(]€1 - B,iel) AN

A (Ai”_legn_l —|— Jan_legn_l) A (AZ”_IJeQn_l — an_legn_l).

After rearranging we get

A —-B
det 61/\J€1/\.../\62n,1/\¢]€2n,1.
B A
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I 0 I 0

Noting that det =1 and det = 1 then
—il I il T
A —-B I O A —B||I 0
det = det
B A —iI I| |B A il 1
A—iB -B
= det (56)
0 A+iB
and
A—iB -B
det = |det(A —iB)|* > 0. (57)
0 A+1B

Thus since the determinant is positive, the orientation is well defined. O]

3.2 2-forms and skew-adjoint endomorphisms

We will show that 2-forms and skew adjoint endomorphisms can be identified

using the metric.

Theorem 3.3. Let o € A’V*. Then it defines a skew adjoint endomorphism o :
V — V given by X — (X J«)?, where § is the musical isomorphism with respect to

the metric g.

Proof. Let {e;} be an orthonormal basis for V' and {e’} be the dual orthonormal basis
for V*, let o = ;e Ael. Note that e’ A e/ can be identified as an endomorphism

via the metric g by
e ((ei A ej)(ek))li = (ex U (ei A ej))ﬁ

= (es, ex) ()t — (e, ex) (€. (58)

We extend this map linearly and the map (- 1 (¢! A e/))* defines an endomorphism of
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V. Note that if we swap e’ with ¢/ then (e J (e? Ae?))f = —(ep 2 (e Ae?))E. Thus for

o = saet ANl € AV*, of is viewed as an endomorphism which is skew adjoint and

thus for X,Y € V, o*(X) = (X J«a)* and
9(e¥(X),Y) = a(X,Y) (59)
as « is skew symmetric then
9(0*(X),Y) + g(X, o*(Y)) =0. O

Next we define the v/k-sphere in A2(V*).

Definition 3.4. Let A*(V*) the space of 2-forms, let (-,-) be the metric on A?(V*)
induced by the metric g on V and let {a’} be an orthonormal basis for A?(V*). Then

for k>0, S ;(A*(V*)) is defined to be the set

{a = a;a’ € N2(V*) | (o, a) = k, i.e, Za? =k}

)

3.3 The almost complex structure on the 2-sphere

We define the almost complex structure on the 2-sphere S2. We choose the

standard orientation on R? with basis {ey, e, €3} where ¢; X ey = e3.

Theorem 3.5. Let p € S?, Y, € T,5%, r, the outward radial vector of length one at

the point p, then J,(Y,) = r, X Y, defines an almost complex structure on S*.

Proof. Since r, is an outward radial vector of length one, it is orthogonal to the tangent

plane 7,52. Then r, x Y, € T,S* and r, x (r, xY,) € T,5%. Hence J, : T,5% — T,,S*.
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Using the identity of the iterated cross product on R? then

PY) =1y % (ry X )

= (1, Yp)1p — (1, 1) Y

= —(1p,7p)Yp since 1, is orthogonal to Y
=Y, since (rory) =1. O (60)

4 The vector bundle E = A\2T*M

4.1 The almost complex structure on S 5(A*(T*M))

Let M be an oriented 4-dimensional manifold with Riemnnian metric g. Let
{eo, €1, €2, €3} be a local oriented orthonormal frame for 7'M and let {e”; e!, €2, 3} be
the dual local orthonormal frame on T*M. Hence on A*T*M, {e' Nel |i < j}is a
local orthonormal frame with the induced metric.

Let E = A2T*M be the bundle of anti-self-dual (ASD) 2-forms. Recall that
w e (M) is ASD iff

*W = —w (61)

where * is the Hodge star operator.

A local orthogonal frame on F is
{whw W ={eAet —e*ned e Ne? —e? nel e Aed — el Ae?).

Note that |w’|*> = 2. From (1) the local fibre coordinates on E will be (y1, y2, y3) with
respect to the frame {w?}. Let Z = S 5(A2T*M) C E be the v/2-sphere bundle.

Since {w”} is an orthogonal frame, Z can be described locally as

Z={f=0]f=207+v;+y3)—2}
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then yf +y5 +y3=1on Z.

Theorem 4.1. Let p € M, and w € Z,. Let J := w* : T,M — T,M. Then J is a

complex structure on T, M.

Proof. Let t be the musical isomorphism then we claim the complex structure J on
T,M is defined by

J = b

To show that J is a complex structure then we must show J? = —id.

Lemma 4.2. The local frame {w', w?, w®}, when viewed as endomorphisms {(w")?, (w?)*, (W3)*}

with Wk, the matriz representation of (w*)* | satisfy the relations

1 2 3 2 1 _ 3 1,1 _
Wailip = —Wgyp WhiWip = Whg WaiWiy = —0ab
2,3 1 3,2 _ 1 3,3 __
Waiip = —Wqyp WhiWiq = Whq WailWip = —Oab
3.1 _ 2 1.3 _ 2 2, 2
Waiip = —Wqyp WpiWiq = Whg WaiWip = —Oap

(62)

Proof. Viewing the local frame {w! w? w?} as endomorphisms {(w!)?, (w?)*, (w?)*},

letting wf, be the matrix representation of (w*)*, we work out wf,w!.. The local frame

{w!, w? w3} is induced from the local frame {eg, €1, €2, e3} on M, given by

wr=e"Nel —e?2 Aée?
W= N2 — e At

W= Aed — el Ae
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~ kol
Working out wj,w,;, we have

whed, = (<a$5; _§06Y) — (8257 — aza$>) ((5253- —8082) — (875 5?6&))
= (—5?655?6,} — 6,?5}525]2- + 6?65’5,?6} + 5565’6?5,3)
= (—(5?537’ - 5}6? + 55(5]1 + 5?5;’)

= —wl. (64)

L)

After cyclically permuting 1 — 2 — 3 — 1 in (64), we get

1.3 _ 2
WipWpy = —Wijs,
2 3 _ 1
WipWp; = —Wij- (65)

We also have

Wl = (<5?as _§06%) — (5157 — 5559) ((525? _ §06) — (5107 — 5;5@)
— 0538063 — 0030050 — 61620107 — 8620102

350

(66)
Similarly wjwi; = wjwy; = —d;. Since the endomorphisms {wy;} are skew in 4, j, and
after swapping a with ¢ and ¢ with b we get
3 1,2 2 1 3
= Wep = WeiWip = WpiWiq = Whg- (67)

Similarly by cyclically permuting 1 — 2 — 3 — 1 in (67) we get

1 _ 3, 2 2 .3, 1
Wap = WailWips Wap = WeiWip- [

Let (w*)* = (J,)i;. Then in a local orthonormal frame J, as an endomorphism is
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Jo)ii = we. For w=y,w? J=uw!= YaJa then
J 1) a

T = yada)
= (Z Yada) + Zyabean)

ab
= O I+ van(Jady + uda)

a<b

= (Z y2J2) +0 using the relations from Lemma 4.2
=-1. O (68)
Note that using the local coordinates (1) for E, w*(X) = w(X,e;)g’%,. Since
{eo, €1, €, €3} is an orthonormal frame ¢7* = ¢67* thus

WHX) = w(X, e)e;.

Lemma 4.3. The fundamental vector field & € I'(V E) is orthogonal to TZ.

Proof. As Z = {f = 0} then TZ = (grad(f))*. Since grad(f) = %ya% = 1 isin
the same direction as the radius vector to the sphere, £ is orthogonal to the tangent

plane to Z. O]

From Lemma 4.3 the tangent space to Z at v € E, is therefore

Given a connection V on E, TE splits as TE = HE ® VE. As Z C E we
can restrict 7 : E — M to Z, ny : Z — M. We thus have the induced map
(mz)s : TZ — TM with VZ := ker(mz).. Thus we have the splitting TZ = HZ&V Z.
From (69) we have that VE =V Z® () and TE|; = HE|; ®V E|z,s0 HE|; = HZ.

As we have a connection on E we get an induced connection on Z since Z C F, and
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HZ = (n|,)*TM = HE| .

We can define an almost complex structure J on TZ C TE as follows;

Definition 4.4. Let w € Z,. On H,Z, J is defined by J(X") := ((X 1 w)")", for
X € T,M.

The next result shows that tautological 2-form from (38) can be used to represent

J(XM).

Theorem 4.5. Let © be the restriction of the tautological 2-form on A*T*M to Z.

Let X" be the horizontal lift of X € T(TM). Then

J(X") = 0(X" ele;

)

where {eg, €1, ea,e3} is a local orthonormal frame.

Proof. For {eg, ey, €9, e3} alocal orthonormal frame on TM, let {ef, et el e} be the

induced orthonormal frame on HZ. Evaluating J(X") at w € E, we have

J(X") = (W X))k
= (Wr(w) (Xnw)s (€)mw) ) (€0) 50

= Wr(w) (W*Xffa W*(ei)ﬁ(w))(ei)ﬁ(w)

= @w<X7}rL(w)a (ei)ﬁ(w))(ei)?r(w)’ [ (70)

Theorem 4.6. Let w € Z,, YV € V,Z, £ € I'(VE) the fundamental vector field.

