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Abstract

The Atiyah-Hitchin-Singer theorem states that the twistor almost complex

structure on a certain S2 bundle over an oriented Riemannian 4-manifold (M, g)

is integrable if and only if the Weyl curvature tensor of g is self-dual.

These ideas were developed by Roger Penrose connecting 4-dimensional

Riemannian geometry with complex geometry.

We present a new approach to the Atiyah-Hitchin-Singer theorem using

horizontal lifts and their respective flows, cross products and the quaternions

to show that the Nijenhuis tensor vanishes if and only if the Weyl curvature

tensor of g is anti-self-dual. An eight dimensional generalization is presented

when the manifold is R8.
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1 Introduction

It is be possible that certain types of PDEs have underlying geometric structure.

Knowing the type of geometric structure can reduce the complexity of certain PDEs.

Penrose used twistors to describe solutions of these types of PDEs [5]. He first

showed how the wave equation on complexified Minkowski space was related to a con-

tour integral in complex geometry. A twistor space is a space Z with a projection to a

space M such that its fibres are complex manifolds. Penrose’s twistor space is a com-

plex 4 dimensional space Z which has a double fibration to the complex Grassmanian

and to CP3. Based on this construction, Richard Ward [14] showed that instantons

on complexified Minkowski space correspond to holomorphic vector bundles on CP3.

Other correspondences came about such as instantons on the 4-sphere correspond to

holomorphic bundles on complex projective 3-space [3] where instantons are special

kinds of solutions to the Yang-Mills equations in 4d. They are connections whose

curvature is self-dual or anti-self-dual. Atiyah, Hitchin, and Singer further developed

[2] the ideas of Penrose in the setting of 4-manifolds and produced the paper “Self

duality in four dimensional Riemannian geometry”. The Atiyah-Hitchin-Singer theo-

rem states that the twistor almost complex structure on a certain S2 bundle over an

oriented Riemannian 4-manifold (M, g) is integrable if and only if the Weyl curvature
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tensor of g is self-dual. The Newlander-Nirenberg Theorem states that the vanishing

of the Nijenhuis tensor corresponds to the integrability of an almost complex struc-

ture. In this thesis we show the Nijenhuis tensor vanishes hence the almost complex

structure is integrable if and only if the anti-self-dual part of the Weyl curvature van-

ishes.

In section 2 we introduce the vertical bundle, horizontal bundle, and horizontal

lifts of a vector fields. We then describe the flow of the horizontal lift which has

the property that it preserves the cross product and is an isometry in the vertical

direction. The Lie bracket of two horizontal lifts involves the curvature which will be

needed in calculating the Nijenhuis tensor. We then show how horizontal lifts act on

the tautological 2-form.

In section 3 we set up some linear algebra for our later calculations. We introduce

orthogonal complex structures and orientations. We show how 2-forms can be related

to endomorphisms, and define an almost complex structure on the 2-sphere.

In section 4, the results of the previous sections are applied in the case of the

vector bundle E = Λ2
−(T

∗M). We consider the
√
2-sphere bundle Z ⊂ E and define

an almost complex structure on Z compatible with the horizontal and vertical split-

ting. The almost complex structure on HZ uses the tautological 2-form, while the

almost complex structure on V Z is related to the quaternions and the cross product.

In section 5 we calculate the Nijenhuis tensor of the almost complex structure

defined in section 4. We show that the Nijenhuis tensor of a horizontal lift and of a

vertical vector field vanish and the Nijenhuis tensor of two horizontal lifts reduces to

curvature. The Nijenhuis tensor of two vertical vector fields vanishes and its calcula-

tion depends on the cross product on the fibre of E. Through the use of quaternions

in particular their relation to the cross product together with the Kulkarni-Nomizu

product, we arrive at a condition for integrability only involving the anti-self-dual

part of the Weyl curvature. We then show that this condition is satisfied if and only
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if the anti-self-dual part of the Weyl curvature vanishes

In section 6 we show how self-dual instantons are related to holomorphic vector

bundles through the use of the techniques we built up in the previous sections.

In section 7 we apply the techniques of the previous sections to an 8-dimensional

generalization where the base is R8 with standard Spin(7) structure and we calculate

the Nijenhuis tensor.

Some further references for further reading related to this topic are [12], [11], [6],

[14], [7], [10] and [1].

2 Vector bundles

Let E be a rank k vector bundle over a smooth manifold M . Let π : E →M be

the projection map. Let U ⊆ M be a local chart on M . For p ∈ M , let Ep = π−1(p)

be the fibre of E over p and υ ∈ Ep.

Recall that a section σ ∈ Γ(E) is a smooth map σ :M → E such that π◦σ = IM .

Suppose that E can be trivialized over U and let ϕU : EU → U×Rk be a trivialization

map. The standard basis in Rk induces via ϕU a local frame {σi}ki=1 for EU . The

local coordinates induced on EU by the local frame and the local coordinates on U

are (x1, . . . , xn, y1, . . . , yk). In particular, a local section σ ∈ Γ(EU) can be given by

σ =
∑k

i=1 y
iσi. The induced coordinates on E are given by the map

(yiσi)p 7→ (p, y1, y2, y3, . . . , yk) (1)

where p = (x1, . . . , xn). These adapted local coordinates for E are the only ones we

will use.

Recall the pullback bundle of E along π is denoted as π∗E, where π∗E = {(u, v) ∈

E × E : π(u) = π(v)}. For υ ∈ Ep we have (π∗E)υ = Ep.

Definition 2.1. Let E∗ be the dual bundle of E. A fibre metric on E is a section
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gE ∈ Γ(E∗ ⊗ E∗) so that gE(·, ·) is symmetric and positive definite inner product for

each p ∈M .

2.1 The vertical subbundle V E

The pushforward by π is denoted by π∗ : TE → TM and we define the vertical

subbundle of TE as ker(π∗) = V E. We will show that a local frame for the vertical

space is given by
{

∂
∂y1
, ∂
∂y2
, . . . , ∂

∂yk

}
. We denote VυE := (V E)υ for υ ∈ E.

Lemma 2.2. (Vector Bundle Construction Lemma [9] page 108)

Let M be a smooth manifold and suppose we are given:

• for each p ∈M , a real vector space Ep of some fixed dimension k

• for each α ∈ A a bijective map Φα : π−1(Uα) → Uα×Rk whose restriction to Ep

is a linear isomorphism from Ep to {p} × Rk

• for each α, β ∈ A such that Uα∩Uβ ̸= ∅, a smooth map ραβ : Uα∩Uβ → GL(k,R)

such that the composite map Φα ◦Φ−1
β from (Uα∩Uβ)×Rk to itself has the form

Φα ◦ Φ−1
β = (p, ραβ(p)v)

Then E has a unique smooth manifold structure making it into a smooth vector bundle

of rank k over M, with π as projection and the maps Φα as smooth local trivializations.

Theorem 2.3. Let (υ, ζ) ∈ (π∗E)υ. The vertical subbundle V E is isomorphic to the

pullback bundle π∗E via the map

Eπ(υ) ∋ ζ
lυ−→ d

dt

∣∣∣∣
t=0

(υ + tζ) ∈ VυE,

where d
dt

∣∣
t=0

(υ + tζ) ∈ Tυ(Eπ(υ)) ∼= Eπ(υ).

Proof. Let υ ∈ Eπ(υ) and define a map lυ : (π∗E)υ → VυE by

lυ : (υ, ζ) 7→ d

dt

∣∣∣∣
t=0

(υ + tζ) ∈ VυE. (2)
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The map lυ is one-to-one and onto and linear since d
dt

is linear hence it is an isomor-

phism of vector spaces. Then the inverse l−1
υ : VυE → (π∗E)υ is given by

d

dt

∣∣∣∣
t=0

(υ + tζ) 7→ (υ, ζ). (3)

We will show π∗E ∼= V E using the vector bundle construction Lemma. Given

a frame {σi} for E over U , we obtain a local frame {π∗σi} for the pullback bundle

π∗E over EU . Let (υ, κ), (υ, κ
′) ∈ (π∗E)υ. We will show that the transition functions

on V E come from the transition functions on π∗E and by Lemma 2.2, V E will be

a vector bundle. As π∗E is a vector bundle π∗E =
⊔

υ(π
∗E)υ. Let {Uα} ⊂ M be a

trivializing open cover for E. Then on the intersection Uα ∩ Uβ, there exists ραβ on

π∗(EUα∩Uβ
) such that (υ, κ) = (υ, ραβκ

′). Since l is linear and ραβ is linear we get

lυ(υ, κ) = lυ(ραβ(p)υ, ραβ(p)κ
′)

=
d

dt

∣∣
t=0

(ραβ(p)υ + tραβ(p)κ
′)

= ραβ(p)
d

dt

∣∣
t=0

(υ + tκ′)

= (ραβ(p))lυ(υ, κ
′)).

(4)

Hence the transition functions for (π∗E)υ are the same as the transition functions

on VυE and the map lυ varies smoothly over the fibres and similarly for the map

l−1
υ . Then by Lemma 2.2 we get V E =

⊔
υ VυE, where V E is constructed from the

transition functions on π∗E, and we get vector bundle isomorphisms l : π∗E → V E

and l−1 : V E → π∗E.

Corollary 2.4. Under the isomorphism between π∗E and V E, and for local frames

{π∗σi}, { ∂
∂yi

} of π∗E and V E respectively, the map l sends {π∗σi} → { ∂
∂yi

}.
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Proof. Recall that for U ⊂M , U a trivializing open set for E

σi(p) = ϕ−1
U (p, (0, 0, . . . , 1, 0 . . . , 0))

where the 1 is in the ith position. Let γ(t) = υ + t(0, 0, . . . , 1, 0 . . . , 0) where the 1 is

in the ith position. For p ∈M , f a function on Ep, then γ∗
∂
∂t

at t = 0 applied to f is

(
γ∗
∂

∂t

)
f =

d

dt

∣∣∣∣
t=0

f(υ + t(0, 0, . . . , 1, 0 . . . , 0)) =
∂

∂yi

∣∣∣∣
υ

f. (5)

Then lυ((π
∗σi)υ)f = γ∗

∂
∂t
f = ∂

∂yi

∣∣
υ
f.

Definition 2.5. The fundamental vector field ξ ∈ Γ(V E) is given by

ξυ =
d

dt

∣∣∣∣
t=0

(υ + tυ).

Theorem 2.6. For υ ∈ E, ξυ ∈ VυE is given in local coordinates by ξυ = yi
∂
∂yi

∣∣
υ
.

Proof. Let υ ∈ E and ξυ ∈ VυE. Then (υ, υ) = yi(π∗σi)υ and ξυ = lυ(υ, υ) =

d
dt

∣∣
t=0

(υ + tυ) ∈ VυE. By Corollary 2.4 we get

lυ(υ, υ) = lυ(y
i(π∗σi)υ)

= yilυ((π
∗σi)υ)

= yi
∂

∂yi

∣∣∣∣
υ

. (6)

Given that we have π : E →M , we have the induced map π∗ : TE → TM . The

bundle TE will have a local frame { ∂
∂x1 , . . . ,

∂
∂xn ,

∂
∂y1
, . . . , ∂

∂yk
}.

For the local coordinates on E given by (1), let πi be defined by

πi(x1, . . . , xn, y1, . . . , yk) = xi. (7)
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The matrix of π∗ is given by


∂π1

∂x1 . . . ∂π1

∂xn
∂π1

∂y1
. . . ∂π1

∂yk

...
...

...
...

...
...

∂πn

∂x1 . . . ∂πn

∂xn
∂πn

∂y1
. . . ∂πn

∂yk

 =

(
In×n 0n×k

)

and as a consequence we see that for υ ∈ Ep, c
i ∂
∂xi

∣∣
υ
+ bi ∂

∂yi

∣∣
υ
∈ TυE then

π∗(c
i ∂

∂xi
∣∣
υ
+ bi

∂

∂yi
∣∣
υ
) = π∗(c

i ∂

∂xi
∣∣
υ
) + π∗(b

i ∂

∂yi
∣∣
υ
)

= ci
∂

∂xi
∣∣
p

(8)

and hence ker π∗ has the basis
{

∂
∂yi

∣∣
υ

}
.

Theorem 2.7. Let A ∈ Γ(TM). Suppose A1 ∈ Γ(TE) and assume that π∗A1 = A.

Let ϕA
t : M → M and ϕA1

t : E → E be the flows of A and A1 respectively. Then the

following diagram commutes for all t.

E E

M M

π

ϕ
A1
t

π

ϕA
t

Hence the flow ϕA1
t is a family of fibre preserving diffeomorphisms.

Proof. See [9] Lemma 18.4 page 468.

2.2 The horizontal lift

Let γ : [0, 1] → U be an arbitrary curve in a coordinate chart U ⊂ M ,

given in local coordinates by γ(t) = (x1(t), x2(t), . . . , xn(t)) with γ(0) = p and

γ′(0) = Xp ∈ TpM .
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A lift of γ to E is denoted γ̂ ∈ Γ(γ∗E). It is given in the local coordinates defined

by a local frame {σi} of E in (1) by

γ̂(t) = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , yk(t))

= (γ(t), q(t)). (9)

where γ(t) = (x1(t), x2(t), . . . , xn(t)) and q(t) = (y1(t), y2(t), . . . , yk(t)). In other

words, γ̂ = yiσi. In this chart the derivative of γ̂ is given by

γ̂′ = (γ′(t), q′(t)).

More explicitly

q′(t) =
dya

dt

∂

∂ya

∣∣∣
γ̂

and

γ′(t) =
dxi

dt

∂

∂xi

∣∣∣∣
γ

= X i(t)
∂

∂xi

∣∣∣∣
γ

.

Then we have

γ̂′(t) = X i(t)
∂

∂xi

∣∣∣∣
γ̂

+
dya

dt

∂

∂ya

∣∣∣∣
γ̂

. (10)

Let ∇ be a connection on E. For σ ∈ Γ(E) and h ∈ C∞(M) then ∇ : Γ(E) →

Γ(T ∗M ⊗ E) and ∇(σh) = dh⊗ σ + h∇σ. Denote ∇i := ∇∂xi
.

Definition 2.8. Given a local frame {σa} on E, and a connection ∇ on E, the

connection coefficients Γb
ai are defined by ∇iσa := Γb

aiσb.

Definition 2.9. Let γ : [0, 1] →M be a smooth curve, and ∇ a connection on E. A

lifting γ̂ : [0, 1] → E of γ to E is horizontal with respect to ∇ if (γ∗∇)γ̂ = 0, where

γ∗∇ is the pullback connection on γ∗E.

We will solve the equation

(γ∗∇)γ̂ = (∇γ′(t)γ
∗(yaσa)) = 0. (11)
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We use {γ∗σ1, γ∗σ2, . . . , γ∗σk} as the induced frame on γ∗E from the local frame

{σ1, σ2, . . . , σk} on E. We drop the γ∗ for convenience.

In local coordinates (γ∗∇)γ̂ = 0 is equivalent to

∇γ′ γ̂ =
dya

dt
σa + ya∇γ′σa

=
dya

dt
σa + yaX iΓb

aiσb

= (
dyb
dt

+ yaX iΓb
ai)σb

= 0 (12)

which gives the system of equations for (ya)’s

dyb

dt
= −Γb

aiX
iya. (13)

We substitute equation (13) into equation (10) yielding

γ̂′(t) = X i ∂

∂xi

∣∣∣
q(t)

− Γb
aiX

iya
∂

∂yb

∣∣∣
q(t)
. (14)

Notice that γ̂′(t) given in (14) only depends on ∇ and γ′(t). This section of

γ∗(TE) is known as a horizontal lift of X ∈ Γ(TM) along γ. Soon we will see that

this will lead to a splitting of TE into horizontal and vertical subbundles where the

horizontal lift is a section of the horizontal bundle.

Definition 2.10. Let γ : [0, 1] →M be a curve inM . A horizontal lift of γ at υ ∈ Ep

is γhυ (t) : [0, 1] → E, such that γhυ (0) = υ, π ◦ γhυ = γ and γhυ is horizontal.

Theorem 2.11. For υ ∈ Ep, in local coordinates (x1, . . . , xn) on M , let

HυE = {Xh
υ := X i ∂

∂xi
− Γb

aiy
aX i ∂

∂yb
∈ TυE

∣∣∣X = X i ∂

∂xi
∈ TpM}. (15)
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Then HυE is a subspace of TυE and

hυ : TpM → TυE, X i ∂

∂xi
7→ X i ∂

∂xi
− Γb

aiy
aX i ∂

∂yb
(16)

is a linear injection and HE =
⊔

υ∈E HυE is a vector bundle.

