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Augmented generating functions

Take a combinatorial class C. Build a generating function but keep the
objects.

3" calel € Qlc][fe]

ceC
e Get the ordinary generating function by evaluating c +— 1.

e Count with parameters by evaluating each object as a monomial
in the parameters.

e More to today’s point if C is a class of Feynman graphs (or rooted
trees...) evaluate by Feynman rules.
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Rooted trees
Wit~ A ?(w\t s-LwoJNrL

Let 7 be a class of rooted trees. Identify forests of rooted trees with
monomials in Q[7T].

Let B, (F') be the tree constructed by adding a new root above each tree
from the forest F'.
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Tree recurrences
Let T € Q[T][[x]]. What does f’-“\f’%w
v

count?

T=1 +ye v I
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More tree recurrences

T:H—xm(%) T = L"Y%{ﬁﬂ

What does

count?
T= 1 - x4 _x ] - 3“ +/\3
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Green functions

Think of rooted trees as representing the subdivergence structure of
Feynman diagrams.

For us, Feynman rules are an evaluation map ¢, say

¢:T — C|L] (sfw\t()l\‘[é! C‘L&-@>

The Green function is ¢ applied to the augmented generating function.

G(z,L) = #)(JCZ(C{-; X(H) :_/Z ‘Mﬂ XH;\
- ceJ

The actual physical Feynman rules build an integral from the Feynman
graph.
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A particular case

1

and evaluate with the physical ¢. After some work this gives

G(;Uél;_l—xG ‘Lp—lF(p)|p:o

‘];f+f1+fzp+f3p .

Consider

where
F(p) =

comes from the regularized Feynman integral for the primitive associated
to e.
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Rooted connected chord diagrams

Can solve this by a chord diagram expansion (with N. Marie, more gen-
eral case with M. Hihn).

A chord diagram is rooted if it has a distinguished vertex.

A chord diagram is connected if no set of chords can be separated from
the others by a line.

Eg:

|
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These are really just irreducible matchings of points along a line.
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Recursive chord order

Let C be a connected rooted chord diagram. Order the chords recur-
sively:

e ¢y 1s the root chord

e Order the connected components of C'\ ¢; as they first appear run-

ning counterclockwise, D1, Do, .... Recursively order the chords of
D+, then of D5, and so on.
Eg: L

Lorontadk o ds A A
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Terminal chords

A chord is terminal if it only crosses chords which come before it in the
recursive chord order. Let

T <to < - <ty

be the terminal chords of . Then

() b(C) = tl and

C|—¢
® fo = Jtoto_r " Jts—taSta—ty (') |

Eg: %
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Result

Theorem 1

solves

where

F(p) = %+f1+f2,0+f3/) + -
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The renormalization group equation

The renormalization group equation tells us how the coupling changes
with the energy. It is very important physically.
For us it says

(0% + B(x)(% — ’y(ac)) G(x,L)=0

What happens if we apply it to the chord diagram expansion?
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Chord diagram decomposition

We can insert a rooted connected chord diagram C into another Cy, by
e choosing an interval of (s other than the one before the root
e putting the root of C; just before the root of C5 and
e putting the rest of (5 in the chosen interval
Eg:
e

Since the diagrams are connected C'; and C5 can be recovered.
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A classical recurrence

This decomposition is classical. Nijenhuis and Wilf (1978) use it to prove
the recurrence (originally due to Stein (1978) and rephrased by Riordan)

n—1

Sy, = Z(Zk — 1)SkSn—k for n > 2
k=1

where s, is the number of connected rooted chord diagrams with n
chords.
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The recurrence translated

This recurrence can be extended to keep track of the terminal chords.

Let
gri= Y fofue)-i
C

|Cl=1
b(C)>i

where C' runs over rooted connected chord diagrams. Then

1—1

ki = 2(25 —1)g1.i—0gk—1¢ for 2 <k <4
(=1

This is exactly the renormalization group equation on chord diagrams.

This gives one combinatorial view of the renormalization group equation.
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Rooted trees revisited

Let 7 be rooted trees with no plane structure.
We had the polynomial algebra Q[7T]. This can be turned into a Hopf
algebra with the following coproduct

mtichaim

where t, is the subtree rooted at v.

- AN = 1eA + Aol +2ea] t-0- ﬁ

The counit is given by I — 1 and ¢ — 0 and the antipode is automatic
by the grading. This is the Connes-Kreimer Hopf algebra .
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Tree Feynman rules

Given f,g:H — C|[L] define

fxg=m(f®g)A

Say f is Feynman rules if

f(L1+ La) = f(L1) * f(L2)

she. Ll o L
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Tree factorial

The simplest non-trivial tree Feynman rules come from the tree factorial

veV (t)
Eg:
The Feynman rules are
LIt
o(t) = —
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Green functions revisited

Given a tree class T, form the Green function using tree factorial Feyn-

man rules
Al
Glo, L) = & (tht> -

teT teT

This is strictly simpler than the physical case, but gives a universal
combinatorial factor of the leading term. There is a similar story more

generally for trees.
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The renormalization group equation
revisited

If 7 is physically reasonable (a la Foissy) then this G(z, L) also satisfies
the renormalization group equation.

<8% + 5(:1:)(% + 7(:13)) G(z,L) =0

What does the renormalization group equation mean at the level of trees?



A series L,

Write

Using subHopfness of 7 and the Feynman rule property of ¢ the renro-
malization group equation can be rephrased in terms of

Cn.n—1 = number of ways to get ¢,,_; from ¢,, by removing leaves
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In general

(joint with S. Bloch and D. Kreimer)
G(x, L) satisfies the renormalization group equation if and only if ¢, ,,—1
is an arithmetic progression.

For general tree Feynman rules the same basic picture holds but there is
a matrix not just a series.

This gives another combinatorial view of the renormalization group equa-
tion.
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Conclusion

The renormalization group equation can be viewed combinatorially. The
resulting recurrences are sometimes classical.

What else?
1. Higher renormalization group equations

2. Analogues for other types of combinatorial objects
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Bonus slide