Then J,(Y") =&, x YV defines a complex structure on V,,Z.

Proof. This follows from Theorem 3.5 since &, is orthogonal to YV and |{,|> =1. O

4.2 The flow ¢§h and the cross product

Lemma 4.7. The vector bundle E is orientable.
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Proof. Let {éy, 1,63, €3} be another oriented orthonormal frame, where é; = Pyep

and P € SO(4). Recall that an orthogonal basis of F is given by {w',w? w®} where
wi:eo/\ei—*eo/\ei:eo/\e,-—ej/\ek

and {4, j, k} is a cyclic permutation of {1,2,3}. Computing &’

' =e"Né —#(e" A&
=eONe — ner

= Pyoe; N\ Pyer, — Bjer N Pyney
1

= 5((1350131%' — PwoPi) — (Pij Pk — PrjPim))er N ex. (71)

It follows that @’ = Qw* for some orthogonal 3 x 3 matrix which is continously

connected to the identity since P is. Thus @ € SO(3) and FE is orientable. O
Lemma 4.8. The flow (bf(h preserves the cross product in the vertical direction.

Proof. Let U W € V,E, let {a%a} be induced from a local orthonormal frame on F

for VE. Then ( f')*(%) is a basis for V

5 E since (¢X"), is an isomorphism.

w)
As VE = n*FE| it is orientable by Lemma 4.7. Denote X, the cross product with

respect the metric and orientation on V,F and X the repective cross product

C®)

onV yn, F.
¢ (w)
The metric on V E is denoted (-, )y and we remove the V E in this computation for

ease of notation.
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Let €4c5 be the standard permutation symbol. We compute:

(") (U x W) = gderdWea%f
= carlU, G W, ). )
= cus (60 LW 65 0 )
since (¢X"), is an isometry
= (&)U X gy (6. O (72)

Lemma 4.9. The flow preserves the complex structure J in the vertical direction.
That is

(65 o Tu(Y?) = T pxn  ((61).Y). (73)

Proof. Let Z = S 5(A%(T*M)), the v/2-sphere bundle, ¢ € I'(VE) the fundamental
vector field and Y € I'(V Z). Evaluating (¢;X" ). (Jo((¢X"),Y ")) becomes

(6X"). (L (V") = (67)u (60 %0 YY)

= ( ;th)*fw X(ﬁf(h(v) ( ifh)*yv by Lemma 4.8

= (L (YY), O (74)

Theorem 4.10. The Lie derivative (LxnJ)(Y") is zero.

Proof. It follows from differentiating equation (73) in Lemma 4.9 with respect to ¢ at

t=0. [l

4.3 Quaternions and cross products

The division algebra H of quaternions consists of

q=qo+ qt+qJ+ qsk, 9, %,%,q3 € R
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where

PP=—1,2=-1,k*=—1,ij = —ji =k, jk = —kj =i, ki = —ik = j. (75)

The square of the norm of ¢ is given by

(0.9) =@+ + &+ a5.

Then H is isomorphic as a real vector space to R* via

qo + @1t + 27 + @3k — (90, 01, G2, 43). (76)

The space of imaginary quaternions is isomorphic to R?, where the imaginary

part of the quaternion ¢ is given by

7= Im(q) = q1i + q25 + g3k,

and the map is given by

Q1+ q2J + a3k — (a1, 92, G3). (77)

For p = pg + p1i + poj + psk € H, we define left and right multiplication by ¢,
denoted L,(p), Ry(p) to be

Lyp) =qp,  Ry(p) = pa, (78)
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which can be represented in matrix form as

qo0

q1

q2

g3

qo0

q1

q2

q3

—q1

q0

q3

—q2

—q1

q0

—qs3

q2

—q2

—qs3

qo

q1

—q2

g3

qo

—

—qs3

q2

—q1

qo

—qs3

—q2

q1

qo

Po
P1
b2
| P3
Po
P1
P2

b3

(79)

We will see that Im(Lg(p)) and Im(Rzp)) relate to the cross product on R?. Since

p =po+ pand ¢ = gy + ¢, working out R,(p) = pq we get

Ry(p) = pogo — (9, @) + pod + qop’ + P’ X .

(80)

Switching p and ¢ yields L,(p) = qopo — (7, P) +poG+ qop+ ¢ % p. Thus we immediately

see that

Im(Lg(p)) = 4% P

and

Im(Rg(p)) = P> q.

Theorem 4.11. Forq=qo+¢q, p=po+p € H

[Rq> Rp] = 2Rﬁ><

Proof. We have R,R,u = (up)q = u(pq), for any v € H. Thus

RyRyu = u(pogo — (P, @) + qop + pog + P < q).
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Then computing [R,, RyJu yields

[R,, RyJlu = RyRyu — RyR,u
—2u(F x )
= 2Rpxqu (82)

thus [Rq, Rp] = 2Rﬁ><qj O

4.4 ASD 2-forms and quaternions

From Lemma 4.2, wf, defines a complex structure on 7, M and we get the following

consequence.

Lemma 4.12. The local frame {w', w? w*} satisfies the quaternionic relations in (75)

as endomorphisms.

Proof. Each (w')* defines a complex structure by Lemma 4.2. We drop the # for conve-
nience. Right and left multiplication by quaternions can be viewed as endomorphisms.

Thus the map that sends {w', w? w3} to {—i, —j, —k} is an algebra isomorphism. [J
Theorem 4.13. Identifying the local frame {w', w? w3} with endomorphisms, then
[w?, w'] = 2(w? x w') = 2w?,

[w?, w?] = 2(w® x W?) = 2w,

[wh, w?] = 2(w! x w?) = 2w (83)

Proof. This is an immediate consequence of Lemma 4.12 and Theorem 4.11. O

For n € E, = (n*E), an ASD 2-form, 7 can be viewed as an endomorphism by
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n. Let X,Y, Z,W € T'(TM). Recall the curvature R(X,Y) satisfies

RIX,Y)Z,W) = (R(X,Y)Z,W) = —(R(X, YW, Z)

Theorem 4.14. Forn € E, = (7*E), viewed as an endomorphism and R(X,Y) the

curvature

(n x R(X,Y)n)(V,T)) = —R(X,Y,nV,nT) + R(X, Y, V,T). (84)

Proof. Noting the curvature is a derivation and acts on 2-forms we get (R(X,Y)n)(V) =
R(X.Y)(nV) = n(R(X,Y)V).
Using this, the skew-adjointness of n and n* = —id, the commutator [, R(X, Y)n|(V,T)

becomes

[0, R(X, Y )n](V,T) = (n((R(X,Y)n)(V)), T) = (R(X,Y)n)(nV), T)
= —((RX,Y)n)(V)),nT) = (R(X,Y)n)(nV), T)
= —(R(X,Y)(nV) = n(R(X,Y)V),nT)

—(R(X,Y)(*V) = nR(X,Y)(nV),T)
— (—R(X,Y,nV,nT) + R(X,Y,V,T)
+ R(X,Y,V,T) — R(X,Y,nV,nT))

= 2R(X,Y,V,T) — 2R(X,YnV,1T). (85)

The commutator can be identified with twice the cross product by Theorem 4.13, thus

mx RX,Y)n)(V,T)) =—-R(X,Y,nV,nT)+ R(X,Y,V,T). O (86)
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5 Calculation of the Nijenhuis tensor

First we define the Nijenhuis tensor.

Definition 5.1. Let U,V € I'(T'M), let J be an almost complex structure. The

Nijenhuis tensor is defined as
NU, V) =[U,V]+ JJUV]+ JU,JV]| = [JU,JV].

Definition 5.2. We say an almost complex structure is integrable if N(U, V') = 0,

otherwise it is not integrable.

The Lie derivative of J along U applied to V' and the the Lie derivative of J

along JU applied to V' is given by

(LuJ)(V) = Ly(JV) = J(LyV)
=[U,JV] = J[U,V|
(LyjuJ)(V) = Lyy(JV)—J(L;uV)

=[JU,JV] = J[JU,V]. (87)
Hence the Nijenhuis tensor can also be written as

N(U,V) = J((Lu J)(V)) = (Lyu J) (V).