Proof. Let X,Z ∈ TpM , and Xh, Zh ∈ TυE be the respective horizontal lifts at υ.

Denote Γa
bi = Γa

bi(p) and y
α = yα(υ). (We are dropping the p and υ for convenience).

Write X = X i ∂
∂xi , Z = Zi ∂

∂xi . Let

Xh = X i ∂

∂xi
− Γb

aiy
aX i ∂

∂yb
,

Zh = Zi ∂

∂xi
− Γb

aiy
aZi ∂

∂yb
, (17)

and for A,B ∈ R,

AXh +BZh

= (AX i +BZi)
∂

∂xi
− Γb

ai(AX
i +BZi)ya

∂

∂yb
(18)

hence AXh +BZh is a horizontal lift of AX +BX at υ.

We show that π∗ is a left inverse of h:

(π∗ ◦ h)(X)

= (π∗ ◦ h)(X i ∂

∂xi
)

= π∗(X
i ∂

∂xi
− Γb

aiy
aX i ∂

∂yb
)

= π∗(X
i ∂

∂xi
)− Γb

aiy
aX iπ∗(

∂

∂yb
)

= X i ∂

∂xi

= X. (19)
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Thus π∗ is the inverse of h when restricted to the codomain im(h) and we showed

HυE ∼= TpM is a linear isomorphism. Given a local frame for TM using the horizontal

lift one can construct a local frame for HE.

The map h is linear and HE =
⊔

υHυE ∼=
⊔

υ(π
∗TM)υ, the transition functions

for HE on Uα∩Uβ ⊂M will be exactly the transition functions for TM on Uα∩Uβ ⊂

M . Similar to Theorem 2.3, the bundle structure on HE is built from the linear

injection and from the bundle structure on
⊔

υ(π
∗TM)υ = π∗TM .

We have now that TE = ker(π∗)⊕ im(h) = V E ⊕HE.

Definition 2.12. The horizontal lift of X ∈ Γ(TM) is Xh ∈ Γ(HE) such that at

each point p ∈M,υ ∈ Ep , Xh
υ = hυ(Xp) ∈ HυE ⊂ TυE.

We now calculate the integral curves of

Xh = X i ∂

∂xi
−X i

pΓ
b
aiy

a ∂

∂yb
. (20)

We need to solve the equations

dxi

dt
= X i,

dya

dt
= −Γb

aiX
iya. (21)

with initial conditions γ(0) = (x1(0), . . . , xn(0)) = p, y(0) = (y1(0), . . . , yk(0)) such

that υ = ya(0)σa. The solution is given by

xi(t) = γi(t)

ya(t) = e−
∫ t
0 Γb

aiX
idtya(0). (22)

where γ(t) is the integral curve of X with initial conditions γ(0) = p. Then the flow

for Xh is given by

ϕXh

t (υ) := (γ(t), e−
∫ t
0 Γb

aiX
idtya(0)σb). (23)
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Let Xh be the horizontal lift of X, ϕX
t be the flow of X then ϕXh

t (Ep) ⊂ EϕX
t (p)

and ϕXh

t is a fibrewise morphism.

2.3 Properties of the flow ϕX
h

t

We now define parallel transport of a point υ ∈ E along a curve γ : [0, 1] →M .

Definition 2.13. The parallel transport of υ ∈ Ep along γ starting at γ(0) = p is

the endpoint of the unique horizontal lift γhυ (t) of γ(t) such that γh(0) = υ. For each

υ ∈ Ep the integral curve of Xh associated with the flow ϕXh

t is ϕXh

t (υ) := γhυ (t).

Let g = ⟨·, ·⟩E be a metric on E and suppose ∇ preserves g. If {σa} is a local

frame for E, this means that

X⟨σa, σb⟩E = ⟨∇Xσa, σb⟩E + ⟨σa,∇Xσb⟩E. (24)

Let X ∈ Γ(TM) and Xh be its horizontal lift to TE. We claim that ϕXh

t is an

isometry in the vertical direction, that is ϕXh

t preserves the metric g on E.

Theorem 2.14. ϕXh

t : E → E is an isometry with respect to g the metric on E.

Proof. Let {σa} be a local orthonormal frame for E, in local coordinates (x1, . . . , xn),

let X ∈ Γ(TM), X = X i ∂
∂xi . Then

0 = X⟨σa, σb⟩E

= ⟨∇Xσa, σb⟩E + ⟨σa,∇Xσb⟩E

= X i(⟨Γc
aiσc, σb⟩E + ⟨σa,Γd

biσd⟩E)

= X i(Γc
aiδcb + Γd

biδad)

= X i(Γb
ai + Γa

bi). (25)

Hence Γb
ai is antisymmetric in a and b thus the exponent in (23) is antisymmetric in a
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and b. It follows that ϕXh

t given by (23) is an orthogonal transformation in the second

argument hence an isometry in the vertical direction.

Next we show that (ϕXh

t )∗ is an isometry when restricted to the subbundle V E.

Corollary 2.15. The pushforward of ϕXh

t , (ϕXh

t )∗, is an isometry with respect to the

metric ⟨·, ·⟩V E on V E.

Proof. By (23) the pushforward of ϕXh

t , (ϕXh

t )∗ is given in local coordinates (ϕXh

t )∗ by

(ϕXh

t )∗(
∂

∂xi
) =

∂

∂xi
+
∂yb

∂xi
∂

∂yb

=
∂

∂xi
+
∂(e−

∫ t
0 Γb

aiX
idtya(0))

∂xi
∂

∂yb

(ϕXh

t )∗(
∂

∂yj
) =

∂xb

∂yj
∂

∂xb
+
∂yb

∂yj
∂

∂yb

= (0)
∂

∂xb
+ e−

∫ t
0 Γb

aiX
idt ∂

∂yb
(26)

In matrix form

(ϕXh

t )∗ =

 1 0

∂(e−
∫ t
0 Γb

aiX
idtya(0))

∂xi e−
∫ t
0 Γb

aiX
idt

 .

The restriction of (ϕXh

t )∗ to V E is (ϕXh

t )∗
∣∣
V E

= e−
∫ t
0 Γb

aiX
idt. By Theorem 2.14,

e−
∫ t
0 Γb

aiX
idt is an orthogonal transformation hence an isometry. Thus (ϕXh

t )∗
∣∣
V E

is

an isometry.

We make a note that the metric on E and the metric on V E are related by

⟨l(α), l(β)⟩V E = ⟨α, β⟩E for α, β ∈ Ep where l is defined in Theorem 2.3.

2.4 The Lie bracket of two horizontal lifts

For s ∈ Γ(E), let sv := π∗s ∈ Γ(π∗E) ∼= Γ(V E) be the section of V E using the

identification of π∗E and V E in Theorem 2.4, and is called the vertical lift.

For f ∈ C∞(M), let f v := π∗f ∈ C∞(E).
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Lemma 2.16. Let Xh be the horizontal lift of X ∈ Γ(TM), let f ∈ C∞(M) then

(Xf)v = Xhf v.

Proof. Working out Xhf v yields

Xhf v = (π∗df)(Xh)

= (df(π∗X
h))

= (df(X)) ◦ π

= (Xf) ◦ π

= π∗(Xf)

= (Xf)v. (27)

Theorem 2.17. Let sv ∈ Γ(V E) be the vertical lift as above, let Xh be the horizontal

lift of X ∈ Γ(TM). Then

(∇Xs)
v = [Xh, sv].

Proof. Let f ∈ C∞(M) and s ∈ Γ(E). Then sv ∈ Γ(V E) is a vertical vector field on

E. Note that π∗(fs) = π∗fπ∗s = f vsv. Then ((Xf)s)v = (Xhf v)sv and we have

(∇X(fs))
v = (f∇Xs+ (Xf)s)v

= f v(∇Xs)
v + (Xf)vsv

(28)

and

(∇fXs)
v = (f∇Xs)

v) = f v(∇Xs)
v (29)

Evaluating [Xh, (fs)v] = [Xh, f vsv] and [(fX)h, sv] and noting that sv(f v) = 0, we

16



have

[Xh, f vsv] = f v[Xh, sv] + (Xhf v)sv

[(fX)h, sv] = [f vXh, sv]

= f v[Xh, sv]− sv(f v)Xh

= f v[Xh, sv]. (30)

Equation (30) shows that [Xh, sv] has all the properties of a connection. In a

local frame {σm} for E, km ∈ C∞(M), s =
∑

m kmσm then sv = π∗(
∑

m kmσm) =∑
m k

v
mσ

v
m. Using Corollary 2.4 then σv

m ∈ Γ(V E) coincides with ∂
∂ym

. Let X = ∂
∂xi

so Xh = ∂
∂xi − Γb

iay
a ∂
∂yb

then

[
Xh,

∂

∂ym

]
=

[
∂

∂xi
− Γb

iay
a ∂

∂yb
,
∂

∂ym

]
= Γb

iaδ
a
m

∂

∂yb

= Γb
im

∂

∂yb.

It follows that [Xh, σv
m] = (∇ ∂

∂xi
σm)

v Using Corollary 2.4. (31)

By (30) [Xh, sv] = (∇Xs)
v for all X ∈ Γ(TM) and s ∈ Γ(E).

Theorem 2.18. For Xh, Y h ∈ Γ(HE) horizontal lifts of X, Y ∈ Γ(TM) respectively,

η ∈ E then

[Xh, Y h]η − [X, Y ]hη = −R(X, Y )η (32)

where R(X, Y ) : Γ(E) → Γ(E) is the curvature operator for ∇. The right hand side

R(X, Y )η is interpreted as an element in TηE via the identification π∗E ∼= V E.

Proof. Let (x1, . . . , xn, y1, y2, . . . , yk) be adapted local coordinates on E from (1). Let

17



X = ∂
∂xi and Y = ∂

∂yi
. Let Xh and Y h be horizontal lifts of X and Y . We compute

[Xh, Y h] = [X i(
∂

∂xi
− Γb

iay
a ∂

∂yb
), Y j(

∂

∂xj
− Γe

jdy
d ∂

∂ye
)]

= [X i ∂

∂xi
, Y j ∂

∂xj
]

− [X i ∂

∂xi
, Y jΓe

jdy
d ∂

∂ye
]

− [X iΓb
iay

a ∂

∂yb
, Y j ∂

∂xj
]

+ [X iΓb
iay

a ∂

∂yb
, Y jΓe

jdy
d ∂

∂ye
]. (33)

Expanding the Lie brackets

[Xh, Y h] = (X i(
∂Y k

∂xi
)− Y j(

∂Xk

∂xj
))

∂

∂xk

− (X i∂Y
j

∂xi
Γe
jdy

d ∂

∂ye
+X i

∂Γe
jd

∂xi
ydY j ∂

∂ye
)

+ (Y j ∂X
i

∂xj
Γb
iay

a ∂

∂yb
+ yaX iY j ∂Γ

b
ia

∂xj
∂

∂yb
)

+X iΓb
iaY

jΓe
jd(y

aδdb
∂

∂ye
− ydδae

∂

∂yb
). (34)

After rearranging and collecting terms and relabelling indicies, we get

[Xh, Y h] = (X i(
∂Y k

∂xi
)− Y j(

∂Xk

∂xj
))

∂

∂xk
− (X i∂Y

j

∂xi
Γe
jdy

d − Y j ∂X
i

∂xj
Γe
idy

d)
∂

∂ye

−X iY j(
∂Γe

jd

∂xi
yd

∂

∂ye
− ya

∂Γb
ia

∂xj
∂

∂yb
− Γd

iaΓ
e
jdy

a ∂

∂ye
+ Γb

iaΓ
a
jdy

d ∂

∂yb
)

= (X i(
∂Y k

∂xi
)− Y j(

∂Xk

∂xj
))

∂

∂xk
− (X i∂Y

j

∂xi
Γe
jdy

d − Y j ∂X
i

∂xj
Γe
idy

d)
∂

∂ye

−X iY j(
∂Γe

jd

∂xi
yd

∂

∂ye
− yd

∂Γe
id

∂xj
∂

∂ye
− Γa

idΓ
e
jay

d ∂

∂ye
+ Γe

iaΓ
a
jdy

d ∂

∂ye
). (35)

Note that [X, Y ]h = (X i(∂Y
k

∂xi )− Y j(∂X
k

∂xj ))
∂

∂xk − (X i ∂Y j

∂xi Γ
e
jdy

d − Y j ∂Xi

∂xj Γ
e
idy

d) ∂
∂ye
.
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Rearranging, we get

[Xh, Y h]− [X, Y ]h = −X iY jydRe
ijd

∂

∂ye
. (36)

Evaluating the expression at η = yaσa,

[Xh, Y h]η − [X, Y ]hη = −X iY jydRe
ijd

∂

∂ye
= −R(X, Y )η, (37)

where the last step is the identification of V E with π∗E.

2.5 Tautological 2-form

On Λ2(T ∗M) there is a natural tautological 2-form Θ. Let α ∈ Λ2(T ∗M), X, Y ∈

Tα(Λ
2(T ∗M)), then π∗X, π∗Y ∈ Tπ(α)M . The value of Θ at α is given by

Θα(X, Y ) = απ(α)(π∗X, π∗Y ). (38)

Let (x1, . . . , xn) be local coordinates on M then {dxi ∧ dxj|i < j} is a local

frame for Λ2(T ∗M). The corresponding induced local coordinates on T ∗(Λ2(T ∗M))

are x1, .., xn and yij, 1 ≤ i, j ≤ n.

In this local frame

Θ =
1

2
yij(dx

i ∧ dxj).
(39)

2.6 Horizontal vector fields acting on tautological 2-forms

For a Riemannian manifold M , let ∇TM be the Levi-Civita connection on TM .

Let {Xi} be a local frame for TM and {αi} its dual local frame for T ∗M . The

connection coefficents with respect to ∇TM are Γk
ij, i.e. ∇TM

i Xj = Γl
ijXl. The induced
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connection ∇T ∗M on T ∗M is then given by

∇T ∗M
i αk := −Γk

ijα
j. (40)

An induced connection ∇T ∗M⊗T ∗M on T ∗M ⊗ T ∗M is defined as follows, for

α, β ∈ Γ(T ∗M) and i = 1, . . . , n

∇T ∗M⊗T ∗M
i (α⊗ β) = ∇T ∗M

i α⊗ β + α⊗∇T ∗M
i β. (41)

The local frame on T ∗M ⊗ T ∗M is {αi ⊗ αj | i = 1 . . . n, j = 1 . . . n}. The connection

coefficents are given by

∇T ∗M⊗T ∗M
i (αk ⊗ βj) = (−Γk

imα
m ⊗ βj) + (αk ⊗−Γj

imβ
m). (42)

Definition 2.19. For {αi ∧ αj | i = 1 ≤ i < j ≤ n} the induced frame on Λ2T ∗M

from the local frame {αi ⊗ αj | 1 ≤ i, j ≤ n} of T ∗M ⊗ T ∗M , the induced connection

∇Λ2T ∗M is defined by

∇Λ2(T ∗M)
k (αi ∧ βj) = ((−Γi

km)α
m ∧ βj) + (αi ∧ (−Γj

kmβ
m)). (43)

Following the construction in determining (14), using (40) and Theorem 2.11, we

apply the derivation of the horizontal lift to the vector bundle Λ2(T ∗M).

In the induced local coordinates for Λ2T ∗M , given by (x1, . . . , xn, yij) for i < j, solving

equation (12) gives

0 =
dyij
dt

− dxc

dt
Γd
icydj −

dxc

dt
Γd
cjyid.

Hence the horizontal lift of X ∈ Γ(TM) to Xh ∈ Γ(Λ2T ∗M) is given in local
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coordinates by

Xh = (Xc ∂

∂xc
)h = Xc(

∂

∂xc
+ (Γd

icydj + Γd
cjyid)

∂

∂yij
).

