
Feynman graphs and a chord diagram

expansion

Karen Yeats

Summer CMS meeting

Regina
June 3, 2012

Building trees

Let B+(F) be the tree constructed by adding a new root above each tree
from the forest F .
Eg:

1-1

Tree recurrences

Let X be a formal power series with coefficients from the algebra of trees.
What does

X = I+ xB+(X)

count?

1-2

More tree recurrences

What does

X = I− xB+

(

1

X

)

count?

1-3

Feynman graphs

Feynman graphs describe interactions in particle physics. They are
graphs built of half-edges with specified

• edge types (oriented and unoriented) and

• vertex types

They may have external edges.
Eg: QED

A Feynman graph is 1PI if it is 2-edge-connected.
Feynman rules map Feynman graphs to (formal) integrals.

1-4

Divergences

A Feynman graph is divergent if the associated integral diverges. If we
have set up our types correctly, this will occur when the external edges
of the graph give one of the edge or vertex types.
Eg:

A graph is primitive if it has no divergent subgraphs.

1-5

B+ for graphs

Write B
γ
+ for insertion into the primitive graph γ.

Eg:

By weighting the insertions by an appropriate combinatorial coefficient,
and, where necessary, working in a quotient algebra (Ward identities...)
we obtain that B+ is a Hochschild 1-cocycle for the renormalization Hopf
algebra.

∆B+ = (id⊗B+)∆ +B+ ⊗ I

1-6

Combinatorial Dyson-Schwinger equations

The recurrences in Feynman diagrams which describe how to build the
graphs of a theory out of smaller graphs are the combinatorial Dyson-

Schwinger equations. For today

X = I±
∑

k≥1

xkB
γk

+ (XQk)

where Q = X−s.
Eg (Broadhurst and Kreimer):

1-7

Analytic Dyson-Schwinger equations

Analytic Dyson-Schwinger equations are the result of applying Feynman
rules to combinatorial Dyson-Schwinger equations.

• The recursive structure of the DSE takes care of the recursive struc-
ture of renormalization.

• The counting variable x becomes the coupling constant

• We get new analytic variables coming from the external momenta.
For today just one variable L.

• X becomes the Green function G(x, L).

After some manipulation we obtain

G(x, L) = 1±
∑

k≥1

xkG(x, ∂−ρ)
1−sk(e−Lρ − 1)Fk(ρ)

∣

∣

ρ=0

Where Fk(ρ) is the integral for γk regularized by a parameter ρ which
marks the insertion place.

1-8

Now you can forget all that

Today we are looking at s = 2 and k = 1. That is

G(x, L) = 1− xG(x, ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣

∣

ρ=0

where

F (ρ) =
f0

ρ
+ f1 + f2ρ+ f3ρ

2 + · · ·

Write
G(x, L) = 1−

∑

n≥1

γn(x)L
n

then the Dyson-Schwinger equation determines the γn in terms of the
fi, but not in a nice way.

This talk will show a nice way to untangle this with an expansion indexed
by chord diagrams. (Joint work with Dirk Kreimer and Nicolas Marie)

1-9

Rooted connected chord diagrams

A chord diagram is rooted if it has a distinguished vertex.
A chord diagram is connected if no set of chords can be separated from
the others by a line.
Eg:

These are really just irreducible matchings of points along a line.

2-1

Intersection graphs and bad chords

The intersection graph of a chord diagram is the graph with

• vertices: the chords of the diagram

• adjacencies: vertices where the corresponding chords cross.

The root and counterclockwise order of the chord diagram let us direct
the intersection graph.
Say a chord is bad if it is terminal in the directed intersection graph.
Eg:

2-2

Recursive chord order

Let C be a connected rooted chord diagram. Order the chords recur-
sively:

• c1 is the root chord

• Order the connected components of Crc1 as they first appear run-
ning counterclockwise, D1, D2, Recursively order the chords of
D1, then of D2, and so on.

Eg:

The bad chords come from applications of the base case: a diagram with
only one chord.

2-3

Index lists

Let C be a connected rooted chord diagram. Define

• w(C) = {i : ci is bad} (using the recursive chord order)

• i(C) is the list of differences of successive elements in w(C) padded
with 0s to contain |C| − 1 elements.

• b(C) is the minimum index of a bad chord.

Eg:

These will be our index lists: If I is a list of nonnegative integers let
fI =

∏

i∈I fi.