5.1 Horizontal part of the Nijenhuis tensor of a horizontal

and vertical vector

Let X" € T'(HE) be a horizontal lift of X € I'(T'M). For the frame {eg, 1, €2, 3}
on M, el is the horizontal lift of e;. Let YV € I'(VZ),n € T(E), and let £ €

['(VE) be the fundamental vector field. Denote LynY" the Lie derivative of Y
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along X". The terms of the Nijenhuis tensor for one horizontal lift and one vertical
vector field are [X" YY), JJX" Y|, J X" JY"],[JX" JY?]. We will look at the
terms individually and work them out using the tautological 2-form and Theorem

4.5. The terms [JX" JY*], J[JX" Y] are

[JX" JY"
= [O(X", ef)er, JYY]

= _(JYU)(G(X}L76?))6?+@(th€?)[e?7‘jyv]v (88)

JIX" Y
= J[@(Xh’ 6?)6?, Yv]
= J(=Y"(O(X",e))ei +O(X", e )[ef, Y"])

= —Y"(O(X",¢))O(ci, e ) — O(X", e7) J[ef, Y. (89)

Since m, [ X" V"] = [7. X" 7, Y"?] = 0 then [X", V"], [e}, Y] € T(V E) are vertical
vector fields. Since JY? € ['(V E) is a vertical vector field then so are [el!, JY], [X", JY"]
and consequently also J[el', JY?], J[eh, Y7, J[ X", JY"].

Theorem 5.3. The horizontal component of N(X",Y") vanishes:

—Y'(O(X", e))0(e} e ) + (JY")(O(X", ef))er =0 (90)

P

Proof. We let YV = va% € I(VE) and let n = gy’ € T'(E).
Calculating JY" via the cross product from Theorem 4.6 and using the identification
of VE with 7*E in Corollary 2.4, recalling the local frame of E is {w!, w? w?} then

computing JY" we have
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JY" = (£ x V")

0 0
(Y203 y3U2)ay1 + (ysv1 y103)8y2 + (y1v2 — yovy) (91)

dys’

We will expand YV(O(X", eh)) and evaluate it at . Expanding Y?(©(X",el)) and
using (38) yields

v h _h
Yy (O(X",¢))

0

3% n

71'(7] (X 61) (92)

= Vq (ylwl + y2w2 + ygw?’)(X7 61')

Hence Y;"(O(X", e}'))O, (e}, ') is equal to

Y;;’(@(Xh,e?)@ (@h ezh) VaWi () (X, ei)nr (€, €1)

= VW (X, ei)ybwg(n)(ei, er). (93)

Similarly expanding (.J,Y?)(O(X", ef'))e} using (38) and equation (91) and the method

from equation (92) we get

(JnYU)(@(Xhaefl)) = (y2v3 — y3v2) (n )(X er)

+ (ysv1 — Y1v3)w> o (X, er) + (y1vg — Yav1)wy o (Xser). (94)

By (69), the condition on the vertical tangent space of Z C E is that (Y, &)yp =
for all Y” € I'(V Z). Expanding (Y, &)y g = 0 using the local frame {8%1_} for VE we

get

0

" &hve = (vag - Jve = Zyava =0 (95)

7yb8y

We now substitute the computations from (92),(93),(94) into

(JY")(OX", e )e) =Y (O(X", €)O(ef, ef') el

77
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and dropping the 7(n) from the above expression and evaluating the above expression

at n, we get

Y (O(X" e)0,(ef s ef) — (L,Y")(O(X", &)
= nyw (X, e)w' (e, €))
+o1yaw! (X, e)w? (e, €) + viysw! (X, e;)w’ (e, €)
+ oW (X, ) w' (e, €1) + vagaw® (X, ) w? (4, €1) + vaysw® (X, e;)w’ (€5, 1)
+ vspnw’ (X, e )w' (€5, €1) + vayaw’ (X, €5)w? (€4, €1) + vayaw® (X, e;)w’ (es, €))

— [(yov3 = yava)w! (X, &) + (y3v1 — y103)w?(X, e1) + (Y102 — yov1)w’ (X, e)].
(96)
Given that we have a metric g on Z then w(X,Y) = ¢(JX,Y) for X,Y € T,M since

w is a complex structure. We work out w(X, e;)w(e;, €;),

w(X, e)w(ee) = g(JX,e)g(Jei, )
= —g(JX,e)g(e;, Jep)
= —g(JX, J€l>

=—g(X,e). (97)

Substituting the identity w(X,e;)w(e;, ) = —g(X, ;) from (97) into equation (96)
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and simplifying, we get

Yy (OX" e)Oy(ef ) = (JY ") (O(X",e])
= —0ng(X, &) + viyaw' (X, e)w? (e, ) + viysw! (X, e)w’ (e, e1)
+ Uzylw2(X> €i)wl(€z’, er) — vaypg (X, e) + v2y3w2(X, ei)W3<€i, er)
+usyiw’ (X, e)w! (e, €1) + vsyaw® (X, )’ (€4, €1) — vsysg (X, e)

— [(y2v3 — y3v2)w (X, &) + (Y301 — Y1v3)w* (X, &) + (Y102 — yov1)w’ (X, )]
(98)

From the first, fifth, and ninth terms in (98) we see that

—uyg(X, er) — vaypg(X, e) — v3ysg(X, e)
=—(>_ vava)g(X, 1)
a=1

=0 from (95). (99)

We therefore have

Y (O(X",e)0y (el ef) — (LY ) (O(X", e))

= vyaw' (X, €5)w?(ei, 1) + v1ysw' (X, e;)w’ (e, €)
+ vagnw? (X, e)w' (e, €) + vaysw? (X, €;)w’(e;, €)
+ s’ (X, e)w' (e, €1) + vsy2w® (X, €5)w? (e, €0)

— [(y2v3 — y3v2)w' + (y3v1 — Y1v3)w* + (y1v2 — Yov1)w?]. (100)

Note that by identifying the local frame {w',w? w3} with the quaternions in
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Theorem 4.13, we have the quaternionic relations

wl(Xv ei)wz(ehel) = _wg(Xa €l),
— (X, e)w' (e, 0) = W (X, €),

- wz(Xa ei)wg(eia el) = wl(Xa el)a
and substituting the relations (101) into (100) and simplifying yields

Y;yv(@(Xh? ez}‘b))@n(e?7 6?) - (JUYU)(@(Xh’ 6?))
= —Ulyzw?’(X, er) + UlQSWQ(Xa er)
+ 02y1W3(X7 er) — Ustwl(X, er)

— v3y1w’ (X, 1) + vayow' (X, €))

(101)

- [(3/2113 - yst)Wl(X7 61) + (3/3?)1 — ?J1U3)W2(X7 61) + (2/1112 - 3/201)003(Xa el)]

=0. O
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5.2 Vertical part of the Nijenhuis tensor of a horizontal and

vertical vector

Let X" be a horizontal lift and Y be a vertical vector field. Using (88),(89),(87)

and Theorem 5.3 we can write
N(X" YY) = [ X" YY)+ J X" JYY) — [JX", JY°] + J[X", JY")
N(X" YY) = [X" YY)+ J[X" JY?]

— (=(JY")(OX" e))er + O(X", ef)[ef, JY"])

+ (_YU<@<Xh7 6?))@(6?, e?)egl - G(Xh7 6?)‘][6

= J((Lxn J)(Y")) = O(X", ef)(Len ) (Y")

—YU(O(X", ef)Oe] e )ei + (JY)(O(X", ef'))e].

—YU(O(X", e!)O(er, e Je) + (JY)(O(X", €)))ef =0

()

by (87) and using that
0= Lxn(—1)= LynJ? = (LxnJ)J + JLxnJ

we get

NX" V") =(J(Lxn YY) = O(X", e )((Len J)Y")

= —(LxnJ)(JY") = O(X", el ) ((Len ))Y"),

(103)

(104)

(105)

(106)

Note that as the horizontal component of N(X" Y") is zero then equation (103)

is purely vertical.

To show that N (X" Y") vanishes it suffices to show that (LxxJ)(JY?) = 0 and

(L H)YY) =0,

We have shown previously in Theorem 4.10 that for any vertical vector field S¥ €
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I(VZ)
(LyxnJ)(S") = 0.

Thus (Lx»J)(JY") =0 and (L J)(Y") = 0. Thus N(X" YY) =0.

5.3 Nijenhuis tensor of two horizontal vectors

Let X,Y,V,T be vector fields on our oriented 4-manifold M and X" Y" Vh Th

the respective horizontal lifts to F = A2T*M. Let {e° ¢!, e?, €3} be a local orthonor-

mal frame on M. By definition the Nijenhuis tensor of two horizontal vector fields

18

N(X" Y™

= [X" Y + J[IX" Y+ JX" Iy — [JX TV,

Using our identity for J(X") in Theorem 4.5, this becomes

N(X"Y") = [X", V"
+ JO(X", el)er, Y + JX", ©(Y", e} )e]

— [O(X", ep)ek, O™, €] )er]-

Next, expanding the Lie brackets yields

N(X" vh) = [x" Y"]
+J(O(X", ep)[er, Y] = Y"(O(X", e}))er)
+J(O", ) [ X", ] + X" (O(Y", ef))e)
— O(X", e)O(Y", e ) e} ef]
— (X", ) (erO(Y", ef))ef

+O", ¢)(eO(X", e}))ej.
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Theorem 5.4. Let {w',w? w?} = {®Ae! —e?Ae?, P Ne2—e3 Ael e® Ned —el Ne?} be
the local frame for E. Letn =Y, yw" where the y; are smooth. For X" Y" € T(HE)
horizontal lifts of X,Y € T(TM) respectively, n € E, then [X", Y], — [X, Y]} =
—R(X,Y)n.