For Xh, Y h ∈ Γ(T (Λ2(T ∗M))) horizontal lifts of X, Y ∈ Γ(TM), let ω ∈ Ep, let local

coordinates on T ∗(Λ2(T ∗M)) be (x1, .., xn, y12, .., yij), i < j. Then applying this to

(38) we get

Θ(Xh, Y h) =
1

2

(
yij(dx

i ∧ dxj)(X, Y )
)
◦ π. (44)

Evaluating (44) at ω then

Θω(X
h
ω , Y

h
ω ) = ωπ(ω)(Xπ(ω), Yπ(ω)). (45)

We now apply the horizontal lift to the tautological 2-form (45) and work out Zh(Θ(Xh, Y h)).

Theorem 2.20. Let Zh, Xh, Y h be horizontal lifts of Z,X, Y ∈ Γ(TM). Let Θ be the

tautological 2-form (45). Then

Zh(Θ(Xh, Y h)) = Θ((∇ZX)h, Y h) + Θ(Xh, (∇ZY )h).
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Proof. Let X = Xd ∂
∂xd , Y = Y m ∂

∂xm , Z = Zi ∂
∂xi

Zh(Θ(Xh, Y h))

= Zi( ∂
∂xi )

hΘ(X l( ∂
∂xl )

h, Y m( ∂
∂xm )h)

= Zi( ∂
∂xi )

h(X lY mΘ(( ∂
∂xl )

h, ( ∂
∂xm )h))

= ZiY m(∂X
l

∂xi )Θ(( ∂
∂xl )

h, ( ∂
∂xm )h)) + ZiX l(∂Y

m

∂xi )Θ(( ∂
∂xl )

h, ( ∂
∂xm )h)) + ZiX lY m(( ∂

∂xi )
h(ylm))

= Θ(Z(X l)( ∂
∂xl )

h, Y h) + Θ(Xh, Z(Y m)( ∂
∂xm )h) + ZiX lY m(( ∂

∂xi )
h(ylm))

= Θ(Z(X l)( ∂
∂xl )

h, Y h) + Θ(Xh, Z(Y m)( ∂
∂xm )h) + ZiX lY m(Γj

liyjm + Γj
imylj).

(46)

We now look at the term ZiX lY m(Γj
liyjm + Γj

imylj) which becomes

ZiX lY mΓj
liyjm + ZiX lY mΓj

imylj

= ZiX lY myjm(dx
j(∇ ∂

∂xi

∂
∂xl )) + ZiX lY mylj(dx

j(∇ ∂
∂xm

∂
∂xi ))

= ZiX lY myjm(dx
j(∇ ∂

∂xi

∂
∂xl )) + ZiX lY mylj(dx

j(∇ ∂
∂xm

∂
∂xi ))

= ZiX lyjm(dx
j(π∗(∇ ∂

∂xi

∂
∂xl )

h)) ∧ dxm(π∗Y h)

+ ZiY myljdx
l(π∗X

h) ∧ (dxjπ∗((∇ ∂
∂xm

∂
∂xi )

h))

= Θ(X l(∇Z
∂
∂xl )

h, Y h) + Θ(Xh, Y m(∇Z
∂

∂xm )h). (47)

Combining the equations (46) and (47) yields

Zh(Θ(Xh, Y h)) = Θ(Z(X l)( ∂
∂xl )

h +X l(∇Z
∂
∂xl )

h, Y h)

+ Θ(Xh, Z(Y m)( ∂
∂xm )h + Y m(∇Z

∂
∂xm )h)

= Θ((∇ZX)h, Y h) + Θ(Xh, (∇ZY )h). (48)
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3 Linear algebra

3.1 Orthogonal complex structures and oriented manifolds

Let V be a 2n dimensional real vector space with metric g. Let {e1, . . . , e2n} be an

orthonormal basis for V . We let µ be the volume form on V defined by µ = e1∧. . .∧e2n.

Using the metric g on V we can identify elements of V ∗ with V , that is ei = g(ei, ·).

The volume form on V is e1 ∧ . . . ∧ e2n. Let {ẽ1, . . . , ˜e2n} be another orthonormal

frame with volume form µ̃ = ẽ1 ∧ . . . ∧ ˜e2n. Let A ∈ O(n) so that Ai
jei = ẽj then the

two volume forms µ and µ̃ are related by

det(A)(e1 ∧ . . . ∧ e2n) = ẽ1 ∧ . . . ∧ ˜e2n. (49)

When det(A) = +1, the two bases define the same orientation and when det(A) = −1

the two bases define opposite orientation.

We now define an orthogonal almost complex structure.

Definition 3.1. Let V be a 2n dimensional real vector space with metric g. An

orthogonal complex structure on V is a linear map J : V → V such that J2 = −idV

and g(JX, JX) = g(X,X) for all X ∈ V .

Given an orthogonal complex structure J there is an orthonormal basis such that

J is given by

J : e2i−1 → e2i, e2i → −e2i−1

for all i = 1, 2, . . . , n. Then J induces a natural orientation on V given by

e1 ∧ Je1 ∧ . . . ∧ e2n−1 ∧ Je2n−1 (50)

We show this orientation is well defined on V .

Theorem 3.2. Given an orthogonal complex structure J there is an orthonormal
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basis {ei} such that J is given by J : e2i−1 7→ e2i, e2i 7→ −e2i−1. Then the orientation

on V given by

e1 ∧ Je1 ∧ . . . ∧ e2n−1 ∧ Je2n−1 (51)

is well defined, i.e. independent of the choice of {ei}.

Proof. Let {ẽi} be another such basis. We can write

ẽk = Ai
kei +Bi

kJei

Jẽk = Ai
kJei −Bi

kei, (52)

where Ai
k, B

i
k are real n× n matrices. Subsituting (52) into

ẽ1 ∧ Jẽ1 ∧ . . . ∧ ẽ2n−1 ∧ Jẽ2n−1 (53)

we get

(A1
ke1 + JB1

ke1) ∧ (A1
kJe1 −B1

ke1) ∧ . . .

∧ (A2n−1
k e2n−1 + JB2n−1

k e2n−1) ∧ (A2n−1
k Je2n−1 −B2n−1

k e2n−1). (54)

After rearranging we get

det

A −B

B A

 e1 ∧ Je1 ∧ . . . ∧ e2n−1 ∧ Je2n−1. (55)
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Noting that det

 I 0

−iI I

 = 1 and det

 I 0

iI I

 = 1 then

det

A −B

B A

 = det


 I 0

−iI I


A −B

B A


 I 0

iI I




= det

A− iB −B

0 A+ iB

 (56)

and

det

A− iB −B

0 A+ iB

 = | det(A− iB)|2 > 0. (57)

Thus since the determinant is positive, the orientation is well defined.

3.2 2-forms and skew-adjoint endomorphisms

We will show that 2-forms and skew adjoint endomorphisms can be identified

using the metric.

Theorem 3.3. Let α ∈ Λ2V ∗. Then it defines a skew adjoint endomorphism α♯ :

V → V given by X 7→ (X ⌟ α)♯, where ♯ is the musical isomorphism with respect to

the metric g.

Proof. Let {ei} be an orthonormal basis for V and {ej} be the dual orthonormal basis

for V ∗, let α = 1
2
αije

i ∧ ej. Note that ei ∧ ej can be identified as an endomorphism

via the metric g by

ek 7→ ((ei ∧ ej)(ek))♯ = (ek ⌟ (e
i ∧ ej))♯

= ⟨ei, ek⟩(ej)♯ − ⟨ej, ek⟩(ei)♯. (58)

We extend this map linearly and the map (· ⌟ (ei ∧ ej))♯ defines an endomorphism of
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V . Note that if we swap ei with ej then (ek ⌟ (ej ∧ ei))♯ = −(ek ⌟ (ei ∧ ej))♯. Thus for

α = 1
2
αije

i ∧ ej ∈ Λ2V ∗, α♯ is viewed as an endomorphism which is skew adjoint and

thus for X, Y ∈ V , α♯(X) = (X ⌟ α)♯ and

g(α♯(X), Y ) = α(X, Y ) (59)

as α is skew symmetric then

g(α♯(X), Y ) + g(X,α♯(Y )) = 0.

Next we define the
√
k-sphere in Λ2(V ∗).

Definition 3.4. Let Λ2(V ∗) the space of 2-forms, let ⟨·, ·⟩ be the metric on Λ2(V ∗)

induced by the metric g on V and let {αi} be an orthonormal basis for Λ2(V ∗). Then

for k > 0, S√
k(Λ

2(V ∗)) is defined to be the set

{α = aiα
i ∈ Λ2(V ∗) | ⟨α, α⟩ = k, i.e,

∑
i

a2i = k}

3.3 The almost complex structure on the 2-sphere

We define the almost complex structure on the 2-sphere S2. We choose the

standard orientation on R3 with basis {e1, e2, e3} where e1 × e2 = e3.

Theorem 3.5. Let p ∈ S2, Yp ∈ TpS
2, rp the outward radial vector of length one at

the point p, then Jp(Yp) = rp × Yp defines an almost complex structure on S2.

Proof. Since rp is an outward radial vector of length one, it is orthogonal to the tangent

plane TpS
2. Then rp×Yp ∈ TpS

2 and rp× (rp×Yp) ∈ TpS
2. Hence Jp : TpS

2 → TpS
2.
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Using the identity of the iterated cross product on R3 then

J2
p (Yp) = rp × (rp × Yp)

= ⟨rp, Yp⟩rp − ⟨rp, rp⟩Yp

= −⟨rp, rp⟩Yp since rp is orthogonal to Yp

= −Yp since ⟨rp, rp⟩ = 1. (60)

4 The vector bundle E = Λ2
−T

∗M

4.1 The almost complex structure on S√
2(Λ

2
−(T

∗M))

Let M be an oriented 4-dimensional manifold with Riemnnian metric g. Let

{e0, e1, e2, e3} be a local oriented orthonormal frame for TM and let {e0, e1, e2, e3} be

the dual local orthonormal frame on T ∗M . Hence on Λ2T ∗M , {ei ∧ ej | i < j} is a

local orthonormal frame with the induced metric.

Let E = Λ2
−T

∗M be the bundle of anti-self-dual (ASD) 2-forms. Recall that

ω ∈ Ω2(M) is ASD iff

∗ω = −ω (61)

where ∗ is the Hodge star operator.

A local orthogonal frame on E is

{ω1, ω2, ω3} = {e0 ∧ e1 − e2 ∧ e3, e0 ∧ e2 − e3 ∧ e1, e0 ∧ e3 − e1 ∧ e2}.

Note that |ωi|2 = 2. From (1) the local fibre coordinates on E will be (y1, y2, y3) with

respect to the frame {ωa}. Let Z = S√
2(Λ

2
−T

∗M) ⊂ E be the
√
2-sphere bundle.

Since {ωa} is an orthogonal frame, Z can be described locally as

Z = {f = 0 | f = 2(y21 + y22 + y33)− 2}
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then y21 + y22 + y33 = 1 on Z.

Theorem 4.1. Let p ∈ M , and ω ∈ Zp. Let J := ω♯ : TpM → TpM . Then J is a

complex structure on TpM .

Proof. Let ♯ be the musical isomorphism then we claim the complex structure J on

TpM is defined by

J = ω♯.

To show that J is a complex structure then we must show J2 = −id.

Lemma 4.2. The local frame {ω1, ω2, ω3}, when viewed as endomorphisms {(ω1)♯, (ω2)♯, (ω3)♯}

with ωk
ab the matrix representation of (ωk)♯ , satisfy the relations

ω1
aiω

2
ib = −ω3

ab ω2
biω

1
ib = ω3

ba ω1
aiω

1
ib = −δab

ω2
aiω

3
ib = −ω1

ab ω3
biω

2
ia = ω1

ba ω3
aiω

3
ib = −δab

ω3
aiω

1
ib = −ω2

ab ω1
biω

3
ia = ω2

ba ω2
aiω

2
ib = −δab. (62)

Proof. Viewing the local frame {ω1, ω2, ω3} as endomorphisms {(ω1)♯, (ω2)♯, (ω3)♯},

letting ωk
ab be the matrix representation of (ωk)♯, we work out ωk

iaω
l
aj. The local frame

{ω1, ω2, ω3} is induced from the local frame {e0, e1, e2, e3} on M , given by

ω1 = e0 ∧ e1 − e2 ∧ e3

ω2 = e0 ∧ e2 − e3 ∧ e1

ω3 = e0 ∧ e3 − e1 ∧ e2.
(63)
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Working out ωk
iaω

l
aj, we have

ω1
ibω

2
bj =

(
(δ0i δ

1
b − δ0b δ

1
i )− (δ2i δ

3
b − δ2b δ

3
i )

)(
(δ0b δ

2
j − δ0j δ

2
b )− (δ3b δ

1
j − δ3j δ

1
b )

)
= (−δ0i δ1b δ3j δ1b − δ0b δ

1
i δ

0
b δ

2
j + δ2i δ

3
b δ

3
b δ

1
j + δ2b δ

3
i δ

0
j δ

2
b )

= (−δ0i δ3j − δ1i δ
2
j + δ2i δ

1
j + δ3i δ

0
j )

= −ω3
ij. (64)

After cyclically permuting 1 → 2 → 3 → 1 in (64), we get

ω1
ibω

3
bj = −ω2

ij,

ω2
ibω

3
bj = −ω1

ij. (65)

We also have

ω3
ibω

3
bj =

(
(δ0i δ

3
b − δ0b δ

3
i )− (δ1i δ

2
b − δ1b δ

2
i )

)(
(δ0b δ

3
j − δ0j δ

3
b )− (δ1b δ

2
j − δ1j δ

2
b )

)
= −δ0i δ3b δ0j δ3b − δ0b δ

3
i δ

0
b δ

3
j − δ1i δ

2
b δ

1
j δ

2
b − δ1b δ

2
i δ

1
b δ

2
j

= −δij. (66)

Similarly ω2
ibω

2
bj = ω1

ibω
1
bj = −δij. Since the endomorphisms {ωk

ij} are skew in i, j, and

after swapping a with i and i with b we get

− ω3
ab = ω1

aiω
2
ib = ω2

biω
1
ia = ω3

ba. (67)

Similarly by cyclically permuting 1 → 2 → 3 → 1 in (67) we get

ω1
ab = ω3

aiω
2
ib, ω

2
ab = ω3

aiω
1
ib.

Let (ωa)♯ = (Ja)ij. Then in a local orthonormal frame Ja as an endomorphism is
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(Ja)ij := ωa
ij. For ω = yaω

a, J = ω♯ =
∑

a yaJa then

J2 = (
∑
a

yaJa)
2

= (
∑
a

y2aJ
2
a) +

∑
a̸=b

yaybJaJb)

= (
∑
a

y2aJ
2
a) +

∑
a≤b

yayb(JaJb + JbJa)

= (
∑
a

y2aJ
2
a) + 0 using the relations from Lemma 4.2

= −1. (68)

Note that using the local coordinates (1) for E, ω♯(X) = ω(X, ej)g
jiei. Since

{e0, e1, e2, e3} is an orthonormal frame gji = δji thus

ω♯(X) = ω(X, ei)ei.

Lemma 4.3. The fundamental vector field ξ ∈ Γ(V E) is orthogonal to TZ.

Proof. As Z = {f = 0} then TZ = (grad(f))⊥. Since grad(f) = 1
4
ya

∂
∂ya

= 1
4
ξ is in

the same direction as the radius vector to the sphere, ξ is orthogonal to the tangent

plane to Z.

From Lemma 4.3 the tangent space to Z at υ ∈ Ep is therefore

VυZ = {Yυ ∈ VυE | ⟨Yυ, ξ⟩V E = 0, υ ∈ Z, ξ ∈ VυE}. (69)

Given a connection ∇ on E, TE splits as TE = HE ⊕ V E. As Z ⊂ E we

can restrict π : E → M to Z, πZ : Z → M . We thus have the induced map

(πZ)∗ : TZ → TM with V Z := ker(πZ)∗. Thus we have the splitting TZ = HZ⊕V Z.

From (69) we have that V E = V Z⊕⟨ξ⟩ and TE|Z = HE|Z ⊕V E|Z , so HE|Z = HZ.

As we have a connection on E we get an induced connection on Z since Z ⊂ E, and
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HZ ∼= (π
∣∣
Z
)∗TM ∼= HE

∣∣
Z
.

We can define an almost complex structure J on TZ ⊂ TE as follows;

Definition 4.4. Let ω ∈ Zp. On HωZ, J is defined by J(Xh) := ((X ⌟ ω)♯)h, for

X ∈ TpM.

The next result shows that tautological 2-form from (38) can be used to represent

J(Xh).