2-4

Goal

Theorem 1

γi(x) =
(−1)i

i!

∑

C
b(C)≥i

x|C|fi(C)fb(C)−i−1

where C runs over rooted chord diagrams, solves the DSE

G(x, L) = 1− xG(x, ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣

∣

ρ=0

where

F (ρ) =
f0

ρ
+ f1 + f2ρ+ f3ρ

2 + · · ·

G(x, L) = 1−
∑

n≥1

γn(x)L
n

We will prove the theorem by proving two recurrences.

2-5

The root-share decomposition

We can insert a rooted connected chord diagram C1 into another C2, by

• choosing an interval of C2 other than the one before the root

• putting the root of C1 just before the root of C2 and

• putting the rest of C2 in the chosen interval

Eg:

Since the diagrams are connected C1 and C2 can be recovered. This is
the root-share decomposition.

3-1

The first recurrence – chord diagrams

The root-share decomposition is classical. Nijenhuis and Wilf (1978) use
it to prove the recurrence (originally due to Stein (1978) and rephrased
by Riordan)

sn =

n−1
∑

k=1

(2k − 1)sksn−k for n ≥ 2

where sn is the number of connected rooted chord diagrams with n

chords.

This recurrence can be extended to keep track of the bad chords. Let

gk,i =
∑

C
|C|=i
b(C)≥i

fi(C)fb(C)−i−1

where C runs over rooted connected chord diagrams. Then

gk,i =

i−1
∑

ℓ=1

(2ℓ− 1)g1,i−ℓgk−1,ℓ for 2 ≤ k ≤ i

3-2

The first recurrence – DSEs

We had

gk,i =

i−1
∑

ℓ=1

(2ℓ− 1)g1,i−ℓgk−1,ℓ for 2 ≤ k ≤ i

Let

γk =
(−1)k

k!

∑

i≥k

gk,ix
i

then the recurrence becomes

γk(x) =
1

k
γ1(x)

(

−1 + 2x
d

dx

)

γk−1(x) for k ≥ 2.

which was known (Broadhurst and Kreimer 2000) to be true for γk sat-
isfying the DSE.

Now we know the γk depend correctly on γ1 for the theorem.

3-3

Binary trees

To obtain the second recurrence, we need another representation for the
chord diagrams.
Let C be a rooted chord diagram. Build a binary tree with leaves labelled
1, 2, . . . |C| as follows

• If |C| = 1 then the tree has one vertex labelled 1

• Otherwise let C1 and C2 be the root-share decomposition of C with
the insertion into slot k, and t1 and t2 the corresponding trees.

– Add 1 to each label of t2

– Add |C2| to each label of t1 except for the label 1.

– Find the kth vertex of t2 in a preorder traversal, replace this
vertex with a new vertex with t1 as its right subtree and what
had been there as its left subtree.

3-4

Binary tree example

3-5

The second recurrence

To prove the theorem it remains to show

γ1 = x(1−
∑

k≥1

γk(∂−ρ)
k)−1(−ρ)F (ρ)

∣

∣

ρ=0

With a couple of pages of manipulations, we can check that it suffices to
show

∑

C
|C|=i+1
b(C)=j+1

fi(C) =

i
∑

k=1

j
∑

ℓ=1

(

j

ℓ

)













∑

C
|C|=k
b(C)≥ℓ

fi(C)fb(C)−ℓ−1

























∑

C
|C|=i−k+1
b(C)=j−ℓ+1

fi(C)













for i ≥ 1 and j ≥ 1, where the sums run over connected rooted chord
diagrams with the indicated conditions.

3-6

Comments on the second recurrence

The second recurrence naturally comes by viewing a binary tree in terms
of its left and right subtrees.

It is not apparent directly at the level of the chord diagrams. Eg:

3-7

Conclusions

We solve the Dyson-Schwinger equation to get the Green function as a
sort of multivariate generating function for chord diagrams

G(x, L) = 1−
∑

i≥1

(−L)i

i!

∑

C
b(C)≥i

x|C|fi(C)fb(C)−i−1

This is a new expansion for the Green function and it completely un-
winds both the combinatorial and analytic sides of the Dyson-Schwinger
equation.

The next steps are

• exploring further the objects and constructions we used

• more general Dyson-Schwinger equations, beginning with other val-
ues of s.

4-1