Proof. As [ X" Y"], — [X,Y]! € V,E from Theorem 2.18 using the identification of
VE = n*F from Theorem 2.3

(X" Y™, = [X, Y] = —yiR(X,, Yp)iw? = —R(Xp, Yy ) ey O

py=p

Evaluating N (X", Y") at 5, using Theorem 4.5 and using the identity [X", Y]} —
(X, Y]} = —R,(X,Y)n from Theorem 5.4 in (109) and dropping the (1) from 7

for ease of notation then

NX" YY" = [X,Y]" - R(X,Y)n
+O(X", e)O([e, Y]", €] e — YM(O(X", ¢1)O (e}, e et
+O(Y", e)O(([X, ex]", ep)er + X"(O(Y", ef))O(er, e ey
— (X" eme" eler, el
—O(X", ep)(erO (Y™, ef))er
+O(Y", ) (erO(X", ep))e;
+O(X", eMJR(e, Y1
—O(X", e0)O(Y", e} ) R(ex, e1)n
+0(el, Y JR(ey, X)n.

(110)

Using the tautological 2-form from (38), we compute e’ (O(el, el)) and get

em(O(ek, 1)) = O((Ve, )" ) + Oey, (Ve,e1)")- (111)
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Recall the connection on F is induced from the Levi-Civita connection V on T'M. We

substitute the identity [X,Y] = VxY — Vy X and (111) into equation (110) to get

NX" YY" = [X,Y]" = R(X,Y)n
+O(X", e)O((Ve,Y — Vyer)" ef)ef — YHO(X", ef))O(ef, e ey

+OY" e)O((Vxer — Ve, X)" ¢ )ei + X"(O(Y", ¢))O(ef, ¢ e}
— (X", o™, ef)(Vekel — Velek)h
—O(X", en)O((Ve, Y)" el ey — O(X", e)O(Y", (Ve,e))er
+O(Y",)O((Ve, X)" ey + OV, e)O(X", (Veer) ey
+ @(Xh,eZ)JR(ek,Y)n
— (X", eZ)@(Yh, e;‘)R(ek, enn

+0(el, Y JR(ep, X)n.

(112)
Using that the horizontal lift is linear then
(Vekel - Velek)h = (Vekel)h - (vezek)h7
(Ve,Y = Vyer)' = (Ve,Y)" = (Vyer)",
(Vxer — Ve, X)" = (Vxer)" — (Ve, X)" (113)
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Substituting (113) into equation (112) becomes

NX" Y™ = [X,Y]" = R(X,Y)n
+O(X", e)O((=Vyer)", ef)er = YHO(X", )0 ef, e e
+O(Y", e)O((Vxer)" el e + XM(O(Y", e)0(ef, e et
—O(X", e )O(Y", e ) (Veper)" = (Veen)")
—O(X", en)O(Y", (Ve,er)")el
+O(Y", e)O(X", (Veer)")er
+O(X", ep) JR(ex, Y )1
—O(X", e)O(Y", e ) R(ex, e1)n
+0(el, Y™ JR(e, X)n.
(114)

Rearranging some terms in equation (114) yields

NX" YY" =[X,Y]"
+O(X", e)O((=Vyer)", e e — Y (O(X", e)O(ef, e et
+O(Y", e)O((Vxer)", ef)e + XM(O(Y", ¢1)0(ey, e )ef
— (X" Mo e (V. )" — (X" Moy (V..e)el
+O(Y", e )O(X", (Veer)er + O(X", e)0(Y", ¢)(Ve,er)
+ R(X,Y)n
+O(X", eMJR(e, Y)n
—O(X", e0)O(Y", e ) R(ex, 1)
+0(el, Y JR(ep, X)n.
(115)

We note that from Theorem 4.5 that J?(X") = —X" and —X" = (X", €] O (e}, e)el.

L

Expanding X" in terms of the frame {e?} using the metric g on M then, X" =
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Iy (X eVl = gy (X €j)el. And J?(X") = —X" becomes

377
— ) (X, ¢5) = O (2", ¢1)O(ef, €}). (116)

Theorem 5.5. The expression N(X", Y1) at n of equation (115) can be reduced to

N(X",Y™), = 0,(X", ef)J(R(e, Y)n)
- @U(Xh> 62)@77(Yh7 eﬁ)R(ek’ 61)77
+ O, (e, Y") I (R(ex, X)n)

+ R(X,Y)n. (117)

Proof. The proof will follow from two lemmas.

Lemma 5.6. The fourth term and fifth term in equation (115) vanish:

0=-O(X" e)O(Y", ) (Veer)" — O(X", ep)OY", (Veer)")el (118)

0=0F" e)O(X", (Veer)")el + O(X", ep)OY ™, ) (Veen)". (119)

Proof. Looking at the term

—O(X", e)O(Y", &) (Ve,e)" — OX", ) (O™, (Ve,e0)"))ey'

€k
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and substituting g(V,, e, e,)el, = (Ve )" yields

—O(X", )", ) (V)" — (X", ef)O(Y", (Vee)")el
= —0(X", ep)O(Y", ¢/ )g(Ve,er, em)en

—O(X", )", g(Veer em)en, ey
= —O(X", ep)O(Y", e[ )g(Ve,er, em)er,

—O(X" eO(Y" ) g(Verem, er)e

m

Relabelling | — m,m — [
= _ek(g<el7 em))@(Xh7 QZ)Q(Y}Z’ 6?)

= 0.

Similarly

OY", eP)OCX", (Voer) Vel + O(XM, O™, el (V. )"
= @<Xh> eZ)@(Yh> elh)el(g(eka em))

=0.

We have shown that the fourth and fifth term in equation (115) vanish.

Lemma 5.7. The first three terms in equation (115)vanish:

0=[X,Y]"
+ @(Xh7 62)@((—Vy€k)h, elh)elh - Yh(@(Xha 62))@(627 6?)6?

+O(Y", e0)O((Vxer)" € )el + X" (O(Y", €r))O(ey, €] ey

Proof. Looking at second term in equation (115), ©(X", e)O(—Vyer)", el)e

20
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(121)

(122)
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Theorem 2.20 and (116) in O(X", eh)O((=Vyer)", elelt, we have

O(X", ep)O((—Vyer)" e el

= —O(X" e (Y™ (O(el eM))el — O(el, (Vye)")el) by Theorem (2.20)

= —g(X, Vye)el — O(X" ) (YO (e}, el))el! by equation (116)

= Y (9(X,e))ef + 9(Vy X, er)ef — O(X", ) (YO (e, ef) ef

==Y (g(X,e))e] + (VyX)" = YHO(X", e;)O ey, €] )er)

+YHMO(X" eM)O(el, eMel by equation (116) and Y"*(fon) = (Y f)on
= (Vv X)" + (Y"(O(X", )0}, e ey
(123)

Using Theorem 2.20 and (116) in ©,(Y", e})O,((Vxer)", el)el, interchanging X and

Y in (123) and changing the sign we get

O(Y", ep)O((Vxer)" er)ef

= —(VxY)" — (X"O(Y", €}))O(ex, e ey - (124)

From equations (123) and (124) we have

O(X", ex)O((=Vyer)" er)e = (VyX)" + (YH(O(X", )0 ey, e )e)

O(Y", ep)O((Vxer)" er)e) = —(VxY)" — (X" (O™, e))O(ey. ) ). (125)
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Substituting (125) and substituting [X,Y]" = (VxY)" — (VyX)" we obtain

X, Y]
+O(X", e)O((=Vyer) el el —YM(O(X", e1)O(ef, e ey
+O(Y", ep)0((Vxer)" e)ep + X" (O(Y", e1)0(ef, e e

= (VxY)" = (VyX)"
+(Vy X)" + Y"(O(X", e0)O(e}, e ey — YHO(X", e}))O(ef, e e
— (VxY)" = (X "O(Y", ef)O(e), e el + X"(O(Y", e;))O ey, e )er)

-0 O (126)

From Lemma 5.7 and Lemma 5.6 our expression of N(X" Y"), in equation (115)

reduces to

N(X"Y"), = 0,(X", e})J(R(ex, Y)n)
— @n(Xh, eZ)@n(Yh, ef)R(ek, en
+ Oy (ep, Y™) I (R(ey, X)n)

+ R(X,Y)n. (127)

54 N(X" Y") and Weyl curvature

Let X,Y, VT be vector fields on M and € E. From Theorem 4.5 we have that

N(Xh7 Yh)n = @W(Xh7 eZ)J(R<€k7 Y)"?)
- @U(th e}kL)@n(th elh)R(ekv 61)7]
+ O, (er, Y") I (R(ex, X)n)