Theorem 4.5. Let Θ be the restriction of the tautological 2-form on Λ2T ∗M to Z.

Let Xh be the horizontal lift of X ∈ Γ(TM). Then

J(Xh) = Θ(Xh, ehi )ei

where {e0, e1, e2, e3} is a local orthonormal frame.

Proof. For {e0, e1, e2, e3} a local orthonormal frame on TM , let {eh0 , eh1 , eh2 , eh3} be the

induced orthonormal frame on HZ. Evaluating J(Xh) at ω ∈ Ep we have

J(Xh) = (ω♯(X))hπ(ω)

= (ωπ(ω)(Xπ(ω), (ei)π(ω))(ei)
h
π(ω)

= ωπ(ω)(π∗X
h
ω , π∗(ei)

h
π(ω))(ei)

h
π(ω)

= Θω(X
h
π(ω), (ei)

h
π(ω))(ei)

h
π(ω). (70)

Theorem 4.6. Let ω ∈ Zp, Y
v ∈ VωZ, ξ ∈ Γ(V E) the fundamental vector field.

Then Jω(Y
v) = ξω × Y v defines a complex structure on VωZ.

Proof. This follows from Theorem 3.5 since ξω is orthogonal to Y v and |ξω|2 = 1 .

4.2 The flow ϕX
h

t and the cross product

Lemma 4.7. The vector bundle E is orientable.
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Proof. Let {ẽ0, ẽ1, ẽ2, ẽ3} be another oriented orthonormal frame, where ẽi = Pkiek

and P ∈ SO(4). Recall that an orthogonal basis of E is given by {ω1, ω2, ω3} where

ωi = e0 ∧ ei − ∗e0 ∧ ei = e0 ∧ ei − ej ∧ ek

and {i, j, k} is a cyclic permutation of {1, 2, 3}. Computing ω̃i

ω̃i = ẽ0 ∧ ẽi − ∗(ẽ0 ∧ ẽi)

= ẽ0 ∧ ẽi − ẽj ∧ ẽk

= Pl0el ∧ Pkiek − Pljel ∧ Pkmek

=
1

2
((Pl0Pki − Pk0Pli)− (PljPmk − PkjPlm))el ∧ ek. (71)

It follows that ω̃i = Qkiω
k for some orthogonal 3 × 3 matrix which is continously

connected to the identity since P is. Thus Q ∈ SO(3) and E is orientable.

Lemma 4.8. The flow ϕXh

t preserves the cross product in the vertical direction.

Proof. Let U,W ∈ VωE, let { ∂
∂ya

} be induced from a local orthonormal frame on E

for V E. Then (ϕXh

t )∗(
∂

∂ya
) is a basis for V

ϕXh
t (ω)

E since (ϕXh

t )∗ is an isomorphism.

As V E ∼= π∗E, it is orientable by Lemma 4.7. Denote ×ω the cross product with

respect the metric and orientation on VωE and ×
(ϕXh

t (ω))
the repective cross product

on V
ϕXh
t (ω)

E.

The metric on V E is denoted ⟨·, ·⟩V E and we remove the V E in this computation for

ease of notation.
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Let εdef be the standard permutation symbol. We compute:

(ϕXh

t )∗(U ×ω W ) = εdefU
dW e ∂

∂yf

= εdef⟨U,
∂

∂yd
⟩⟨W, ∂

∂ye
⟩(ϕXh

t )∗(
∂

∂yf
)

= εdef⟨(ϕXh

t )∗U, (ϕ
Xh

t )∗
∂

∂yd
⟩⟨(ϕXh

t )∗W, (ϕ
Xh

t )∗
∂

∂ye
⟩(ϕXh

t )∗
∂

∂yf

since (ϕXh

t )∗ is an isometry

= (ϕXh

t )∗U ×
ϕXh
t (ω)

(ϕXh

t )∗W. (72)

Lemma 4.9. The flow preserves the complex structure J in the vertical direction.

That is

(ϕXh

t )∗Jω(Y
v) = J

ϕXh
t (ω)

((ϕXh

t )∗Y
v). (73)

Proof. Let Z = S√
2(Λ

2
−(T

∗M)), the
√
2-sphere bundle, ξ ∈ Γ(V E) the fundamental

vector field and Y v ∈ Γ(V Z). Evaluating (ϕXh

t )∗(Jω((ϕ
Xh

t )∗Y
v)) becomes

(ϕXh

t )∗(Jω(Y
v)) = (ϕXh

t )∗(ξω ×υ Y
v)

= (ϕXh

t )∗ξω ×
ϕXh
t (υ)

(ϕXh

t )∗Y
v by Lemma 4.8

= (J
ϕXh
t (ω)

)((ϕXh

t )∗Y
v). (74)

Theorem 4.10. The Lie derivative (LXhJ)(Y v) is zero.

Proof. It follows from differentiating equation (73) in Lemma 4.9 with respect to t at

t = 0.

4.3 Quaternions and cross products

The division algebra H of quaternions consists of

q = q0 + q1i+ q2j + q3k, q0, q1, q2, q3 ∈ R
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where

i2 = −1, j2 = −1, k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (75)

The square of the norm of q is given by

⟨q, q⟩ = q20 + q21 + q22 + q23.

Then H is isomorphic as a real vector space to R4 via

q0 + q1i+ q2j + q3k 7→ (q0, q1, q2, q3). (76)

The space of imaginary quaternions is isomorphic to R3, where the imaginary

part of the quaternion q is given by

q⃗ = Im(q) = q1i+ q2j + q3k,

and the map is given by

q1i+ q2j + q3k 7→ (q1, q2, q3). (77)

For p = p0 + p1i + p2j + p3k ∈ H, we define left and right multiplication by q,

denoted Lq(p), Rq(p) to be

Lq(p) = qp, Rq(p) = pq, (78)
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which can be represented in matrix form as

Lq(p) =



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0





p0

p1

p2

p3



Rq(p) =



q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0





p0

p1

p2

p3


(79)

We will see that Im(Lq⃗(p⃗)) and Im(Rq⃗(p⃗)) relate to the cross product on R3. Since

p = p0 + p⃗ and q = q0 + q⃗, working out Rq(p) = pq we get

Rq(p) = p0q0 − ⟨p⃗, q⃗⟩+ p0q⃗ + q0p⃗+ p⃗× q⃗. (80)

Switching p and q yields Lq(p) = q0p0−⟨q⃗, p⃗⟩+p0q⃗+q0p⃗+ q⃗× p⃗. Thus we immediately

see that

Im(Lq⃗(p⃗)) = q⃗ × p⃗

and

Im(Rq⃗(p⃗)) = p⃗× q⃗.

Theorem 4.11. For q = q0 + q⃗, p = p0 + p⃗ ∈ H

[Rq, Rp] = 2Rp⃗×q⃗.

Proof. We have RqRpu = (up)q = u(pq), for any u ∈ H. Thus

RqRpu = u(p0q0 − ⟨p⃗, q⃗⟩+ q0p+ p0q + p⃗× q⃗). (81)
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Then computing [Rq, Rp]u yields

[Rq, Rp]u = RqRpu−RpRqu

= 2u(p⃗× q⃗)

= 2Rp⃗×q⃗u (82)

thus [Rq, Rp] = 2Rp⃗×q⃗.

4.4 ASD 2-forms and quaternions

From Lemma 4.2, ω♯
p defines a complex structure on TpM and we get the following

consequence.

Lemma 4.12. The local frame {ω1, ω2, ω3} satisfies the quaternionic relations in (75)

as endomorphisms.

Proof. Each (ωi)♯ defines a complex structure by Lemma 4.2. We drop the ♯ for conve-

nience. Right and left multiplication by quaternions can be viewed as endomorphisms.

Thus the map that sends {ω1, ω2, ω3} to {−i,−j,−k} is an algebra isomorphism.

Theorem 4.13. Identifying the local frame {ω1, ω2, ω3} with endomorphisms, then

[ω2, ω1] = 2(ω2 × ω1) = 2ω3,

[ω3, ω2] = 2(ω3 × ω2) = 2ω1,

[ω1, ω3] = 2(ω1 × ω3) = 2ω2.
(83)

Proof. This is an immediate consequence of Lemma 4.12 and Theorem 4.11.

For η ∈ Ep = (π∗E)η an ASD 2-form, η can be viewed as an endomorphism by
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η♯. Let X, Y, Z,W ∈ Γ(TM). Recall the curvature R(X, Y ) satisfies

R(X, Y )(Z,W ) = ⟨R(X, Y )Z,W ⟩ = −⟨R(X, Y )W,Z⟩

Theorem 4.14. For η ∈ Ep = (π∗E)η viewed as an endomorphism and R(X, Y ) the

curvature

(η ×R(X, Y )η)(V, T )) = −R(X, Y, ηV, ηT ) +R(X, Y, V, T ). (84)

Proof. Noting the curvature is a derivation and acts on 2-forms we get (R(X, Y )η)(V ) =

R(X, Y )(ηV )− η(R(X, Y )V ).

Using this, the skew-adjointness of η and η2 = −id, the commutator [η,R(X, Y )η](V, T )

becomes

[η,R(X, Y )η](V, T ) = ⟨η((R(X, Y )η)(V )), T ⟩ − ⟨(R(X, Y )η)(ηV ), T ⟩

= −⟨((R(X, Y )η)(V )), ηT ⟩ − ⟨(R(X, Y )η)(ηV ), T ⟩

= −⟨R(X, Y )(ηV )− η(R(X, Y )V ), ηT ⟩

− ⟨R(X, Y )(η2V )− ηR(X, Y )(ηV ), T ⟩

= (−R(X, Y, ηV, ηT ) +R(X, Y, V, T )

+R(X, Y, V, T )−R(X, Y, ηV, ηT ))

= 2R(X, Y, V, T )− 2R(X, Y ηV, ηT ). (85)

The commutator can be identified with twice the cross product by Theorem 4.13, thus

(η ×R(X, Y )η)(V, T )) = −R(X, Y, ηV, ηT ) +R(X, Y, V, T ). (86)
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5 Calculation of the Nijenhuis tensor

First we define the Nijenhuis tensor.

Definition 5.1. Let U, V ∈ Γ(TM), let J be an almost complex structure. The

Nijenhuis tensor is defined as

N(U, V ) = [U, V ] + J [JU, V ] + J [U, JV ]− [JU, JV ].

Definition 5.2. We say an almost complex structure is integrable if N(U, V ) = 0,

otherwise it is not integrable.

The Lie derivative of J along U applied to V and the the Lie derivative of J

along JU applied to V is given by

(LUJ)(V ) = LU(JV )− J(LUV )

= [U, JV ]− J [U, V ]

(LJUJ)(V ) = LJU(JV )− J(LJUV )

= [JU, JV ]− J [JU, V ]. (87)

Hence the Nijenhuis tensor can also be written as

N(U, V ) = J((LUJ)(V ))− (LJUJ)(V ).

5.1 Horizontal part of the Nijenhuis tensor of a horizontal

and vertical vector

Let Xh ∈ Γ(HE) be a horizontal lift of X ∈ Γ(TM). For the frame {e0, e1, e2, e3}

on M , ehi is the horizontal lift of ei. Let Y v ∈ Γ(V Z), η ∈ Γ(E), and let ξ ∈

Γ(V E) be the fundamental vector field. Denote LXhY v the Lie derivative of Y v
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along Xh. The terms of the Nijenhuis tensor for one horizontal lift and one vertical

vector field are [Xh, Y v], J [JXh, Y v], J [Xh, JY v], [JXh, JY v]. We will look at the

terms individually and work them out using the tautological 2-form and Theorem

4.5. The terms [JXh, JY v], J [JXh, Y v] are

[JXh, JY v]

= [Θ(Xh, ehi )e
h
i , JY

v]

= −(JY v)(Θ(Xh, ehi ))e
h
i +Θ(Xh, ehi )[e

h
i , JY

v], (88)

J [JXh, Y v]

= J [Θ(Xh, ehi )e
h
i , Y

v]

= J(−Y v(Θ(Xh, ehi ))e
h
i +Θ(Xh, ehi )[e

h
i , Y

v])

= −Y v(Θ(Xh, ehi ))Θ(ehi , e
h
l )e

h
l −Θ(Xh, ehi )J [e

h
i , Y

v]. (89)

Since π∗[X
h, Y v] = [π∗X

h, π∗Y
v] = 0 then [Xh, Y v], [ehi , Y

v] ∈ Γ(V E) are vertical

vector fields. Since JY v ∈ Γ(V E) is a vertical vector field then so are [ehi , JY
v], [Xh, JY v]

and consequently also J [ehi , JY
v], J [ehi , Y

v], J [Xh, JY v].

Theorem 5.3. The horizontal component of N(Xh, Y v) vanishes:

−Y v(Θ(Xh, ehi )Θ(ehi , e
h
l )e

h
l + (JY v)(Θ(Xh, ehl ))e

h
l = 0 (90)

Proof. We let Y v = va
∂

∂ya
∈ Γ(V E) and let η = ybω

b ∈ Γ(E).

Calculating JY v via the cross product from Theorem 4.6 and using the identification

of V E with π∗E in Corollary 2.4, recalling the local frame of E is {ω1, ω2, ω3} then

computing JY v we have

39



JY v = (ξ × Y v)

= (y2v3 − y3v2)
∂

∂y1
+ (y3v1 − y1v3)

∂

∂y2
+ (y1v2 − y2v1)

∂

∂y3
. (91)

We will expand Y v(Θ(Xh, ehi )) and evaluate it at η. Expanding Y v(Θ(Xh, ehi )) and

using (38) yields

Y v
η (Θ(Xh, ehi ))

= va
∂

∂ya

∣∣∣
η
(y1ω

1 + y2ω
2 + y3ω

3)(X, ei)

= vaω
a
π(η)(X, ei). (92)

Hence Y v
η (Θ(Xh, ehi ))Θη(e

h
i , e

h
l ) is equal to

Y v
η (Θ(Xh, ehi )Θη(e

h
i , e

h
l ) = vaω

a
π(η)(X, ei)ηπ(η)(ei, el)

= vaω
a
π(η)(X, ei)ybω

b
π(η)(ei, el). (93)

Similarly expanding (JηY
v)(Θ(Xh, ehl ))e

h
l using (38) and equation (91) and the method

from equation (92) we get

(JηY
v)(Θ(Xh, ehl )) = (y2v3 − y3v2)ω

1
π(η)(X, el)

+ (y3v1 − y1v3)ω
2
π(η)(X, el) + (y1v2 − y2v1)ω

3
π(η)(X, el). (94)

By (69), the condition on the vertical tangent space of Z ⊂ E is that ⟨Y v, ξ⟩V E = 0

for all Y v ∈ Γ(V Z). Expanding ⟨Y v, ξ⟩V E = 0 using the local frame { ∂
∂yi

} for V E we

get

⟨Y v, ξη⟩V E = ⟨va
∂

∂ya

∣∣∣∣
η

, yb
∂

∂yb

∣∣∣∣
η

⟩V E =
3∑

a=1

yava = 0 (95)

We now substitute the computations from (92),(93),(94) into

(JY v)(Θ(Xh, ehl )e
h
l − Y v(Θ(Xh, ehi ))Θ(ehi , e

h
l ))e

h
l
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and dropping the π(η) from the above expression and evaluating the above expression

at η, we get

Y v
η (Θ(Xh, ehi ))Θη(e

h
i , e

h
l )− (JηY

v)(Θ(Xh, ehl ))

= v1y1ω
1(X, ei)ω

1(ei, el)

+ v1y2ω
1(X, ei)ω

2(ei, el) + v1y3ω
1(X, ei)ω

3(ei, el)

+ v2y1ω
2(X, ei)ω

1(ei, el) + v2y2ω
2(X, ei)ω

2(ei, el) + v2y3ω
2(X, ei)ω

3(ei, el)

+ v3y1ω
3(X, ei)ω

1(ei, el) + v3y2ω
3(X, ei)ω

2(ei, el) + v3y3ω
3(X, ei)ω

3(ei, el)

− [(y2v3 − y3v2)ω
1(X, el) + (y3v1 − y1v3)ω

2(X, el) + (y1v2 − y2v1)ω
3(X, el)].

