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Augmented generating functions

Take a combinatorial class C. Build a generating function but keep the
objects.

∑

c∈C

cx|c| ∈ Q[C][[x]]

• Get the ordinary generating function by evaluating c 7→ 1.

• Count with parameters by evaluating each object as a monomial
in the parameters.

• More to today’s point if C is a class of Feynman graphs (or rooted
trees. . . ) evaluate by Feynman rules.
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Rooted trees

Let T be a class of rooted trees. Identify forests of rooted trees with
monomials in Q[T ].

Let B+(F ) be the tree constructed by adding a new root above each tree
from the forest F .
Eg:
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Tree recurrences

Let T ∈ Q[T ][[x]]. What does

T = I+ xB+(T )

count?

1-3



More tree recurrences

What does

T = I− xB+

(

1

T

)

count?
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Green functions

Think of rooted trees as representing the subdivergence structure of
Feynman diagrams.

For us, Feynman rules are an evaluation map φ, say

φ : T → C[L]

The Green function is φ applied to the augmented generating function.

G(x, L) =

The actual physical Feynman rules build an integral from the Feynman
graph.
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A particular case

Consider

T = I− xB+

(

1

T

)

and evaluate with the physical φ. After some work this gives

G(x, L) = 1− xG(x, ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣

∣

ρ=0

where

F (ρ) =
f0

ρ
+ f1 + f2ρ+ f3ρ

2 + · · ·

comes from the regularized Feynman integral for the primitive associated
to •.
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Rooted connected chord diagrams

Can solve this by a chord diagram expansion (with N. Marie, more gen-
eral case with M. Hihn).

A chord diagram is rooted if it has a distinguished vertex.
A chord diagram is connected if no set of chords can be separated from
the others by a line.
Eg:

These are really just irreducible matchings of points along a line.
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Recursive chord order

Let C be a connected rooted chord diagram. Order the chords recur-
sively:

• c1 is the root chord

• Order the connected components of Crc1 as they first appear run-
ning counterclockwise, D1, D2, . . .. Recursively order the chords of
D1, then of D2, and so on.

Eg:

3-2



Terminal chords

A chord is terminal if it only crosses chords which come before it in the
recursive chord order. Let

t1 < t2 < · · · < tℓ

be the terminal chords of C. Then

• b(C) = t1 and

• fC = ftℓ−tℓ−1
· · · ft3−t2ft2−t1f

|C|−ℓ
0

Eg:
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Result

Theorem 1

G(x, L) = 1−
∑

i≥1

(−L)i

i!

∑

C
b(C)≥i

x|C|fCfb(C)−i

solves

G(x, L) = 1− xG(x, ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣

∣

ρ=0

where

F (ρ) =
f0

ρ
+ f1 + f2ρ+ f3ρ

2 + · · ·
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The renormalization group equation

The renormalization group equation tells us how the coupling changes
with the energy. It is very important physically.
For us it says

(

∂

∂L
+ β(x)

∂

∂x
+ γ(x)

)

G(x, L) = 0

What happens if we apply it to the chord diagram expansion?
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Chord diagram decomposition

We can insert a rooted connected chord diagram C1 into another C2, by

• choosing an interval of C2 other than the one before the root

• putting the root of C1 just before the root of C2 and

• putting the rest of C2 in the chosen interval

Eg:

Since the diagrams are connected C1 and C2 can be recovered.
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A classical recurrence

This decomposition is classical. Nijenhuis and Wilf (1978) use it to prove
the recurrence (originally due to Stein (1978) and rephrased by Riordan)

sn =

n−1
∑

k=1

(2k − 1)sksn−k for n ≥ 2

where sn is the number of connected rooted chord diagrams with n

chords.
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The recurrence translated

This recurrence can be extended to keep track of the terminal chords.
Let

gk,i =
∑

C
|C|=i
b(C)≥i

fCfb(C)−i

where C runs over rooted connected chord diagrams. Then

gk,i =

i−1
∑

ℓ=1

(2ℓ− 1)g1,i−ℓgk−1,ℓ for 2 ≤ k ≤ i

This is exactly the renormalization group equation on chord diagrams.

This gives one combinatorial view of the renormalization group equation.
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Rooted trees revisited

Let T be rooted trees with no plane structure.
We had the polynomial algebra Q[T ]. This can be turned into a Hopf
algebra with the following coproduct

∆(t) =
∑

C⊆V (t)
antichain

∏

v∈C

tv ⊗

(

tr
∏

v∈C

tv

)

where tv is the subtree rooted at v.
Eg:

The counit is given by I 7→ 1 and t 7→ 0 and the antipode is automatic
by the grading. This is the Connes-Kreimer Hopf algebra H.
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Tree Feynman rules

Given f, g : H → C[L] define

f ∗ g = m(f ⊗ g)∆

Say f is Feynman rules if

f(L1 + L2) = f(L1) ∗ f(L2)
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Tree factorial

The simplest non-trivial tree Feynman rules come from the tree factorial

t! =
∏

v∈V (t)

|tv|

Eg:

The Feynman rules are

φ(t) =
L|t|

t!
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Green functions revisited

Given a tree class T , form the Green function using tree factorial Feyn-
man rules

G(x, L) = φ

(

∑

t∈T

tx|t|

)

=
∑

t∈T

(xL)|t|

t!

Eg:

This is strictly simpler than the physical case, but gives a universal
combinatorial factor of the leading term. There is a similar story more
generally for trees.
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The renormalization group equation

revisited

If T is physically reasonable (à la Foissy) then this G(x, L) also satisfies
the renormalization group equation.

(

∂

∂L
+ β(x)

∂

∂x
+ γ(x)

)

G(x, L) = 0

What does the renormalization group equation mean at the level of trees?
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A series

Write
T (x) =

∑

i≥0

tix
i

Eg:

Using subHopfness of T and the Feynman rule property of φ the renro-
malization group equation can be rephrased in terms of

cn,n−1 = number of ways to get tn−1 from tn by removing leaves
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Try the examples

6-4



In general

(joint with S. Bloch and D. Kreimer)
G(x, L) satisfies the renormalization group equation if and only if cn,n−1

is an arithmetic progression.

For general tree Feynman rules the same basic picture holds but there is
a matrix not just a series.

This gives another combinatorial view of the renormalization group equa-
tion.
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Conclusion

The renormalization group equation can be viewed combinatorially. The
resulting recurrences are sometimes classical.

What else?

1. Higher renormalization group equations

2. Analogues for other types of combinatorial objects
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Bonus slide
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