+ R(X,Y)n. (128)
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Since the ©(U, V') are functions we can move them inside the curvature operator and

using Theorem 4.5

N(X",Y"), = J(R(©,(X", e} )ex, Y )n)
- R(Gn(Xh’ BZ)ekv @n(yh’ 6?)61)77

+ J(R(0,(e}, Y")er, X))

+ R(X,Y)n (129)
Using that ©, (X", el)er. = n(X,ex)er and viewing n as an endomorphism, thus
n(X, ex)er = g(n(X), ex)er = nX. We then get
NX"Y"), = J(R(nX,Y)n)
— R(nX,nY)n
— J(R(nY, X)n)
+ R(X,Y)n. (130)

Note that the terms such as R(nX,Y)n in (130) are identified as vertical tangent
vectors of E via VE = 7*E. The J is acting on vertical vectors in (129). Recall
that J(Y") = Y x &, under the identification of V, ' = E_,) in Corollary 2.4. Hence
J(Y?) =1(\) x I(n) = U(n x A\) where A\ = vw',n = yw' € T'(E) then J(\) =n x \.
Thus,

1
J(R(X,Y )Nriy)) = §[nﬂ<n>, R(X,Y)0r(m) = Ny X R(X, Y ) (o (131)

when viewing 7., as an endomorphism. Note that R(X,Y’) is an operator, a deriva-
tion, and 7 is an operator as an endomorphism. Thus the commutator is a Lie bracket

of operators that act on a vector field. Substituting (131) into (129), then (129) be-
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comes

N(X",Y"),(V,T) = R(X,Y,V,n(T))
+R(X,Y,n(V),T)
+R(X,n(Y),V.T)

+ R(n(X),Y,V.T)

— R(n(X),n(Y),n(V),T)
— R(X,n(Y),n(V),n(T))
— R(n(X),Y,n(V),n(T))

— R((X),n(Y), V,n(T)). (132)

Since the Nijenhuis tensor reduced to only terms involving curvature, we can
decompose the Nijenhuis tensor further, by using curvature decomposition and the

Kulkarni-Nomizu product.

Definition 5.8. For XY, VT € I'(T'M), g the metric on M, then the Kulkarni-

Nomizu product of g with a symmetric 2-tensor S is defined as

(@ S)X, Y, V.T) =

(X, TVS(Y,V) + (Y, V)S(X,T) — (X, V)S(Y,T) — (Y, T)S(X, V). (133)

Let K be the space of curvature tensors, g the metric on M, S*(A*T*M) the
symmetric 2-tensors and W the Weyl curvature. The space of curvature tensors splits

as

['(K) =T(C>®(M))®T(S*(A*(T*M))) @ T(W).

The curvature decomposition is given by

R=C,R,®gPCrg® RiccOW = (9@ S) ®W.
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The constants C,,, C’n depend on the dimension of M, R, is the scalar curvature and
S is the Schouten tensor. The Schouten tensor is a linear combination of the scalar
and trace free Ricci curvature tensors. See [1] for more details and proofs.

The Nijenhuis tensor (132) is linear in R(X,Y). Applying this decomposition to
the right hand side of (132) we get

(X,n(T)SY, V) + ¥, V)S(X,n(T)) — (X, V)S(Y,n(T)) — (¥, n(T))S(X, V)
+ (X, TS, (V) + Yon(V)S(X,T) = (X, n(V))S(Y,T) = (¥, T)S(X,n(V))
+ <X’ T>S(77<Y)7 V) + <77(Y)7 V>S<X7 T) - <X7 V>S(7]<Y)7T) - <77(Y>7T>S(X7 V)

+ (n(X), T)SY, V) + Y, V)S(X), T) = (n(X), V)SY, T) = (¥, T)S(n(X), V)

(134)

Using the identities coming from the orthogonal complex structure J = (X 1n)*
where 7 is viewed as an endomorphism, we have (X, nY) = —(nX,Y) and (nX,nY) =
(X,Y). Then all terms cancel out in (134). This implies that the (¢ ® S)(X,Y,V,T)
component of N (X" Y") vanishes and thus N(X" Y")(V,T) only depends on the

Weyl curvature component.
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Thus, from (132), the Nijenhuis tensor on horizontal vector fields can thus be rewritten

N(X"Y",(V,T) = W(X,Y,V,n(T))

+W(X, Y n(V),T)
+W(X,n(Y),V,T)
+W(n(X),Y,V,T)
—Wn(X),n(Y),n(V),T)
— WX, n(Y),n(V),n(T))
— W(n(X),Y.n(V),n(T))

— Wn(X),n(Y),V,n(T)), (135)

where W is the Weyl curvature.
The Weyl curvature decomposes into self-dual and anti-self-dual components,

W =W, & W_, where W, is the self-dual part and W_ is the anti-self-dual part.

Lemma 5.9. The expression N(X", Y")(V,T) only depends on the anti-self-dual part

of the Weyl curvature W_.

Proof. We note that W(X,Y,V,T) can be rewritten as (W(X AY),V AT). Using
this we rewrite (135) of N(X" Y")(V,T) as
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N(X"YM(V.T) = (W(X AY),V Ay(T))

(136)
Next gathering like terms in the N (X", Y")(V,T) equation we obtain
N(X" Y™, (V,T) = (W(XAY) = W(nX AnY),V An(T))
+ (WX AY)=WnX AnY),n(V)AT)
+ WX AnY)), VAT =n(V)An(T))
FWEEO ALV AT =0V AT a0
Since the Weyl curvature is linear we get
N(X"YM),(V.T) = (W(XAY =X AgY),V An(T) +n(V) AT)
WX ADY) +0(X) AY).Y AT = V) AT (130

Using the fact that V An(T)+n(T) AT and VAT —n(V) An(T) are ASD, equation
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(138) becomes:

(W(XANY =X AnY),VAn(T)+n(V)AT)
+ WX AnY) +0(X)AY), VAT —n(V) An(T))
= (W_(XAY =X AnY), (VAn(T) +n(V)AT))
+ (W_(X An(Y)) +0(X)AY), (VAT —n(V) An(T))). (139)

Hence we see that W, does not contribute to (139) and the Nijenhuis tensor has terms

only with the anti-self-dual Weyl curvature part. [

We define some notation we will use next. We let

(W)OIQS

= W(607 €1, €2, 63)

= (W(eg ANer), ez Neg). (140)

The Weyl curvature shares the same symmetries as the Riemannian curvature tensor
and it is trace free, that is >, Wi, = 0.

Using our local oriented orthonormal frame {eg, €1, ez, e3} for our manifold M,
we have eg A e; Aes Aes = p. Since X, Y, V,T are arbitrary, letting X = ey, Y =
es,e1 = nX,e3 = —nY, n in this context represents our orthogonal complex structure,
(X Jwh)?, that sends eg — e, e1 — —eg, €2 — —e3, €3 — e3. We denote this complex

1

structure w. Since 7 is anti-self-dual, we get that the orientation induced by n

is X AnX ANY AnY = —pu. For our choice of the complex structure that sends
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eo — €1, €3 — ez which is w! then the local frame {w!, w? w*} will be described by

wr=e"Nel —e?né?
:eo/\neo+62/\7762
=XAnX+Y AnY
wr=e"Ne? - net
=’ Ae? — (—ne?) Ane’
=XANY —-nXAnY
w=e"Ned —et ne?
= e’ A (—ne?) —ne’ A e?

— (X AnY + X AY). (141)

The tensor W_ can be represented in terms of the frame (141) as

a d e W_(whwh) W_(whw?) W_(whw?)
Wo=1d b f|=|W_(w}w) W_(0?w?) W_(w?w?) (142)
e f ¢ W_(w?,w') W_(ww?) W_(w? w?)

We will show all the components of the matrix vanish iff N(X" Y") = 0 for all

XM yh,

Lemma 5.10. We have a4+ b+ ¢ =0 in the W_ matriz (142).
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Proof. This lemma will always be true since the Weyl curvature is trace free. We have

a+b+c
= (W)W w') + (W) (0? w?) + (W) (W, o)
= (W-)(01-23)(01-23) + (W-)(02-31)(02-31) + (W-)(03-12)(03-12)
= (W-)or01 + (W-)2323 + (W-)o202
+ (W-)z131 + (W-)ozos + (W-)1212

— 2(W2)o123 + (W_-)o231 + (W-)0312). (143)

As W_ shares the same symmetries as the Riemannian curvature tensor then by the
Bianchi identity for the Weyl curvature (W_)o123 + (W_)o231 + (W_)oz12 = 0. As W_

is trace free, and (W_)gooo = 0 then

(W—)(]lOl + (W—)0202 + (W—)0303 = _(W—)OHO - (W—)0220 - (W—)0330 - (W—)OOOO

4
= Z(W—)Oiio
i=0
=0.
(144)
We then have left to show that
(W_)azes + (W_)s131 + (W_)1212 = 0. (145)

By using the identity (W_)* = x(W_), and that the Hodge star is an isometry we will
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rearrange (W_)as93 as follows

(W_)az03 = {(W_) (€2 A e?), e A e?)
= (x(W_)(e* A €®),x(e® A e?))
= ((W_)x (2 Ae?), x(e* A e?))
= ((W)((" Aeh)), (e Aeh))

- (W—)OIOL (146)
Substituting (146) into (145) we get

(W_)as23 + (W_)s131 + (W_-)1212

= (W_)o101 + (W_)s131 + (W_)1212
4

= — Z(W,)Wl using the technique in (144)
i=0

0. (147)

Thus (W_) is trace free, so a + b+ c = 0. O

Lemma 5.11. We have f = 0 in the W_ matriz (142) if N(X",Y") = 0 for all
Xh oy,

Proof. Using the Nijenhuis Weyl equation (138), and substituting (X,Y,V,T) =

(e, €%, e e?) and using that W_ is a self-adjoint operator on A2T*M and taking

the complex structure n = w! then

0=NX" Y™V, T) =2(W_(e’ A e* —ne® Ane?), e Ane? +ne® A e?)
= 2W_(w?, w?)