(96)

Given that we have a metric g on Z then ω(X, Y ) = g(JX, Y ) for X, Y ∈ TpM since

ω is a complex structure. We work out ω(X, ei)ω(ei, el),

ω(X, ei)ω(ei, el) = g(JX, ei)g(Jei, el)

= −g(JX, ei)g(ei, Jel)

= −g(JX, Jel)

= −g(X, el). (97)

Substituting the identity ω(X, ei)ω(ei, el) = −g(X, el) from (97) into equation (96)
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and simplifying, we get

Y v
η (Θ(Xh, ehi ))Θη(e

h
i , e

h
l )− (JηY

v)(Θ(Xh, ehl )

= −v1y1g(X, el) + v1y2ω
1(X, ei)ω

2(ei, el) + v1y3ω
1(X, ei)ω

3(ei, el)

+ v2y1ω
2(X, ei)ω

1(ei, el)− v2y2g(X, el) + v2y3ω
2(X, ei)ω

3(ei, el)

+ v3y1ω
3(X, ei)ω

1(ei, el) + v3y2ω
3(X, ei)ω

2(ei, el)− v3y3g(X, el)

− [(y2v3 − y3v2)ω
1(X, el) + (y3v1 − y1v3)ω

2(X, el) + (y1v2 − y2v1)ω
3(X, el)].

(98)

From the first, fifth, and ninth terms in (98) we see that

− v1y1g(X, el)− v2y2g(X, el)− v3y3g(X, el)

= −(
∑
a=1

vaya)g(X, el)

= 0 from (95). (99)

We therefore have

Y v
η (Θ(Xh, ehi ))Θη(e

h
i , e

h
l )− (JηY

v)(Θ(Xh, ehl ))

= v1y2ω
1(X, ei)ω

2(ei, el) + v1y3ω
1(X, ei)ω

3(ei, el)

+ v2y1ω
2(X, ei)ω

1(ei, el) + v2y3ω
2(X, ei)ω

3(ei, el)

+ v3y1ω
3(X, ei)ω

1(ei, el) + v3y2ω
3(X, ei)ω

2(ei, el)

− [(y2v3 − y3v2)ω
1 + (y3v1 − y1v3)ω

2 + (y1v2 − y2v1)ω
3]. (100)

Note that by identifying the local frame {ω1, ω2, ω3} with the quaternions in
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Theorem 4.13, we have the quaternionic relations

ω1(X, ei)ω
2(ei, el) = −ω3(X, el),

− ω3(X, ei)ω
1(ei, el) = ω2(X, el),

− ω2(X, ei)ω
3(ei, el) = ω1(X, el), (101)

and substituting the relations (101) into (100) and simplifying yields

Y v
η (Θ(Xh, ehi ))Θη(e

h
i , e

h
l )− (JηY

v)(Θ(Xh, ehl ))

= −v1y2ω3(X, el) + v1y3ω
2(X, el)

+ v2y1ω
3(X, el)− v2y3ω

1(X, el)

− v3y1ω
2(X, el) + v3y2ω

1(X, el)

− [(y2v3 − y3v2)ω
1(X, el) + (y3v1 − y1v3)ω

2(X, el) + (y1v2 − y2v1)ω
3(X, el)]

= 0.

(102)
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5.2 Vertical part of the Nijenhuis tensor of a horizontal and

vertical vector

Let Xh be a horizontal lift and Y v be a vertical vector field. Using (88),(89),(87)

and Theorem 5.3 we can write

N(Xh, Y v) = [Xh, Y v] + J [Xh, JY v]− [JXh, JY v] + J [Xh, JY v]

N(Xh, Y v) = [Xh, Y v] + J [Xh, JY v]

− (−(JY v)(Θ(Xh, ehl ))e
h
l +Θ(Xh, ehi )[e

h
i , JY

v])

+ (−Y v(Θ(Xh, ehi ))Θ(ehi , e
h
l )e

h
l −Θ(Xh, ehi )J [e

h
i , Y

v])

= J((LXhJ)(Y v))−Θ(Xh, ehi )(Lehi
J)(Y v)

− Y v(Θ(Xh, ehi ))Θ(ehi , e
h
l )e

h
l + (JY v)(Θ(Xh, ehl ))e

h
l . (103)

As

−Y v(Θ(Xh, ehi ))Θ(ehi , e
h
l )e

h
l + (JY v)(Θ(Xh, ehl ))e

h
l = 0 (104)

by (87) and using that

0 = LXh(−1) = LXhJ2 = (LXhJ)J + JLXhJ (105)

we get

N(Xh, Y v) =(J((LXhJ)Y v)−Θ(Xh, ehi )((Lehi
J)Y v)

= −(LXhJ)(JY v)−Θ(Xh, ehi )((Lehi
J)Y v). (106)

Note that as the horizontal component of N(Xh, Y v) is zero then equation (103)

is purely vertical.

To show that N(Xh, Y v) vanishes it suffices to show that (LXhJ)(JY v) = 0 and

(Lehi
J)(Y v) = 0.

We have shown previously in Theorem 4.10 that for any vertical vector field Sv ∈
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Γ(V Z)

(LXhJ)(Sv) = 0.

Thus (LXhJ)(JY v) = 0 and (Lehi
J)(Y v) = 0. Thus N(Xh, Y v) = 0.

5.3 Nijenhuis tensor of two horizontal vectors

Let X, Y, V, T be vector fields on our oriented 4-manifold M and Xh, Y h, V h, T h

the respective horizontal lifts to E = Λ2
−T

∗M . Let {e0, e1, e2, e3} be a local orthonor-

mal frame on M . By definition the Nijenhuis tensor of two horizontal vector fields

is

N(Xh, Y h)

= [Xh, Y h] + J [JXh, Y h] + J [Xh, JY h]− [JXh, JY h]. (107)

Using our identity for J(Xh) in Theorem 4.5, this becomes

N(Xh, Y h) = [Xh, Y h]

+ J [Θ(Xh, ehk)e
h
k, Y

h] + J [Xh,Θ(Y h, ehk)e
h
k]

− [Θ(Xh, ehk)e
h
k,Θ(Y h, ehl )e

h
l ]. (108)

Next, expanding the Lie brackets yields

N(Xh, Y h) = [Xh, Y h]

+ J(Θ(Xh, ehk)[e
h
k, Y

h]− Y h(Θ(Xh, ehk))e
h
k)

+ J(Θ(Y h, ehk)[X
h, ehk] +Xh(Θ(Y h, ehk))e

h
k)

−Θ(Xh, ehk)Θ(Y h, ehl )[e
h
k, e

h
l ]

−Θ(Xh, ehk)(e
h
kΘ(Y h, ehl ))e

h
l

+Θ(Y h, ehl )(e
h
l Θ(Xh, ehk))e

h
k. (109)
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Theorem 5.4. Let {ω1, ω2, ω3} = {e0∧e1−e2∧e3, e0∧e2−e3∧e1, e0∧e3−e1∧e2} be

the local frame for E. Let η =
∑

i yiω
i where the yi are smooth. For Xh, Y h ∈ Γ(HE)

horizontal lifts of X, Y ∈ Γ(TM) respectively, η ∈ Ep then [Xh, Y h]η − [X, Y ]hη =

−R(X, Y )η.

Proof. As [Xh, Y h]η − [X, Y ]hη ∈ VηE from Theorem 2.18 using the identification of

V E ∼= π∗E from Theorem 2.3

[Xh, Y h]η − [X, Y ]hη = −yiR(Xp, Yp)
i
jω

j = −R(Xp, Yp)ηπ(η).

Evaluating N(Xh, Y h) at η, using Theorem 4.5 and using the identity [Xh, Y h]hη −

[X, Y ]hη = −Rp(X, Y )η from Theorem 5.4 in (109) and dropping the π(η) from ηπ(η)

for ease of notation then

N(Xh, Y h) = [X, Y ]h −R(X, Y )η

+Θ(Xh, ehk)Θ([ek, Y ]h, ehl )e
h
l − Y h(Θ(Xh, ehk))Θ(ehk, e

h
l )e

h
l

+Θ(Y h, ehk)Θ(([X, ek]
h, ehl )e

h
l +Xh(Θ(Y h, ehk))Θ(ehk, e

h
l )e

h
l

−Θ(Xh, ehk)Θ(Y h, ehl )[ek, el]
h

−Θ(Xh, ehk)(e
h
kΘ(Y h, ehl ))e

h
l

+Θ(Y h, ehl )(e
h
l Θ(Xh, ehk))e

h
k

+Θ(Xh, ehk)JR(ek, Y )η

−Θ(Xh, ehk)Θ(Y h, ehl )R(ek, el)η

+Θ(ehk, Y
h)JR(ek, X)η.

(110)

Using the tautological 2-form from (38), we compute ehm(Θ(ehk, e
h
l )) and get

ehm(Θ(ehk, e
h
l )) = Θ((∇emek)

h, ehl ) + Θ(ehk, (∇emel)
h). (111)
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Recall the connection on E is induced from the Levi-Civita connection ∇ on TM . We

substitute the identity [X, Y ] = ∇XY −∇YX and (111) into equation (110) to get

N(Xh, Y h) = [X, Y ]h −R(X, Y )η

+Θ(Xh, ehk)Θ((∇ekY −∇Y ek)
h, ehl )e

h
l − Y h(Θ(Xh, ehk))Θ(ehk, e

h
l )e

h
l

+Θ(Y h, ehk)Θ((∇Xek −∇ekX)h, ehl )e
h
l +Xh(Θ(Y h, ehk))Θ(ehk, e

h
l )e

h
l

−Θ(Xh, ehk)Θ(Y h, ehl )(∇ekel −∇elek)
h

−Θ(Xh, ehk)Θ((∇ekY )h, ehl )e
h
l −Θ(Xh, ehk)Θ(Y h, (∇ekel)

h)ehl

+Θ(Y h, ehl )Θ((∇elX)h, ehk)e
h
k +Θ(Y h, ehl )Θ(Xh, (∇elek)

h)ehk

+Θ(Xh, ehk)JR(ek, Y )η

−Θ(Xh, ehk)Θ(Y h, ehl )R(ek, el)η

+Θ(ehk, Y
h)JR(ek, X)η.

(112)

Using that the horizontal lift is linear then

(∇ekel −∇elek)
h = (∇ekel)

h − (∇elek)
h,

(∇ekY −∇Y ek)
h = (∇ekY )h − (∇Y ek)

h,

(∇Xek −∇ekX)h = (∇Xek)
h − (∇ekX)h. (113)
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Substituting (113) into equation (112) becomes

N(Xh, Y h) = [X, Y ]h −R(X, Y )η

+Θ(Xh, ehk)Θ((−∇Y ek)
h, ehl )e

h
l − Y h(Θ(Xh, ehk))Θ(ehk, e

h
l )e

h
l

+Θ(Y h, ehk)Θ((∇Xek)
h, ehl )e

h
l +Xh(Θ(Y h, ehk))Θ(ehk, e

h
l )e

h
l

−Θ(Xh, ehk)Θ(Y h, ehl )((∇ekel)
h − (∇elek)

h)

−Θ(Xh, ehk)Θ(Y h, (∇ekel)
h)ehl

+Θ(Y h, ehl )Θ(Xh, (∇elek)
h)ehl

+Θ(Xh, ehk)JR(ek, Y )η

−Θ(Xh, ehk)Θ(Y h, ehl )R(ek, el)η

+Θ(ehk, Y
h)JR(ek, X)η.

(114)

Rearranging some terms in equation (114) yields

N(Xh, Y h) = [X, Y ]h

+Θ(Xh, ehk)Θ((−∇Y ek)
h, ehl )e

h
l − Y h(Θ(Xh, ehk))Θ(ehk, e

h
l )e

h
l

+Θ(Y h, ehk)Θ((∇Xek)
h, ehl )e

h
l +Xh(Θ(Y h, ehk))Θ(ehk, e

h
l )e

h
l

−Θ(Xh, ehk)Θ(Y h, ehl )(∇ekel)
h −Θ(Xh, ehk)Θ(Y h, (∇ekel)

h)ehl

+Θ(Y h, ehl )Θ(Xh, (∇elek)
h)ehl +Θ(Xh, ehk)Θ(Y h, ehl )(∇elek)

h

+R(X, Y )η

+Θ(Xh, ehk)JR(ek, Y )η

−Θ(Xh, ehk)Θ(Y h, ehl )R(ek, el)η

+Θ(ehk, Y
h)JR(ek, X)η.

(115)

We note that from Theorem 4.5 that J2(Xh) = −Xh and−Xh = Θ(Xh, ehi )Θ(ehi , e
h
j )e

h
j .

Expanding Xh in terms of the frame {ehi } using the metric g on M then, Xh =
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gπ(η)(π∗X
h, π∗e

h
j )e

h
j = gπ(η)(X, ej)e

h
j . And J

2(Xh) = −Xh becomes

−gπ(η)(X, ej) = Θ(xh, ehi )Θ(ehi , e
h
j ). (116)

Theorem 5.5. The expression N(Xh, Y h) at η of equation (115) can be reduced to

N(Xh, Y h)η = Θη(X
h, ehk)J(R(ek, Y )η)

−Θη(X
h, ehk)Θη(Y

h, ehl )R(ek, el)η

+Θη(e
h
k, Y

h)J(R(ek, X)η)

+R(X, Y )η. (117)

Proof. The proof will follow from two lemmas.

Lemma 5.6. The fourth term and fifth term in equation (115) vanish:

0 = −Θ(Xh, ehk)Θ(Y h, ehl )(∇ekel)
h −Θ(Xh, ehk)Θ(Y h, (∇ekel)

h)ehl (118)

0 = Θ(Y h, ehl )Θ(Xh, (∇elek)
h)ehl +Θ(Xh, ehk)Θ(Y h, ehl )(∇elek)

h. (119)

Proof. Looking at the term

−Θ(Xh, ehk)Θ(Y h, ehl )(∇ekel)
h −Θ(Xh, ehk)(Θ(Y h, (∇ekel)

h))ehl ,
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and substituting g(∇ekel, em)e
h
m = (∇ekel)

h yields

−Θ(Xh, ehk)Θ(Y h, ehl )(∇ekel)
h −Θ(Xh, ehk)Θ(Y h, (∇ekel)

h)ehl

= −Θ(Xh, ehk)Θ(Y h, ehl )g(∇ekel, em)e
h
m

−Θ(Xh, ehk)Θ(Y h, g(∇ekel, em)e
h
m)e

h
l

= −Θ(Xh, ehk)Θ(Y h, ehl )g(∇ekel, em)e
h
m

−Θ(Xh, ehk)Θ(Y h, ehl )g(∇ekem, el)e
h
m Relabelling l → m,m→ l

= −ek(g(el, em))Θ(Xh, ehk)Θ(Y h, ehl )

= 0. (120)

Similarly

Θ(Y h, ehl )Θ(Xh, (∇elek)
h)ehl +Θ(Xh, ehk)Θ(Y h, ehl )(∇elek)

h

= Θ(Xh, ehk)Θ(Y h, ehl )el(g(ek, em))

= 0. (121)

We have shown that the fourth and fifth term in equation (115) vanish.

Lemma 5.7. The first three terms in equation (115)vanish:

0 =[X, Y ]h

+Θ(Xh, ehk)Θ((−∇Y ek)
h, ehl )e

h
l − Y h(Θ(Xh, ehk))Θ(ehk, e

h
l )e

h
l

+Θ(Y h, ehk)Θ((∇Xek)
h, ehl )e

h
l +Xh(Θ(Y h, ehk))Θ(ehk, e

h
l )e

h
l (122)

Proof. Looking at second term in equation (115), Θ(Xh, ehk)Θ(−∇Y ek)
h, ehl )e

h
l , using
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Theorem 2.20 and (116) in Θ(Xh, ehk)Θ((−∇Y ek)
h, ehl )e

h
l , we have

Θ(Xh, ehk)Θ((−∇Y ek)
h, ehl )e

h
l

= −Θ(Xh, ehk)(Y
h(Θ(ehk, e

h
l ))e

h
l −Θ(ehk, (∇Y el)

h)ehl ) by Theorem (2.20)

= −g(X,∇Y el)e
h
l −Θ(Xh, ehk)(Y

hΘ(ehk, e
h
l ))e

h
l by equation (116)

= −Y (g(X, el))e
h
l + g(∇YX, el)e

h
l −Θ(Xh, ehk)(Y

hΘ(ehk, e
h
l ))e

h
l

= −Y (g(X, el))e
h
l + (∇YX)h − Y h(Θ(Xh, ehk)Θ(ehk, e

h
l )e

h
l )

+ Y h(Θ(Xh, ehk))Θ(ehk, e
h
l )e

h
l by equation (116) and Y h(f ◦ π) = (Y f) ◦ π

= (∇YX)h + (Y h(Θ(Xh, ehk)))Θ(ehk, e
h
l )e

h
l .

