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A different bit of combinatorics in QFT than my
usual story

A Wilson loop diagram:

The diagram is admissible if there is no crossing and it is not too
dense; no set of propagators P is supported on less than |P |+ 3,
and not even equality for the whole diagram.
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Idea

The idea of the Wilson loop is essentially duality.

The propagators encode helicity violation.
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Wilson loop diagram to matrix. . .

You go from a Wilson loop diagram to a matrix as follows:
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. . . to positroid

The matrix it represents is a positroid, that is for appropriate
choices of the variables, all the maximal minors are nonnegative.

Eg �
a b c d 0
0 e f g h

�
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But they are not always different positroids

Eg �
a b 0 c d 0
0 e f g h 0

� �
a b 0 c d 0
e f g h 0 0

�
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Some bigger examples
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Triangulations

The key is triangulations. Convert a Wilson loop diagram W to a
polygon dissection τ(W ):
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Result

Theorem

Two admissible Wilson loop diagrams W and W � define the same
positroid if and only if τ(W ) and τ(W �) differ by retriangulations.

Idea of proof: an exact subdiagram is one which is critical for the
density requirement. Replacing one exact subdiagram with another
is retriangulating. Replacing one exact subdiagram with another
does not change the positroid.
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Counting

Triangulations are counted by Catalan, so the number of admissible
Wilson loop diagrams giving the same positroid where the sizes of
the nontrivial maximal exact subdiagram are n1, n2, . . . , nj is

j�

i=1

1

ni − 1

�
2(ni − 2)

ni − 2

�
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Associahedra

Associahedra can also be defined by polygon dissections. Eg:
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Realized

Let x1, . . . , xn be the corners of a convex n-gon in R2 and let T be
the set of triangulations of this n-gon.

For each t ∈ T , define st to be the point in Rn with ith coordinate
the sum of the areas of all triangles of t incident to xi .

Let An be the convex hull of the st .

An is a realization of the n − 1 associahedron.
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Parallelism

Parallel faces correspond to Wilson loop diagrams giving the same
positroid.

Non-parallel faces correspond to Wilson loop diagrams giving
different positroids.

This is the retriangulations again. The second direction takes some
care with the bigger degree faces.
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What is the dimension of the positroid cell?

Answer, 3 times the number of propagators. Can we understand
this explicitly?
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Move to the Le diagram

There are many nice combinatorial objects in bijection with
positroids. The one we want is the Le diagram.

Eg
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The dimension is the number of plusses

The dimension is the number of plusses.

We can make use of this . . . via a very annoying induction.
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Sketch