=—2f. O (148)
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Lemma 5.12. We have b — ¢ = 0 in the W_ matriz (142) if N(X",Y") = 0 for all
Xh yh,

Proof. Using the Nijenhuis Weyl Equation (138), and subsituting (X,Y,V,nT) =

e, e2, el e?), using the complex structure n = w' then we get
g n

0=NX" YV, T)= (W_( A e* —ne’ Ane?), e A e? — ne Ane?)
+ (W_(e” Ane* +ne® Ae?), e’ A (—ne?) — ne® A e?)
=W_(* w?) — W_(w*,w?)

—b—c. O (149)

Lemma 5.13. We have d,e,a,b,c = 0 in the matriz (142) of W_ if N(X", Y") =0
for all X" Y.

Proof. The Nijenhuis Weyl eqaution (138) is satisfied for all n € A% (T*M) such that
nl* = 2.

Consider the complex structures defined by w?, namely

ez = —e
3 — —e

et — é? (150)

and by w?, namely

e — —e
el = —¢?

e? — el (151)
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This has the effect of permuting the anti-self-dual frame in (141) by sending (w', w? w3) —

( 2,3

w?, w3, wh) for the complex structure w?

and by sending (w!, w? w?) — (w3, w!, w?)

for the complex structure w? respectively. Hence we get a new set of Weyl equations
by permuting the anti-self-dual basis vectors in the Weyl tensor. For the complex

structure w? and following what we did in Lemma 5.11 and Lemma 5.12 we get

W_(w* W) =W (w'w')=c—a=0
301y —
W_(w,w)=0=e. (152)

For the complex structure w? and following what we did in Lemma 5.11 and Lemma

5.12 we get
W_(whw') =W (v, w?)=a—-b=0

W_(whw)=0=d O (153)

Theorem 5.14. For N(X" Y") = 0 for all X", Y" iff all the components of W_

vanish.

Proof. Combining Lemma 5.11, Lemma 5.12, Lemma 5.13 wegeta =b=c=d=e =
f = 0 in the W_ matrix (142) and hence for N(X" Y") to vanish W_ must vanish.

By (142) ifa=b=c=d=e= f =0 then N(X" Y") =0 for all X" Y. O

5.5 Nijenhuis tensor of two vertical vectors

Let X", YV € I'(VE). By definition the Nijenhuis tensor of two vertical vector

fields is

N(X®, YY) = [X", Y| + JIJX, Y] + J[X°, JY"] — [JXV, JY"). (154)

Using that JXV = ¢ x X" from Definition 4.6, £ € I'(V E) is orthogonal to T'Z

in (69) and noting that N(X",Y") is a vertical vector field and that the fibre of E' is
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isomorphic to R? then all of our operations in this section can be regarded as in R3.
We will use the usual Euclidean connection for this section. Hence, for this section
let V be the standard connection on R3. On R? it is well known that R? = so(3) and
the Lie bracket on the Lie algebra so(3) corresponds to twice the cross product on
R3. Hence using this correspondence and that [X,Y] = VxY —Vy X then N(X?,Y")

becomes

NX"Y?) =X Y +EX[EXx XY +EX X EXY ] =€ x XY, Ex YY)
=VxV" = Vy. X"
+EX (Vexxn Y — Vyo (€ X XY))
+EX (Vxo(E X YY) = Vegyn XY)
— (Vexxv (€ X Y") = Veeyo (€ x X7)).
(155)
For C, A, B € T(TR?), and letting (,) be the metric on R, the iterated cross product
identity is
Ax (BxC)=(AC)B—(A,B)C. (156)

For C, A, B € T(TR3), and letting (,) be the metric on R3, the Euclidean connection

acting on the cross product satisfies

Ve(Ax B)=(VcA) x B4+ A x (VeB). (157)

Theorem 5.15. The Nijenhuis tensor of two vertical vector fields vanishes.

Proof. Expanding N(X",Y") as in equation (155) using (157) then
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N(X",Y") = Vyu Y — Vyu XV
+ & X Veyxo V"
—EX ((Vyed X X¥) + & x (Vyr X))
+EX ((Vxo&) XY +EX Vi YY)
—§ X Vgxvav
— (Vexxv€) x Y = & X (VexxY")

F (Vexyn)E X XY+ € X (Veryn XY). (158)

Lemma 5.16. For { = ylaiyl + yQ% + yga%g,, A= Alaiyl + Ag% + Aga%g and for V
the Euclidean connection then

Vi€ = A (159)

Proof. Evaluating V 4£ we get

0 0 0
Va§ = (A1V o +A2V 5 +A3V 5 )(yl T TYo5+ _)

gyt o2 TP
B B )
— A A A
15— o + Qay + Bayg
—A O (160)

Using Lemma 5.16 in (158), and

0 8 i g 0 5
2 2 2
E i E i v ) — E ;=1
‘5’ v y] ayz ay] i—1 Y <ayz ayz> Y

i,7=1
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we get
N(X°Y") =VxoY’ = Vys X"

— ({6, X")Vye§ = (€, Vye§) XY
+ (& Y)Vxe§ = (€ VXY
— (& Vyo X)E = (§,§) Vyn X°
+ (6, Vo Y)E = (£, ) VXY
— (£ x X7) x Y7

F((EX YY) x XY,

Simplifying using the identity (156), equation (161) becomes

N(X",Y") = Vx. Y’ — Vyu X"
= ({§, XYY = (£, V") X7)
+ (&YX = (6, X")Y”)
— (6, Vyn X")§ = Vyo XY)
+ (& VxoYV)E = VoY)
— (&YX = (X", V"))

+ (& XY = (X7, Y*)E).

(161)

(162)

Cancelling terms in equation (162) and using that ¢ is orthogonal to Y” and X" then

equation (162) becomes

N(X",Y?) = —=(€, Vyo X")¢
+ <§7VX”Y’U>€

= (& [X", Y7)E.

(163)

Since [X",Y"] € TZ and & is orthogonal to T'Z, hence £ is orthogonal [ X", Y] then
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(&,[X?,Y"]) =0 and N(X*,Y") =0. 0

6 Pullback of self-dual connections on vector bun-
dles

Recall that Z C E = A2T*M where Z = S 5(A%2(T*M)). Let B be a vector
bundle over M and consider a connection VZ on B. Let m : Z — M be the projection
map. We will look at the pullback of 2-forms to Z to show that self-dual instantons

on B, Definition 6.6, correspond to holomorphic structures on 7*B.

Definition 6.1. For n € Q*(M) we define 1, to be the self-dual part of n and 7_ to

be the anti-self-dual part of 7.

Lemma 6.2. For \ a constant. For w € E n € Q*(M) identified with an endomor-

phisms. Then

(WO + 1 Dke = (0" = 17)w)ke + (=7, ) e,
where nw is composition of endomorphisms.

Proof. Let u be the volume form and (xw)q = %wpqupqab. We use fijepllabep =
(5ia5jb5kc + 5,~b5j06ka + (5,‘6(5]‘@5% — 52‘(15]‘55]91) — 51‘()5]‘,15/“ — 5ic5jb6ka)- This follows from
taking the inner product of ey se; ye; o p = pijrpe” With e. Jep seq 11t = fapeqge?, the

duality between the interior/exterior product and the Hodge star isomorphism.

67



(W) ke = Wpipe

= Wip(1fe + M)

1 _
= _(Wkpﬂabpcn;; - wkp:uabpcnab)

2
1 n _ .
= Z(—Wijmjkpﬂabpc%b + Wi ijkplabpellypy) »SINCE (3W)ab = WpgHpgab
1 I _
- Z(Wijﬂijkpﬂabcpnab - wij,uijkplulabcpnab)
1 _
= Z(%‘U% — WijTp) HijkpHabep
1 _
= Z(Wijn(;) — Wiy ) (0ia0jb0ke + 0ib0jeOka + icOjakb — diadjcOkb — OitGjadke — 0icOjb0ka)

1
= §(Wab77;—b5k’c + Wbcnc-z;é‘ka + wcanc—;dkb)

1 _ _ _
B §(Wab77ab5kc + WheTlgyOka + WeallyyOkb)

1
= §(wab77$,5kc + WheMiy + Weall,

1 B _ _
- §<Wabnab5kc + WheTp + Weallor)

= (1" =0 )whke + (0" =17, w) 0k
= ((n" =07 )w)ke + (=N~ ,w)ge since w is orthogonal to n*

= (" =07 )w)ke — (N, W)0ke O
(164)

Lemma 6.3. For w € E, X\ a constant, n € Q?(M) identified with endomorphisms

then = n" + \w iff nw = wn, where A = 1(n,w).