(123)

Using Theorem 2.20 and (116) in Θη(Y
h, ehk)Θη((∇Xek)

h, ehl )e
h
l , interchanging X and

Y in (123) and changing the sign we get

Θ(Y h, ehk)Θ((∇Xek)
h, ehl )e

h
l

= −(∇XY )h − (XhΘ(Y h, ehk))Θ(ehk, e
h
l )e

h
l . (124)

From equations (123) and (124) we have

Θ(Xh, ehk)Θ((−∇Y ek)
h, ehl )e

h
l = (∇YX)h + (Y h(Θ(Xh, ehk))Θ(ehk, e

h
l )e

h
l

Θ(Y h, ehk)Θ((∇Xek)
h, ehl )e

h
l = −(∇XY )h − (Xh(Θ(Y h, ehk))Θ(ehk, e

h
l )e

h
l . (125)
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Substituting (125) and substituting [X, Y ]h = (∇XY )h − (∇YX)h we obtain

[X, Y ]h

+Θ(Xh, ehk)Θ((−∇Y ek)
h, ehl )e

h
l − Y h(Θ(Xh, ehk))Θ(ehk, e

h
l )e

h
l

+Θ(Y h, ehk)Θ((∇Xek)
h, ehl )e

h
l +Xh(Θ(Y h, ehk))Θ(ehk, e

h
l )e

h
l

= (∇XY )h − (∇YX)h

+ (∇YX)h + Y h(Θ(Xh, ehk))Θ(ehk, e
h
l )e

h
l − Y h(Θ(Xh, ehk))Θ(ehk, e

h
l )e

h
l

− (∇XY )h − (XhΘ(Y h, ehk))Θ(ehk, e
h
l )e

h
l +Xh(Θ(Y h, ehk))Θ(ehk, e

h
l )e

h
l )

= 0 (126)

From Lemma 5.7 and Lemma 5.6 our expression of N(Xh, Y h)η in equation (115)

reduces to

N(Xh, Y h)η = Θη(X
h, ehk)J(R(ek, Y )η)

−Θη(X
h, ehk)Θη(Y

h, ehl )R(ek, el)η

+Θη(e
h
k, Y

h)J(R(ek, X)η)

+R(X, Y )η. (127)

5.4 N(Xh, Y h) and Weyl curvature

Let X, Y, V, T be vector fields on M and η ∈ E. From Theorem 4.5 we have that

N(Xh, Y h)η = Θη(X
h, ehk)J(R(ek, Y )η)

−Θη(X
h, ehk)Θη(Y

h, ehl )R(ek, el)η

+Θη(e
h
k, Y

h)J(R(ek, X)η)

+R(X, Y )η.
(128)
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Since the Θ(U, V ) are functions we can move them inside the curvature operator and

using Theorem 4.5

N(Xh, Y h)η = J(R(Θη(X
h, ehk)ek, Y )η)

−R(Θη(X
h, ehk)ek,Θη(Y

h, ehl )el)η

+ J(R(Θη(e
h
k, Y

h)ek, X)η)

+R(X, Y )η
(129)

Using that Θη(X
h, ehk)ek = η(X, ek)ek and viewing η as an endomorphism, thus

η(X, ek)ek = g(η(X), ek)ek = ηX. We then get

N(Xh, Y h)η = J(R(ηX, Y )η)

−R(ηX, ηY )η

− J(R(ηY,X)η)

+R(X, Y )η. (130)

Note that the terms such as R(ηX, Y )η in (130) are identified as vertical tangent

vectors of E via V E ∼= π∗E. The J is acting on vertical vectors in (129). Recall

that J(Y v) = Y v × ξ, under the identification of VηE ∼= Eπ(η) in Corollary 2.4. Hence

J(Y v) = l(λ) × l(η) = l(η × λ) where λ = viω
i, η = yiω

i ∈ Γ(E) then J(λ) = η × λ.

Thus,

J(R(X, Y )ηπ(η)) =
1

2
[ηπ(η), R(X, Y )ηπ(η)] = ηπ(η) ×R(X, Y )ηπ(η) (131)

when viewing ηπ(η) as an endomorphism. Note that R(X, Y ) is an operator, a deriva-

tion, and η is an operator as an endomorphism. Thus the commutator is a Lie bracket

of operators that act on a vector field. Substituting (131) into (129), then (129) be-
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comes

N(Xh, Y h)η(V, T ) = R(X, Y, V, η(T ))

+R(X, Y, η(V ), T )

+R(X, η(Y ), V, T )

+R(η(X), Y, V, T )

−R(η(X), η(Y ), η(V ), T )

−R(X, η(Y ), η(V ), η(T ))

−R(η(X), Y, η(V ), η(T ))

−R(η(X), η(Y ), V, η(T )).
(132)

Since the Nijenhuis tensor reduced to only terms involving curvature, we can

decompose the Nijenhuis tensor further, by using curvature decomposition and the

Kulkarni-Nomizu product.

Definition 5.8. For X, Y, V, T ∈ Γ(TM), g the metric on M , then the Kulkarni-

Nomizu product of g with a symmetric 2-tensor S is defined as

(g⃝∧ S)(X, Y, V, T ) =

⟨X,T ⟩S(Y, V ) + ⟨Y, V ⟩S(X,T )− ⟨X, V ⟩S(Y, T )− ⟨Y, T ⟩S(X, V ). (133)

Let K be the space of curvature tensors, g the metric on M , S2(Λ2T ∗M) the

symmetric 2-tensors andW the Weyl curvature. The space of curvature tensors splits

as

Γ(K) = Γ(C∞(M))⊕ Γ(S2(Λ2(T ∗M)))⊕ Γ(W ).

The curvature decomposition is given by

R = CnRg ⃝∧ g ⊕ C̃ng⃝∧ Ric◦ ⊕W = (g⃝∧ S)⊕W.
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The constants Cn, C̃n depend on the dimension of M , Rg is the scalar curvature and

S is the Schouten tensor. The Schouten tensor is a linear combination of the scalar

and trace free Ricci curvature tensors. See [4] for more details and proofs.

The Nijenhuis tensor (132) is linear in R(X, Y ). Applying this decomposition to

the right hand side of (132) we get

⟨X, η(T )⟩S(Y, V ) + ⟨Y, V ⟩S(X, η(T ))− ⟨X, V ⟩S(Y, η(T ))− ⟨Y, η(T )⟩S(X, V )

+ ⟨X,T ⟩S(Y, η(V )) + ⟨Y, η(V )⟩S(X,T )− ⟨X, η(V )⟩S(Y, T )− ⟨Y, T ⟩S(X, η(V ))

+ ⟨X,T ⟩S(η(Y ), V ) + ⟨η(Y ), V ⟩S(X,T )− ⟨X, V ⟩S(η(Y ), T )− ⟨η(Y ), T ⟩S(X, V )

+ ⟨η(X), T ⟩S(Y, V ) + ⟨Y, V ⟩S(η(X), T )− ⟨η(X), V ⟩S(Y, T )− ⟨Y, T ⟩S(η(X), V )

−
[
⟨η(X), T ⟩S(η(Y ), η(V ))

+ ⟨η(Y ), η(V )⟩S(η(X), T )− ⟨η(X), η(V )⟩S(η(Y ), T )− ⟨η(Y ), T ⟩S(η(X), η(V ))

]
−

[
⟨X, η(T )⟩S(η(Y ), η(V ))

+ ⟨η(Y ), η(V )⟩S(X, η(T ))− ⟨X, η(V )⟩S(η(Y ), η(T ))− ⟨η(Y ), η(T )⟩S(X, η(V ))

]
−

[
⟨η(X), η(T )⟩S(Y, η(V ))

+ ⟨Y, η(V )⟩S(η(X), η(T ))− ⟨η(X), η(V )⟩S(Y, η(T ))− ⟨Y, η(T )⟩S(η(X), η(V ))

]
−

[
⟨η(X), η(T )⟩S(η(Y ), V )

+ ⟨η(Y ), V ⟩S(η(X), η(T ))− ⟨η(X), V ⟩S(η(Y ), η(T ))− ⟨η(Y ), η(T )⟩S(η(X), V )

]
.

(134)

Using the identities coming from the orthogonal complex structure J = (X ⌟ η)♯

where η is viewed as an endomorphism, we have ⟨X, ηY ⟩ = −⟨ηX, Y ⟩ and ⟨ηX, ηY ⟩ =

⟨X, Y ⟩. Then all terms cancel out in (134). This implies that the (g⃝∧ S)(X, Y, V, T )

component of N(Xh, Y h) vanishes and thus N(Xh, Y h)(V, T ) only depends on the

Weyl curvature component.
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Thus, from (132), the Nijenhuis tensor on horizontal vector fields can thus be rewritten

as

N(Xh, Y h)η(V, T ) = W (X, Y, V, η(T ))

+W (X, Y, η(V ), T )

+W (X, η(Y ), V, T )

+W (η(X), Y, V, T )

−W (η(X), η(Y ), η(V ), T )

−W (X, η(Y ), η(V ), η(T ))

−W (η(X), Y, η(V ), η(T ))

−W (η(X), η(Y ), V, η(T )),
(135)

where W is the Weyl curvature.

The Weyl curvature decomposes into self-dual and anti-self-dual components,

W = W+ ⊕W−, where W+ is the self-dual part and W− is the anti-self-dual part.

Lemma 5.9. The expression N(Xh, Y h)(V, T ) only depends on the anti-self-dual part

of the Weyl curvature W−.

Proof. We note that W (X, Y, V, T ) can be rewritten as ⟨W (X ∧ Y ), V ∧ T ⟩. Using

this we rewrite (135) of N(Xh, Y h)(V, T ) as
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N(Xh, Y h)(V, T ) = ⟨W (X ∧ Y ), V ∧ η(T )⟩

+ ⟨W (X ∧ Y ), η(V ) ∧ T ⟩

+ ⟨W (X ∧ η(Y )), V ∧ T ⟩

+ ⟨W (η(X) ∧ Y ), V ∧ T ⟩

− ⟨W (η(X) ∧ η(Y )), η(V ) ∧ T ⟩

− ⟨W (X ∧ η(Y )), η(V ) ∧ η(T )⟩

− ⟨W (η(X) ∧ Y ), η(V ) ∧ η(T )⟩

− ⟨W (η(X) ∧ η(Y )), V ∧ η(T )⟩.
(136)

Next gathering like terms in the N(Xh, Y h)(V, T ) equation we obtain

N(Xh, Y h)η(V, T ) = ⟨W (X ∧ Y )−W (ηX ∧ ηY ), V ∧ η(T )⟩

+ ⟨W (X ∧ Y )−W (ηX ∧ ηY ), η(V ) ∧ T ⟩

+ ⟨W (X ∧ η(Y )), V ∧ T − η(V ) ∧ η(T )⟩

+ ⟨W (η(X) ∧ Y ), V ∧ T − η(V ) ∧ η(T )⟩.
(137)

Since the Weyl curvature is linear we get

N(Xh, Y h)η(V, T ) = ⟨W (X ∧ Y − ηX ∧ ηY ), V ∧ η(T ) + η(V ) ∧ T ⟩

+ ⟨W (X ∧ η(Y ) + η(X) ∧ Y ), V ∧ T − η(V ) ∧ η(T )⟩.
(138)

Using the fact that V ∧ η(T ) + η(T )∧ T and V ∧ T − η(V )∧ η(T ) are ASD, equation
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(138) becomes:

⟨W (X ∧ Y − ηX ∧ ηY ), V ∧ η(T ) + η(V ) ∧ T ⟩

+ ⟨W (X ∧ η(Y )) + η(X) ∧ Y ), V ∧ T − η(V ) ∧ η(T )⟩

= ⟨W−(X ∧ Y − ηX ∧ ηY ), (V ∧ η(T ) + η(V ) ∧ T )⟩

+ ⟨W−(X ∧ η(Y )) + η(X) ∧ Y ), (V ∧ T − η(V ) ∧ η(T ))⟩.
(139)

Hence we see thatW+ does not contribute to (139) and the Nijenhuis tensor has terms

only with the anti-self-dual Weyl curvature part.

We define some notation we will use next. We let

(W )0123

= W (e0, e1, e2, e3)

= ⟨W (e0 ∧ e1), e2 ∧ e3⟩. (140)

The Weyl curvature shares the same symmetries as the Riemannian curvature tensor

and it is trace free, that is
∑

iWijki = 0.

Using our local oriented orthonormal frame {e0, e1, e2, e3} for our manifold M ,

we have e0 ∧ e1 ∧ e2 ∧ e3 = µ. Since X, Y, V, T are arbitrary, letting X = e0, Y =

e2, e1 = ηX, e3 = −ηY , η in this context represents our orthogonal complex structure,

(X ⌟ ω1)♯, that sends e0 → e1, e1 → −e0, e2 → −e3, e3 → e2. We denote this complex

structure ω1. Since η is anti-self-dual, we get that the orientation induced by η

is X ∧ ηX ∧ Y ∧ ηY = −µ. For our choice of the complex structure that sends
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e0 → e1, e2 → e3 which is ω1 then the local frame {ω1, ω2, ω3} will be described by

ω1 = e0 ∧ e1 − e2 ∧ e3

= e0 ∧ ηe0 + e2 ∧ ηe2

= X ∧ ηX + Y ∧ ηY

ω2 = e0 ∧ e2 − e3 ∧ e1

= e0 ∧ e2 − (−ηe2) ∧ ηe0

= X ∧ Y − ηX ∧ ηY

ω3 = e0 ∧ e3 − e1 ∧ e2

= e0 ∧ (−ηe2)− ηe0 ∧ e2

= −(X ∧ ηY + ηX ∧ Y ). (141)

The tensor W− can be represented in terms of the frame (141) as

W− =


a d e

d b f

e f c

 =


W−(ω

1, ω1) W−(ω
1, ω2) W−(ω

1, ω3)

W−(ω
2, ω1) W−(ω

2, ω2) W−(ω
2, ω3)

W−(ω
3, ω1) W−(ω

3, ω2) W−(ω
3, ω3)

 (142)

We will show all the components of the matrix vanish iff N(Xh, Y h) = 0 for all

Xh, Y h.

Lemma 5.10. We have a+ b+ c = 0 in the W− matrix (142).

59



Proof. This lemma will always be true since the Weyl curvature is trace free. We have

a+ b+ c

= (W−)(ω
1, ω1) + (W−)(ω

2, ω2) + (W−)(ω
3, ω3)

= (W−)(01−23)(01−23) + (W−)(02−31)(02−31) + (W−)(03−12)(03−12)

= (W−)0101 + (W−)2323 + (W−)0202

+ (W−)3131 + (W−)0303 + (W−)1212

− 2((W−)0123 + (W−)0231 + (W−)0312). (143)

As W− shares the same symmetries as the Riemannian curvature tensor then by the

Bianchi identity for the Weyl curvature (W−)0123 + (W−)0231 + (W−)0312 = 0. As W−

is trace free, and (W−)0000 = 0 then

(W−)0101 + (W−)0202 + (W−)0303 = −(W−)0110 − (W−)0220 − (W−)0330 − (W−)0000

= −
4∑

i=0

(W−)0ii0

= 0.

(144)

We then have left to show that

(W−)2323 + (W−)3131 + (W−)1212 = 0. (145)

By using the identity (W−)∗ = ∗(W−), and that the Hodge star is an isometry we will
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rearrange (W−)2323 as follows

(W−)2323 = ⟨(W−)(e
2 ∧ e3), e2 ∧ e3⟩

= ⟨∗(W−)(e
2 ∧ e3), ∗(e2 ∧ e3)⟩

= ⟨(W−) ∗ (e2 ∧ e3), ∗(e2 ∧ e3)⟩

= ⟨(W−)((e
0 ∧ e1)), (e0 ∧ e1)⟩

= (W−)0101. (146)

Substituting (146) into (145) we get

(W−)2323 + (W−)3131 + (W−)1212

= (W−)0101 + (W−)3131 + (W−)1212

= −
4∑

i=0

(W−)1ii1 using the technique in (144)

= 0. (147)

Thus (W−) is trace free, so a+ b+ c = 0.

Lemma 5.11. We have f = 0 in the W− matrix (142) if N(Xh, Y h) = 0 for all

Xh, Y h.

Proof. Using the Nijenhuis Weyl equation (138), and substituting (X, Y, V, T ) =

(e0, e2, e0, e2) and using that W− is a self-adjoint operator on Λ2T ∗M and taking

the complex structure η = ω1 then

0 = N(Xh, Y h)(V, T ) =2⟨W−(e
0 ∧ e2 − ηe0 ∧ ηe2), e0 ∧ ηe2 + ηe0 ∧ e2⟩

= 2W−(ω
2, ω3)

= −2f. (148)

61



Lemma 5.12. We have b − c = 0 in the W− matrix (142) if N(Xh, Y h) = 0 for all

Xh, Y h.

Proof. Using the Nijenhuis Weyl Equation (138), and subsituting (X, Y, V, ηT ) =

(e0, e2, e0, e2), using the complex structure η = ω1 then we get

0 = N(Xh, Y h)(V, T ) = ⟨W−(e
0 ∧ e2 − ηe0 ∧ ηe2), e0 ∧ e2 − ηe0 ∧ ηe2⟩

+ ⟨W−(e
0 ∧ ηe2 + ηe0 ∧ e2), e0 ∧ (−ηe2)− ηe0 ∧ e2⟩

= W−(ω
2, ω2)−W−(ω

3, ω3)

= b− c. (149)

Lemma 5.13. We have d, e, a, b, c = 0 in the matrix (142) of W− if N(Xh, Y h) = 0

for all Xh, Y h.

Proof. The Nijenhuis Weyl eqaution (138) is satisfied for all η ∈ Λ2
−(T

∗M) such that

|η|2 = 2.

Consider the complex structures defined by ω2, namely

e0 → e2

e2 → −e0

e3 → −e1

e1 → e3 (150)

and by ω3, namely

e0 → e3

e3 → −e0

e1 → −e2

e2 → e1. (151)
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This has the effect of permuting the anti-self-dual frame in (141) by sending (ω1, ω2, ω3) →

(ω2, ω3, ω1) for the complex structure ω2 and by sending (ω1, ω2, ω3) → (ω3, ω1, ω2)

for the complex structure ω3 respectively. Hence we get a new set of Weyl equations

by permuting the anti-self-dual basis vectors in the Weyl tensor. For the complex

structure ω2 and following what we did in Lemma 5.11 and Lemma 5.12 we get

W−(ω
3, ω3)−W−(ω

1, ω1) = c− a = 0

W−(ω
3, ω1) = 0 = e.

(152)

For the complex structure ω3 and following what we did in Lemma 5.11 and Lemma

5.12 we get

W−(ω
1, ω1)−W−(ω

2, ω2) = a− b = 0

W−(ω
1, ω2) = 0 = d. (153)

Theorem 5.14. For N(Xh, Y h) = 0 for all Xh, Y h iff all the components of W−

vanish.

Proof. Combining Lemma 5.11, Lemma 5.12, Lemma 5.13 we get a = b = c = d = e =

f = 0 in the W− matrix (142) and hence for N(Xh, Y h) to vanish W− must vanish.

By (142) if a = b = c = d = e = f = 0 then N(Xh, Y h) = 0 for all Xh, Y h.

5.5 Nijenhuis tensor of two vertical vectors

Let Xv, Y v ∈ Γ(V E). By definition the Nijenhuis tensor of two vertical vector

fields is

N(Xv, Y v) = [Xv, Y v] + J [JXv, Y v] + J [Xv, JY v]− [JXv, JY v]. (154)

Using that JXv = ξ ×Xv from Definition 4.6, ξ ∈ Γ(V E) is orthogonal to TZ

in (69) and noting that N(Xv, Y v) is a vertical vector field and that the fibre of E is
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isomorphic to R3 then all of our operations in this section can be regarded as in R3.

We will use the usual Euclidean connection for this section. Hence, for this section

let ∇ be the standard connection on R3. On R3 it is well known that R3 ∼= so(3) and

the Lie bracket on the Lie algebra so(3) corresponds to twice the cross product on

R3. Hence using this correspondence and that [X, Y ] = ∇XY −∇YX then N(Xv, Y v)

becomes

N(Xv, Y v) = [Xv, Y v] + ξ × [ξ ×Xv, Y v] + ξ × [Xv, ξ × Y v]− [ξ ×Xv, ξ × Y v]

= ∇XvY v −∇Y vXv

+ ξ × (∇ξ×XvY v −∇Y v(ξ ×Xv))

+ ξ × (∇Xv(ξ × Y v)−∇ξ×Y vXv)

− (∇ξ×Xv(ξ × Y v)−∇ξ×Y v(ξ ×Xv)).

(155)

For C,A,B ∈ Γ(TR3), and letting ⟨, ⟩ be the metric on R3, the iterated cross product

identity is

A× (B × C) = ⟨A,C⟩B − ⟨A,B⟩C. (156)

For C,A,B ∈ Γ(TR3), and letting ⟨, ⟩ be the metric on R3, the Euclidean connection

acting on the cross product satisfies

∇C(A×B) = (∇CA)×B + A× (∇CB). (157)

Theorem 5.15. The Nijenhuis tensor of two vertical vector fields vanishes.

Proof. Expanding N(Xv, Y v) as in equation (155) using (157) then
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N(Xv, Y v) = ∇XvY v −∇Y vXv

+ ξ ×∇ξ×XvY v

− ξ × ((∇Y vξ ×Xv) + ξ × (∇Y vXv))

+ ξ × ((∇Xvξ)× Y v + ξ ×∇XvY v)

− ξ ×∇ξ×Y vXv

− (∇ξ×Xvξ)× Y v − ξ × (∇ξ×XvY v)

+ (∇ξ×Y v)ξ ×Xv + ξ × (∇ξ×Y vXv). (158)

Lemma 5.16. For ξ = y1
∂

∂y1
+ y2

∂
∂y2

+ y3
∂

∂y3
, A = A1

∂
∂y1

+A2
∂

∂y2
+A3

∂
∂y3

and for ∇

the Euclidean connection then

∇Aξ = A. (159)

Proof. Evaluating ∇Aξ we get

∇Aξ =

(
A1∇ ∂

∂y1
+ A2∇ ∂

∂y2
+ A3∇ ∂

∂y3

)(
y1

∂

∂y1
+ y2

∂

∂y2
+ y3

∂

∂y3

)
= A1

∂

∂y1
+ A2

∂

∂y2
+ A3

∂

∂y3

= A. (160)

Using Lemma 5.16 in (158), and

|ξ|2 =
3∑

i,j=1

yiyj⟨
∂

∂yi
,
∂

∂yj
⟩ =

3∑
i=1

y2i ⟨
∂

∂yi
,
∂

∂yi
⟩ =

3∑
i=1

y2i = 1
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we get

N(Xv, Y v) = ∇XvY v −∇Y vXv

− (⟨ξ,Xv⟩∇Y vξ − ⟨ξ,∇Y vξ⟩Xv

+ (⟨ξ, Y v⟩∇Xvξ − ⟨ξ,∇Xvξ⟩Y v

− (⟨ξ,∇Y vXv⟩ξ − ⟨ξ, ξ⟩∇Y vXv

+ (⟨ξ,∇XvY v⟩ξ − ⟨ξ, ξ⟩∇XvY v

− ((ξ ×Xv)× Y v)

+ ((ξ × Y v)×Xv). (161)

Simplifying using the identity (156), equation (161) becomes

N(Xv, Y v) = ∇XvY v −∇Y vXv

− (⟨ξ,Xv⟩Y v − ⟨ξ, Y v⟩Xv)

+ (⟨ξ, Y v⟩Xv − ⟨ξ,Xv⟩Y v)

− (⟨ξ,∇Y vXv⟩ξ −∇Y vXv)

+ (⟨ξ,∇XvY v⟩ξ −∇XvY v)

− (⟨ξ, Y v⟩Xv − ⟨Xv, Y v⟩ξ)

+ (⟨ξ,Xv⟩Y v − ⟨Xv, Y v⟩ξ).
(162)

Cancelling terms in equation (162) and using that ξ is orthogonal to Y v and Xv then

equation (162) becomes

N(Xv, Y v) = −⟨ξ,∇Y vXv⟩ξ

+ ⟨ξ,∇XvY v⟩ξ

= ⟨ξ, [Xv, Y v]⟩ξ. (163)

Since [Xv, Y v] ∈ TZ and ξ is orthogonal to TZ, hence ξ is orthogonal [Xv, Y v] then
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⟨ξ, [Xv, Y v]⟩ = 0 and N(Xv, Y v) = 0.

6 Pullback of self-dual connections on vector bun-

dles

Recall that Z ⊂ E = Λ2
−T

∗M where Z = S√
2(Λ

2
−(T

∗M)). Let B be a vector

bundle overM and consider a connection ∇B on B. Let π : Z →M be the projection

map. We will look at the pullback of 2-forms to Z to show that self-dual instantons

on B, Definition 6.6, correspond to holomorphic structures on π∗B.

Definition 6.1. For η ∈ Ω2(M) we define η+ to be the self-dual part of η and η− to

be the anti-self-dual part of η.

Lemma 6.2. For λ a constant. For ω ∈ E η ∈ Ω2(M) identified with an endomor-

phisms. Then

(ω(η+ + η−))kc = ((η+ − η−)ω)kc + ⟨−η, ω⟩δkc,

where ηω is composition of endomorphisms.

Proof. Let µ be the volume form and (∗ω)ab = 1
2
ωpqµpqab. We use µijkpµabcp =

(δiaδjbδkc + δibδjcδka + δicδjaδkb − δiaδjcδkb − δibδjaδkc − δicδjbδka). This follows from

taking the inner product of ek ⌟ ej ⌟ ei ⌟ µ = µijkpe
p with ec ⌟ eb ⌟ ea ⌟ µ = µabcqe

q, the

duality between the interior/exterior product and the Hodge star isomorphism.
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(ωη)kc = ωkpηpc

= ωkp(η
+
pc + η−pc)

=
1

2
(ωkpµabpcη

+
ab − ωkpµabpcη

−
ab)

=
1

4
(−ωijµijkpµabpcη

+
ab + ωijµijkpµabpcη

−
ab) , since (∗ω)ab = ωpqµpqab

=
1

4
(ωijµijkpµabcpη

+
ab − ωijµijkpµabcpη

−
ab)

=
1

4
(ωijη

+
ab − ωijη

−
ab)µijkpµabcp

=
1

4
(ωijη

+
ab − ωijη

−
ab)(δiaδjbδkc + δibδjcδka + δicδjaδkb − δiaδjcδkb − δibδjaδkc − δicδjbδka)

=
1

2
(ωabη

+
abδkc + ωbcη

+
abδka + ωcaη

+
abδkb)

− 1

2
(ωabη

−
abδkc + ωbcη

−
abδka + ωcaη

−
abδkb)

=
1

2
(ωabη

+
abδkc + ωbcη

+
kb + ωcaη

+
ak

− 1

2
(ωabη

−
abδkc + ωbcη

−
kb + ωcaη

−
ak)

= ((η+ − η−)ω)kc + ⟨η+ − η−, ω⟩δkc

= ((η+ − η−)ω)kc + ⟨−η−, ω⟩δkc since ω is orthogonal to η+

= ((η+ − η−)ω)kc − ⟨η, ω⟩δkc

(164)

Lemma 6.3. For ω ∈ E, λ a constant, η ∈ Ω2(M) identified with endomorphisms

then η = η+ + λω iff ηω = ωη, where λ = 1
2
⟨η, ω⟩.

Proof. Assume that η = λω+η+. Then by Lemma 6.2 we get ωη+ = η+ω−⟨η+, ω⟩I =

η+ω since ω is orthogonal to η−. Thus ηω = ωη. Assume that ηω = ωη then

ω(η++η−) = (η++η−)ω and using Lemma 6.2 we get 2η−ω = −⟨η, ω⟩I. Rearranging
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we get

2η−ω = ⟨η, ω⟩I

η−ωω = −1

2
⟨η, ω⟩ω

η− =
1

2
⟨η, ω⟩ω (165)

Hence η = η+ + η− = η+ + 1
2
⟨η, ω⟩ω.

The following lemma uses complex differential geometry. For an introduction and

its notation see [10].

Lemma 6.4. For η ∈ Ω2(M), X, Y ∈ Γ(TZ), J an almost complex structure. Then

η(JX, JY ) = η(X, Y ) iff η is of type (1, 1).

Proof. As X, Y ∈ Γ(TZ) then X = X(1,0) + X(0,1) and Y = Y (1,0) + Y (0,1), then

η(JX, JY ) becomes

η(JX, JY ) = η(J(X(1,0) +X(0,1)), J(Y (1,0) + Y (0,1)))

= η(iX(1,0) − iX(0,1), iY (1,0) − iY (0,1))

= i2η(X(1,0), Y (1,0)) + i2η(X(0,1), Y (0,1))− i2η(X(1,0), Y (0,1))− i2η(X(0,1), Y (1,0))

= −η(X(1,0), Y (1,0))− η(X(0,1), Y (0,1)) + η(X(1,0), Y (0,1)) + η(X(0,1), Y (1,0))

= −η(2,0)(X, Y )− η(0,2)(X, Y ) + η(1,1)(X, Y ),

(166)

and

η(X, Y ) = η((X(1,0) +X(0,1)), (Y (1,0) + Y (0,1)))

= η(X(0,1), Y (0,1)) + η(X(1,0), Y (1,0)) + η(X(1,0), Y (0,1)) + η(X(0,1), Y (1,0))

= η(2,0)(X, Y ) + η(0,2)(X, Y ) + η(1,1)(X, Y ).

(167)
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If η is of type (1, 1) then η(2,0)(X, Y ), η(0,2)(X, Y ) are zero and η(JX, JY ) = η(X, Y ).

If η(JX, JY ) = η(X, Y ) then 2η(2,0)(X,Y ) + 2η(0,2)(X,Y ) is zero for all X, Y and since

η(2,0)(X,Y ) is orthogonal to η(0,2)(X,Y ) then they both must be zero and η is of type

(1, 1).

Lemma 6.5. We have η = η+ + λω iff π∗η ∈ Ω2(Z) is of type (1, 1).

Proof. Let X, Y ∈ Γ(TM) and Xh, Y h be their respective horizontal lifts. Note that

(π∗η)ω(X, Y ) = ηπ(ω)(π∗X, π∗Y ) and we drop the subscripts. Then

(π∗η)(JXh, JY h) = (π∗η)(Xh, Y h) by Lemma 6.4

⇔ η(π∗JX
h, π∗JY

h) = η(π∗X
h, π∗Y

h)

⇔ η((X ⌟ ω)♯), (Y ⌟ ω)♯)) = η(X, Y ) by Theorem 4.1

⇔ ⟨η(ω(X)), ω(Y )⟩ = ⟨η(X), Y ⟩ by Theorem 3.3

⇔ ⟨−ωη(ω(X)), Y ⟩ = ⟨η(X), Y ⟩. (168)

Thinking of ω, η as endomorphisms, thus we get that

⇔ ⟨−ωη(ω(X)), Y ⟩ = ⟨η(X), Y ⟩

⇔ −ωηω = η

⇔ ωη = ηω since ω2 = −1

⇔ η = η+ + λω by Lemma 6.3 (169)

In the next theorem we let B be a vector bundle with connection ∇B. We let

F∇B
be the curvature tensor with respect to the connection ∇B.

Definition 6.6. An instanton is a special solution to the Yang-Mills equations in

4-dimensions [1]. It is a connection whose curvature is self-dual or anti-self-dual.

An instanton is automatically Yang-Mills where the Yang-Mills functional is given
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by
∫
Tr(F ∧∗F )dvol. It is often that instantons are (but not always) an absolute min-

imizer of this functional
∫
Tr(F ∧ ∗F )dvol. A Yang-Mills connection is a connection

which is a critical point of the Yang-Mills functional.

Theorem 6.7. For (B,∇B) a vector bundle with connection over a four-manifold, and

π : Z →M the projection map, then F∇B ∈ Ω2
+(M) is self-dual iff π∗(F∇B

) ∈ Ω2(Z)

is of type (1, 1).