Proof. Assume that n = Aw+n™*. Then by Lemma 6.2 we get wn™ = ntw— (T, w)l =
ntw since w is orthogonal to n~. Thus nw = wn. Assume that nw = wn then

wnt+n") = (n"+n" )w and using Lemma 6.2 we get 2n~w = —(n,w)I. Rearranging
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we get

2w = (n,w)l
ST
= e (165)
Hence n =n* +n~ =n* + 3(n,ww. O

The following lemma uses complex differential geometry. For an introduction and

its notation see [10].

Lemma 6.4. Forn € Q*(M), X,Y e I(TZ), J an almost complex structure. Then

n(JX,JY)=n(X,Y)  iff nis of type (1,1).

Proof. As X,Y € I'(TZ) then X = X104 XO and v = Y0 4 YOI then
n(JX, JY) becomes

n(JX,JY) = n(J(XTO + xOD) gy @0 4 yOhy)
= p(iX 10 — i x O Yy 10 _y (01
= 1'277()((1,0)7 y(l,o)) + ZQU(X(O,I)’ y(0,1)) _ 2-277(X(1,0)’ Y(O,l)) _ z’Qn(X(O’l), Y(l’o))
= —77(X(1»0), Y(LO)) _ 77()((0,1)) Y(O,l)) + TI(X(LO), Y(O,l)) + 77(X(0,1)7 Y(LO))
(166)

and

n(X,Y) = n((X®0 4 xON) (Y10 4 yOD))
= U(X(O’l), y(o,1)) + n(X(1,0)7 Y(l,o)) + U(X(l’o), y(o,l)) + n(X(O’I), Y(l’o))
= 720(XY) + 9O (X Y) + (XY,
(167)
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If 1 is of type (1,1) then n®9(X,Y),n®?(X,Y) are zero and n(JX, JY) = n(X,Y).
If n(JX,JY) = n(X,Y) then 2p20CY) 4 2pO0DEXY) iy zer0 for all X,Y and since
n@OY) i orthogonal to n®25Y) then they both must be zero and 7 is of type

(1,1). 0
Lemma 6.5. We have n =n" + M iff 7*n € Q*(Z) is of type (1,1).
Proof. Let X,Y € I'(TM) and X" Y" be their respective horizontal lifts. Note that

(*10)w(X,Y) = Nr) (1. X, 7,Y) and we drop the subscripts. Then

() (JX", JY") = (7*n)(X",Y") by Lemma 6.4

e nrJX" r,JY" =nx X" YY"

(X 2w, (Y 2w))) =n(X,Y) by Theorem 4.1
& (n(w(X)),w(Y)) = (n(X),Y) by Theorem 3.3

& (—wp(w(X)),Y) = (n(X),Y). (168)
Thinking of w,n as endomorphisms, thus we get that

& (-wn(w(X)),Y) = (n(X),Y)

& —WwWnw =1
S wn = nw since w? = —1
sn=n"+w by Lemma 6.3 [ (169)

In the next theorem we let B be a vector bundle with connection VZ. We let

FV” be the curvature tensor with respect to the connection V7.

Definition 6.6. An instanton is a special solution to the Yang-Mills equations in

4-dimensions [1]. It is a connection whose curvature is self-dual or anti-self-dual.

An instanton is automatically Yang-Mills where the Yang-Mills functional is given
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by [ Tr(FAxF)dvol. It is often that instantons are (but not always) an absolute min-
imizer of this functional [ Tr(F A *F)dvol. A Yang-Mills connection is a connection

which is a critical point of the Yang-Mills functional.

Theorem 6.7. For (B, V?) a vector bundle with connection over a four-manifold, and
71 Z — M the projection map, then F¥" € Q2 (M) is self-dual iff 7*(F¥") € Q*(Z)

is of type (1,1).

Proof. Denote SD as self-dual 2-forms. By Lemma 6.2, Lemma 6.3, Lemma 6.4,
Lemma 6.5 7(FV") is (1,1) iff (F¥V")z) = SD + \w for all w such that 7(w) = p iff
(F¥")ry = SD [2). O

7 The vector bundle £ = A2(T*M)

In this section we will look at the case when M = R® with a special kind of

4-form called a Cayley form and we will show a similar construction holds.

7.1 The almost complex structure on Sy(A2(T*M))

Let M = R® and let {e;} be an orthonormal frame on M with the standard
orientation and {e’} the dual frame to {e;}. Let ® be the standard Spin(7) structure

on M which satisfies *® = ® and in local coordinates ® is given in [?] by

Pd = dI0123 o dZL‘0167 _ dl‘0527 _ d{L’OSGS + diL‘O415 + dl‘0426 + d$0437

+ dl’4567 - dl'4523 o d$4163 o d22'4127 + dl‘2637 + dl’1537 + dl‘1526. (170)
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where dz* denotes dx' Adxz? Adx® Ada'. The 4-form @ satifies the following identity.

Pavij Pockt = GikGji9ac + Jitgjcak + YicdikYal
— 9ikYjcGal — GitdjkGac — YicYji9ak
- gik(I)jalc - gjkq)ailc — Jak Pijic
— G ®Pjack — 9j1Paick — G Pijer

- gicq)jakl - gjcq)aikl - gacq)ijkl (171)

A proof of this identity can be found in [3].
One can show that the map w — *(® A w) is self-adjoint hence the map is

orthogonally diagonalizeable [3]. We have the following relations from [3]:

A? = A2 A2,
A2 = {w] * (P Aw) = 3w}
A3 = {w| * (P Aw) = +w}. (172)

A global frame for A2T*R8 is given by {dz‘Adz’ | i < j}. Let m; be the projection
map from A*T*R® to A2T*R®. The next lemma 7.1 will be used to define the complex
structure on the vertical subbundle of TE by identifying it with R” so we can use the

standard cross product on R”.
Lemma 7.1. There is an isomorphism AL(R") = A2(R®).

Proof. Let {e°, ...,e"} be the dual orthonormal frame to the orthonormal frame

{eg,...,e7} on R®. Let p € R®. Define a map P by

P : AL(R") — AZ(R®)

a = mr(e? A a). (173)
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We will show this map is injective.

If m7(e® A @) = 0, since no non-zero decomposable 2-form can be of pure type [
e Aa=0. We have ey 1 (¢ A a) = o = 0. Thus P is injective.

The dimension of AZ2(R®) and of AL(R") is 7 and since P is injective then P is an

isomorphism. O

From now on the vector bundle is F = AZ(T*R®) which is a rank seven bundle
with Euclidean metric g = (-,-) and connection V. Let {c'} be a global frame on F
with induced global coordinates as (2°,..., 27, y1,...y7) as in (1) where (2!, ..., 2%)
are the standard global coordinates on R®.

We will view w as an endomorphism from Theorem 3.3. Let the matrix represe-
nation for w be w;; and let the components of ® in the stardard global coordinates on

R® be Pyp;;. We compute #(P A w) thus

$(PAwW) = =% (PAW)we Ae
(+(® A (wape® A e?)))
wap(€® 2 e 1 ®) , since e 1xa = (—1)" % (e} A @) for any k-form a

wab(q)abijei Ael)

((I)abijwij)€a A €b.

N N S Bl Sl PR NOR s

(174)

The equations in (172) in local coordinates are

2
w e A7 — (I)abijwij = —6wap,

w e A%l < @abijwij = 2Wap. (175)

Lemma 7.2. Let w € A2 viewed as an endomorphism with matriz representation wey.
Then

WabWpe = _5(10
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if (w,w) = [w|* = 4.
Proof. Computing wawp. yields

1 1
WapWhe = (— gcbabijwij) (— gcbklbcwkl)

= _%Wijwqu)ijabq)klcb

1

= Wi (9ikYjiGac + GitGjcGak + YicGjkYal

— 9ikGjcYal — Gil9jkGac — GicGjlGak
- giqujalc - gjkq)ailc - gakq)ijlc
— GiPjack — 9jiPaick — JaPijer

— GicPjart — 9jcPairt — JacPijrr)- by (171) (176)

After relabelling indices, collecting terms and using g; = d; (176) becomes

1 1
WabWhe = _2_wkjwk:j5ac - 2%chwal - Q%C‘}ckwka
1

- %(_Zkﬂkjwqu)jalc — W;jWki0acPijur — 2wejwii Pjars — 2wijwa Pijic). (177)

Let P = wow. The coordinate representation of P is P,. = wywi.. Note that P,.

is symmetric in the indices a,c. From (172) we get that wy = —%@alibwib hence
WalWie = —%q’azibwwwzc and as P is symmetric then wyjwi®jae = —FjPjuc = 0. We

also have 2|w|* = w;jw;;. Substituting this into (177) yields

1 1 1
a c:Pac:_2_2 25ac_2_Pac_2_Pac
ab e 3621w 36 36
1
- %(0 + 6(2|w[*0ae) + 2(6P,.) + 2(6P,.)). (178)
Rearranging (178) we get
64P = —16|w|*I. (179)
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If (w,w) = 4 this gives wepwpe = —0qe- H

We define Z'* to be Z' = Sy(A2(T*M)) C E. Referring to Theorem 4.1 we can

define an almost complex structure on Z.

Theorem 7.3. Let w € Z*, X € T,M. Define J : T,M — T,M by J := X
(X Jw)? where § is the musical isomorphism. Then J T,M — T,M is a complex

structure.
Proof. By Lemma 7.2 J? = —1 hence J is a complex structure. O]
Given the connection on E = AZ(T*M)) and applying the results of section 2.2
and section 2.1 to E we get a splitting TE = HE ® V E. Applying Lemma 4.3 to Z4
we get
VoZH =YV e V,E | (Y, 6)yve =0, ve 21} (180)

Definition 7.4. Let w € Z)* and X € T,M. On H,Z", J is defined by
J(XM) = (X Jw)H. (181)

Theorem 7.5. For M = R®, let © be the restriction of the tautological 2-form on

T*E to Z". Let X" be the horizontal lift of X € T(TM). Then J(X") is given by

J(X") = 0(X", eMe;,

)

and satisfies JA(X") = —X".
Proof. Follow the proof of Theorem 4.5. O]

We next define an almost complex structure on V Z*. Given the 4-form on ® on

R® we can use it to define a 3-form ¢ and 4-form 1) = *¢ on R7. Thus we have the
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following identities

P=e"Np+

p=ey1P since eg 41 =0

b=

p=>—e"Agp. (182)

Let p € RS then T,R® = RS,

Definition 7.6. For X,Y € T,R", ¢ the 3-form defined above, the cross product
X x Y is defined by (Y 2 X 1)k

In R the cross product satisfies

Ax (BxC)=(AC)B— (A BC+ ((A, B,C,.))* [13] (183)

for A, B,C € TI'(TR"). The fibres of E are given by R?. The fibres of Z* are given
by 6-spheres of radius two which have an induced almost complex structure coming
from the cross product on the fibres of £. To put an almost complex structure on

V Z we need a cross product on A%(R®). To do this we use the isomorphism between

P : ALR") — A?%(R®) from Lemma 7.1.

Lemma 7.7. Let w € Z!, YV € A2(T*, \R®) such that Y' 1 w, & € I(VE) the
p 7

m(w)

fundamental vector field. Then

P(®(eg, P7H(E,), PTHYY), ) = P(P7Y(&) x PTH(Y™Y)) € V,ZzM.

Proof. Using Definition 7.6 we get that YV x &, = &, 1YY" 1. By Definition 7.6 and
by (182) and Lemma 7.1

P&, x YY) = P(P"HY") 1 P7Y(&,) seg 2 ®)F
= (®(eo, P7H(&), PTH(Y™), )" O (184)

76



From now on we drop the P for notational simplicity, and write £, X Y to mean

P(PH(&) x PTHY™)).

Theorem 7.8. Let w, YV and & be as in Lemma 7.6. Then j;(Y”) =&, XY defines

an almost complex structure.

Proof. We have to show that jf = -1
The operator :]2 will be in terms of the iterated cross product given by :]2 =&, X

(&w x Y?). Computing J? = Eo X (& X YY) yields

(:];J>2(YU) = gw X (50.: X YU)
= <€w7 YU>€0J - <£w7 £w>YU + (cD(fwa §ws Yva )># by (183)
=0- <€w7£w>YU +0

_ vy (185)
Thus J, is a complex structure on V,,Z. O

7.2 The flow CIDL?(h preserves the cross product on V27

For the horizontal lift, X" € T(HZ") of X € T'(TR?®), the flow ®X" will be as it

is in Section 2.3. And we get the following following theorems.
Theorem 7.9. The map qﬁtxh : E— FE is an isometry in the vertical direction.
Proof. By Theorem 2.14. m

Theorem 7.10. The pushforward (¢t)<h)* of ¢f<h 15 an isometry when restricted to

the vertical subbundle V Z™.

Proof. By Theorem 2.15. O
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Note that in the 4-dimensional case the cross product on the vertical subbundle
is with respect to the volume form which is parallel. When M = R® the cross product
on the vertical subbundle is with respect to the 4-form @ which is in general not

parallel though here we have used a specific & which is parallel.
Lemma 7.11. The flow gbf(h preserves the cross product on V Z'4.

Proof. Let &, = daiyd and YV = Yea%e- The cross product on VZ is given by

(®(e, &0, YV, )P,

In local coordinates this is

0

dvy e
Pdef§Y .
d dys

Replace ederdVe% with deeffdye% in Lemma 4.8. We can do this since VF® = 0.

Then follow the rest of Lemma 4.8. O

Lemma 7.12. The flow preserves the complex structure J on V Z™. That is (gbf(h)*j;(Y”) =
Ty (@37,
Proof. Using Lemma 7.11 follow Theorem 4.9. [

With the above theorems and lemmas we get the following:

Theorem 7.13. The Lie derivative (LxnJ)(Y") is zero.

Proof. By Theorem 7.9, 7.10, and Lemma 7.11,7.12 and Theorem 4.10. O

7.3 Nijenhuis tensor of two horizontal vectors

By Theorem 7.5 we can apply the results of Section 5.4 when X" Y € I'(HZ')

and get equation (129). Since M = R® we get the following theorem.
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Theorem 7.14. For X" Y" € T(HZY) horizontal lifts of X,Y € T'(TR®) then

N(X" Y") =0.

Proof. Using Theorem 7.5 follow Section 5.4 to get

N(X"Y"), = J(R(nX,Y)n)
— R(nX,nY)n
+ J(R(nY, X)n)

+R(X, Y ). (186)

Since R® is flat R(X,Y) =0 and N(X", Yh) = 0. O

7.4 Nijenhuis tensor of a horizontal and vertical vector

By Theorem 7.5 we can apply the results of Sections 5.1 and 5.2 when X" €
[(HZ™) and YV € T'(VZ). Thus we get the following theorem.

Theorem 7.15. Let X" e T(HZY) and Y° € T(VZ') then

N(X" YY) =0.

Proof. By Theorem 7.13, Theorem 7.5, and Theorem 7.8 we can apply the results of
Sections 5.1 and 5.2 to N(X" Y") when X" € [(HZ) and Y* € ['(V Z*) thus

NX"Y")=0. O
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7.5 Nijenhuis tensor of two vertical vectors

By Theorem 7.8 we can apply the results of Section 5.5 to the equation

N(X®, YY) = [X", Y| + JIJX, Y] + J[X", JY"] — [JXV, JY"]. (187)

When X?,Y? € I'(VZ') and we get the following theorem.

Theorem 7.16. For XV, YV € T'(VZ'Y) then

N(X,Y") = —40(n, X", V", ).

Proof. This calculation is analagous to the 4 dimensional version so we can apply the

results of Section 5.5 and using (183) to obtain

N(X",Y") = VoY = Vyu XV
— (& X")Vy &y — (6, V&) XV — (1, X7, Vyon), )
+ (& Y ) Vxo&y = (&, V&)YV +90(n, Y, Vxon, )
— (&, Vyo X)E = (60, &) Vyo X — 4 (n, Vyo XV, . )
+ ({&ny VoY) = (6, € VoY +00(n,, Vi Y )
= (&, Y X" = (X", Y")&) —v(n, X, Y, )

+ (& XY = (X" Y7)6) +0(n, Y, XY, -). (188)

Similar to the four dimensional case all terms that do not have v will vanish or

80



cancel. Hence we get

N(X, YY) = —(n, X", Vyn, )
+9(n, Y, Vxen, )
— (0, Vv X", 1, )
+¢(n,, Vx Y"1,
—P(n, X", Y",)

+7/1(777YU;XU>') (189)

Noting that ¥(n,,Vx+Y" n,-) = 0,¥(n, Vy+ X", n,-) = 0 and simplifying yields

N(X" YY) = =¢(n, X", Y",)
+ (Y, XY, )
—1(n, X, Y",)
+ (Y, XY, )

= —dp(n, X°,Y" ). O (190)

It is not surprising that this almost complex structure on Z is not integrable
because the almost complex structure it induces on the 6-sphere fibres is the canonical
one which is well known to be non-integrable. The non-trivial observation is that this

is the only part of the Nijenhuis tensor (that is, on two vertical vectors) which is non

Zero.
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