Proof. Denote SD as self-dual 2-forms. By Lemma 6.2, Lemma 6.3, Lemma 6.4,

Lemma 6.5 π∗(F∇B
) is (1, 1) iff (F∇B

)π(ω) = SD+ λω for all ω such that π(ω) = p iff

(F∇B
)π(ω) = SD [2].

7 The vector bundle E = Λ2
7(T

∗M)

In this section we will look at the case when M = R8 with a special kind of

4-form called a Cayley form and we will show a similar construction holds.

7.1 The almost complex structure on S2(Λ
2
7(T

∗M))

Let M = R8 and let {ei} be an orthonormal frame on M with the standard

orientation and {ei} the dual frame to {ei}. Let Φ be the standard Spin(7) structure

on M which satisfies ∗Φ = Φ and in local coordinates Φ is given in [?] by

Φ = dx0123 − dx0167 − dx0527 − dx0563 + dx0415 + dx0426 + dx0437

+ dx4567 − dx4523 − dx4163 − dx4127 + dx2637 + dx1537 + dx1526. (170)
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where dxijkl denotes dxi∧dxj ∧dxk∧dxl. The 4-form Φ satifies the following identity.

ΦabijΦbckl = gikgjlgac + gilgjcgak + gicgjkgal

− gikgjcgal − gilgjkgac − gicgjlgak

− gikΦjalc − gjkΦailc − gakΦijlc

− gilΦjack − gjlΦaick − galΦijck

− gicΦjakl − gjcΦaikl − gacΦijkl (171)

A proof of this identity can be found in [8].

One can show that the map ω 7→ ∗(Φ ∧ ω) is self-adjoint hence the map is

orthogonally diagonalizeable [8]. We have the following relations from [8]:

Λ2 = Λ2
7 ⊕ Λ2

21

Λ2
7 = {ω| ∗ (Φ ∧ ω) = −3ω}

Λ2
21 = {ω| ∗ (Φ ∧ ω) = +ω}.

(172)

A global frame for Λ2T ∗R8 is given by {dxi∧dxj | i < j}. Let π7 be the projection

map from Λ2T ∗R8 to Λ2
7T

∗R8. The next lemma 7.1 will be used to define the complex

structure on the vertical subbundle of TE by identifying it with R7 so we can use the

standard cross product on R7.

Lemma 7.1. There is an isomorphism Λ1
7(R7) ∼= Λ2

7(R8).

Proof. Let {e0, . . . , e7} be the dual orthonormal frame to the orthonormal frame

{e0, . . . , e7} on R8. Let p ∈ R8. Define a map P by

P : Λ1
7(R7) → Λ2

7(R8)

α 7→ π7(e
0 ∧ α). (173)
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We will show this map is injective.

If π7(e
0 ∧ α) = 0, since no non-zero decomposable 2-form can be of pure type [8]

e0 ∧ α = 0. We have e0 ⌟ (e0 ∧ α) = α = 0. Thus P is injective.

The dimension of Λ2
7(R8) and of Λ1

7(R7) is 7 and since P is injective then P is an

isomorphism.

From now on the vector bundle is E = Λ2
7(T

∗R8) which is a rank seven bundle

with Euclidean metric g = ⟨·, ·⟩ and connection ∇. Let {σi} be a global frame on E

with induced global coordinates as (x0, . . . , x7, y1, . . . y7) as in (1) where (x1, . . . , x8)

are the standard global coordinates on R8.

We will view ω as an endomorphism from Theorem 3.3. Let the matrix represe-

nation for ω be ωij and let the components of Φ in the stardard global coordinates on

R8 be Φabij. We compute ∗(Φ ∧ ω) thus

∗(Φ ∧ ω) = 1

2
∗ (Φ ∧ ω)abea ∧ eb

=
1

2
(∗(Φ ∧ (ωabe

a ∧ eb)))

=
1

2
ωab(e

b ⌟ ea ⌟ Φ) , since ek ⌟ ∗α = (−1)k ∗ (e♭k ∧ α) for any k-form α

=
1

4
ωab(Φabije

i ∧ ej)

=
1

4
(Φabijωij)e

a ∧ eb.

(174)

The equations in (172) in local coordinates are

ω ∈ Λ2
7 ⇐⇒ Φabijωij = −6ωab,

ω ∈ Λ2
21 ⇐⇒ Φabijωij = 2ωab. (175)

Lemma 7.2. Let ω ∈ Λ2
7 viewed as an endomorphism with matrix representation ωab.

Then

ωabωbc = −δac
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if ⟨ω, ω⟩ = |ω|2 = 4.

Proof. Computing ωabωbc yields

ωabωbc = (−1

6
Φabijωij)(−

1

6
Φklbcωkl)

= − 1

36
ωijωklΦijabΦklcb

= − 1

36
ωijωkl(gikgjlgac + gilgjcgak + gicgjkgal

− gikgjcgal − gilgjkgac − gicgjlgak

− gikΦjalc − gjkΦailc − gakΦijlc

− gilΦjack − gjlΦaick − galΦijck

− gicΦjakl − gjcΦaikl − gacΦijkl). by (171) (176)

After relabelling indices, collecting terms and using gil = δil (176) becomes

ωabωbc = −2
1

36
ωkjωkjδac − 2

1

36
ωlcωal − 2

1

36
ωckωka

− 1

36
(−4ωkjωklΦjalc − ωijωklδacΦijkl − 2ωcjωklΦjakl − 2ωijωalΦijlc). (177)

Let P = ω ◦ ω. The coordinate representation of P is Pac = ωalωlc. Note that Pac

is symmetric in the indices a, c. From (172) we get that ωal = −1
6
Φalibωib hence

ωalωlc = −1
6
Φalibωibωlc and as P is symmetric then ωkjωklΦjalc = −PljΦjalc = 0. We

also have 2|ω|2 = ωijωij. Substituting this into (177) yields

ωabωbc = Pac = −2
1

36
(2|ω|2)δac − 2

1

36
Pac − 2

1

36
Pac

− 1

36
(0 + 6(2|ω|2δac) + 2(6Pac) + 2(6Pac)). (178)

Rearranging (178) we get

64P = −16|ω|2I. (179)
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If ⟨ω, ω⟩ = 4 this gives ωabωbc = −δac.

We define Z14 to be Z14 = S2(Λ
2
7(T

∗M)) ⊂ E. Referring to Theorem 4.1 we can

define an almost complex structure on Z14.

Theorem 7.3. Let ω ∈ Z14
p , X ∈ TpM . Define Ĵ : TpM → TpM by Ĵ := X 7→

(X ⌟ ω)♯ where ♯ is the musical isomorphism. Then Ĵ : TpM → TpM is a complex

structure.

Proof. By Lemma 7.2 Ĵ2 = −1 hence Ĵ is a complex structure.

Given the connection on E = Λ2
7(T

∗M)) and applying the results of section 2.2

and section 2.1 to E we get a splitting TE = HE⊕V E. Applying Lemma 4.3 to Z14

we get

VυZ
14 = {Y v

υ ∈ VυE | ⟨Y v
υ , ξ⟩V E = 0, υ ∈ Z14}. (180)

Definition 7.4. Let ω ∈ Z14
p and X ∈ TpM . On HωZ

14, Ĵ is defined by

Ĵ(Xh) = ((X ⌟ ω)♯)h. (181)

Theorem 7.5. For M = R8, let Θ be the restriction of the tautological 2-form on

T ∗E to Z14. Let Xh be the horizontal lift of X ∈ Γ(TM). Then Ĵ(Xh) is given by

Ĵ(Xh) := Θ(Xh, ehi )ei,

and satisfies Ĵ2(Xh) = −Xh.

Proof. Follow the proof of Theorem 4.5.

We next define an almost complex structure on V Z14. Given the 4-form on Φ on

R8 we can use it to define a 3-form φ and 4-form ψ = ∗ϕ on R7. Thus we have the
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following identities

Φ = e0 ∧ φ+ ψ

φ = e0 ⌟ Φ since e0 ⌟ ψ = 0

ψ = ∗φ

ψ = Φ− e0 ∧ φ. (182)

Let p ∈ R8 then TpR8 ∼= R8.

Definition 7.6. For X, Y ∈ TpR7, φ the 3-form defined above, the cross product

X × Y is defined by (Y ⌟X ⌟ φ)♯.

In R7 the cross product satisfies

A× (B × C) = ⟨A,C⟩B − ⟨A,B⟩C + (ψ(A,B,C, .))# [13] (183)

for A,B,C ∈ Γ(TR7). The fibres of E are given by R7. The fibres of Z14 are given

by 6-spheres of radius two which have an induced almost complex structure coming

from the cross product on the fibres of E. To put an almost complex structure on

V Z14 we need a cross product on Λ2(R8). To do this we use the isomorphism between

P : Λ1
7(R7) → Λ2(R8) from Lemma 7.1.

Lemma 7.7. Let ω ∈ Z14
p , Y v ∈ Λ2

7(T
∗
π(ω)R8) such that Y v ⊥ ω, ξω ∈ Γ(V E) the

fundamental vector field. Then

P (Φ(e0, P
−1(ξω), P

−1(Y v), ·))♯ = P (P−1(ξω)× P−1(Y v)) ∈ VωZ
14.

Proof. Using Definition 7.6 we get that Y v × ξω = ξω ⌟ Y v ⌟ φ. By Definition 7.6 and

by (182) and Lemma 7.1

P (ξω × Y v) = P (P−1(Y v) ⌟ P−1(ξω) ⌟ e0 ⌟ Φ)
♯

= (Φ(e0, P
−1(ξω), P

−1(Y v), ·))♯. (184)
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From now on we drop the P for notational simplicity, and write ξω ×Y v to mean

P (P−1(ξω)× P−1(Y v)).

Theorem 7.8. Let ω, Y v and ξ be as in Lemma 7.6. Then Ĵω(Y
v) = ξω ×Y v defines

an almost complex structure.

Proof. We have to show that Ĵ2
ω = −1.

The operator Ĵ2
ω will be in terms of the iterated cross product given by Ĵ2

ω = ξω ×

(ξω × Y v). Computing Ĵ2 = ξω × (ξω × Y v) yields

(Ĵω)
2(Y v) = ξω × (ξω × Y v)

= ⟨ξω, Y v⟩ξω − ⟨ξω, ξω⟩Y v + (Φ(ξω, ξω, Y
v, .))# by (183)

= 0− ⟨ξω, ξω⟩Y v + 0

= −Y v. (185)

Thus Ĵω is a complex structure on VωZ
14.

7.2 The flow ΦXh

t preserves the cross product on V Z14

For the horizontal lift, Xh ∈ Γ(HZ14) of X ∈ Γ(TR8), the flow ΦXh

t will be as it

is in Section 2.3. And we get the following following theorems.

Theorem 7.9. The map ϕXh

t : E → E is an isometry in the vertical direction.

Proof. By Theorem 2.14.

Theorem 7.10. The pushforward (ϕXh

t )∗ of ϕXh

t is an isometry when restricted to

the vertical subbundle V Z14.

Proof. By Theorem 2.15.
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Note that in the 4-dimensional case the cross product on the vertical subbundle

is with respect to the volume form which is parallel. WhenM = R8 the cross product

on the vertical subbundle is with respect to the 4-form Φ which is in general not

parallel though here we have used a specific Φ which is parallel.

Lemma 7.11. The flow ϕXh

t preserves the cross product on V Z14.

Proof. Let ξω = ξd ∂
∂yd

and Y v = Y e ∂
∂ye

. The cross product on V Z14 is given by

(Φ(e0, ξω, Y
v, ·))♯.

In local coordinates this is

φdefξ
dY e ∂

∂yf
.

Replace εdefU
dV e ∂

∂yf
with φdefξ

dY e ∂
∂yf

in Lemma 4.8. We can do this since ∇EΦ = 0.

Then follow the rest of Lemma 4.8.

Lemma 7.12. The flow preserves the complex structure Ĵ on V Z14. That is (ϕXh

t )∗Ĵω(Y
v) =

Ĵ
ϕXh
t (ω)

((ϕXh

t )∗Y
v).

Proof. Using Lemma 7.11 follow Theorem 4.9.

With the above theorems and lemmas we get the following:

Theorem 7.13. The Lie derivative (LXh Ĵ)(Y v) is zero.

Proof. By Theorem 7.9, 7.10, and Lemma 7.11,7.12 and Theorem 4.10.

7.3 Nijenhuis tensor of two horizontal vectors

By Theorem 7.5 we can apply the results of Section 5.4 when Xh, Y h ∈ Γ(HZ14)

and get equation (129). Since M = R8 we get the following theorem.
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Theorem 7.14. For Xh, Y h ∈ Γ(HZ14) horizontal lifts of X, Y ∈ Γ(TR8) then

N(Xh, Y h) = 0.

Proof. Using Theorem 7.5 follow Section 5.4 to get

N(Xh, Y h)η = J(R(ηX, Y )η)

−R(ηX, ηY )η

+ J(R(ηY,X)η)

+R(X, Y )η. (186)

Since R8 is flat R(X, Y ) = 0 and N(Xh, Y h) = 0.

7.4 Nijenhuis tensor of a horizontal and vertical vector

By Theorem 7.5 we can apply the results of Sections 5.1 and 5.2 when Xh ∈

Γ(HZ14) and Y v ∈ Γ(V Z14). Thus we get the following theorem.

Theorem 7.15. Let Xh ∈ Γ(HZ14) and Y v ∈ Γ(V Z14) then

N(Xh, Y v) = 0.

Proof. By Theorem 7.13, Theorem 7.5, and Theorem 7.8 we can apply the results of

Sections 5.1 and 5.2 to N(Xh, Y v) when Xh ∈ Γ(HZ14) and Y v ∈ Γ(V Z14) thus

N(Xh, Y v) = 0.
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7.5 Nijenhuis tensor of two vertical vectors

By Theorem 7.8 we can apply the results of Section 5.5 to the equation

N(Xv, Y v) = [Xv, Y v] + J [JXv, Y v] + J [Xv, JY v]− [JXv, JY v]. (187)

When Xv, Y v ∈ Γ(V Z14) and we get the following theorem.

Theorem 7.16. For Xv, Y v ∈ Γ(V Z14) then

N(Xv, Y v) = −4Φ(η,Xv, Y v, ·).

Proof. This calculation is analagous to the 4 dimensional version so we can apply the

results of Section 5.5 and using (183) to obtain

N(Xv, Y v) = ∇XvY v −∇Y vXv

− (⟨ξη, Xv⟩∇Y vξη − ⟨ξη,∇Y vξη⟩Xv − ψ(η,Xv,∇Y vη, ·)

+ (⟨ξη, Y v⟩∇Xvξη − ⟨ξη,∇Xvξη⟩Y v + ψ(η, Y v,∇Xvη, ·)

− (⟨ξη,∇Y vXv⟩ξη − ⟨ξη, ξη⟩∇Y vXv − ψ(η,∇Y vXv, η, ·)

+ (⟨ξη,∇XvY v⟩ξη − ⟨ξη, ξη⟩∇XvY v + ψ(η, ,∇XvY v, η, ·)

− (⟨ξη, Y v⟩Xv − ⟨Xv, Y v⟩ξη)− ψ(η,Xv, Y v, ·)

+ (⟨ξη, Xv⟩Y v − ⟨Xv, Y v⟩ξη) + ψ(η, Y v, Xv, ·). (188)

Similar to the four dimensional case all terms that do not have ψ will vanish or
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cancel. Hence we get

N(Xv, Y v) = −ψ(η,Xv,∇Y vη, ·)

+ ψ(η, Y v,∇Xvη, ·)

− ψ(η,∇Y vXv, η, ·)

+ ψ(η, ,∇XvY v, η, ·)

− ψ(η,Xv, Y v, ·)

+ ψ(η, Y v, Xv, ·) (189)

Noting that ψ(η, ,∇XvY v, η, ·) = 0, ψ(η,∇Y vXv, η, ·) = 0 and simplifying yields

N(Xv, Y v) = −ψ(η,Xv, Y v, ·)

+ ψ(η, Y v, Xv, ·)

− ψ(η,Xv, Y v, ·)

+ ψ(η, Y v, Xv, ·)

= −4ψ(η,Xv, Y v, ·). (190)

It is not surprising that this almost complex structure on Z14 is not integrable

because the almost complex structure it induces on the 6-sphere fibres is the canonical

one which is well known to be non-integrable. The non-trivial observation is that this

is the only part of the Nijenhuis tensor (that is, on two vertical vectors) which is non

zero.
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