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Some recursive equations

Start in the middle

γk(x) =
1

k
γ1(x)(1 + rx∂x)γk−1(x)

γ1,n = p(n) +

n−1∑

j=1

(−rj − 1)γ1,jγ1,n−j

How do we get these? How do we analyze them?
What does it mean for quantum field theory?
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A Dyson-Schwinger equation

In the context of renormalization Hopf algebras
consider

X(x) = I −
∑

k≥1

xkp(k)Bk
+(X(x)Q(x)k)

where Q(x) = X(x)r with r < 0 an integer. This
carries the combinatorial information.

Consider the integral kernels for each B+, namely
the Mellin transforms

F k(ρ1, . . . , ρs).

This adds the analytic information.

Write the combination (X 7→ G, Bk
+ 7→ F k) as

G(x, L) =
∑

γk(x)Lk with γk(x) =
∑

j≥k γk,jx
j.

Working with systems of equations only increases
technical messiness.

2

Example

From Broadhurst and Kreimer [1].

X(x) = I − xB+

(
1

X(x)

)

.

So Q(x) = 1/X(x)2 Combinatorially counts rooted
trees.

F (ρ) =
1

q2

∫

d4k
k · q

(k2)1+ρ(k + q)2
− · · ·

∣
∣
∣
∣
q2=µ2

Combine to get

G(x, L) = 1−
x

q2

∫

d4k
k · q

k2G(x, log k2)(k + q)2

− · · · |q2=µ2

where L = log(q2/µ2). The (analytic) Dyson-
Schwinger equation for a bit of massless Yukawa theory.
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The linearized coproduct

Define
∆lin = (Plin ⊗ Plin)∆

or in general

∆n−1
lin = (Plin ⊗ · · · ⊗ Plin)

︸ ︷︷ ︸
n

∆n−1

where Plin projects onto the linear part of the Hopf
algebra, that is, kills disjoint unions of graphs.

By the Hochschild closedness of B+ we get

∆linX = PlinX ⊗ PlinX + PlinQ ⊗ x∂xX

where PlinQ = rPlinX
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Extracting γk(x) with S ⋆ Y

Writing the (analytic) Dyson-Schwinger equation
as

G(x, L) =
∑

γk(x)Lk,

we know from Connes and Kreimer [2] that if

σ1 = ∂Lφ(S ⋆ Y )|L=0

and

σn =
1

n!
mn−1 (σ1 ⊗ · · · ⊗ σ1)

︸ ︷︷ ︸
n

∆n−1

then
γk(x) = σk(X(x))

where φ is the renormalized Feynman rules, m is
multiplication, S is the antipode, and Y is the grading
operator.
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Extracting γk(x) with ∆lin

But σ1 only sees the linear part of the Hopf algebra
so we can use ∆lin in place of ∆. Giving

γk(x) =
1

k
γ1(x)(1 + rx∂x)γk−1(x),

the first of the recursive equations we began with.

In the Yukawa example

γk(x) =
1

k
γ1(x)(1 − 2x∂x)γk−1(x).
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The power of primitives

We need not restrict ourselves to connected
primitives. We can choose a basis for the primitives
which involves only one insertion place.

Mellin transforms become univariate: F k(ρ).
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More power of primitives

We can also expand ρ(1 − ρ)F k(ρ) as a series
making new primitives out of the higher order terms:

p1 = p p2 = Bp
+(Bp

+(I)) −
1

2
Bp

+(I)Bp
+(I)

so that

F k(ρ) =
∑

ρnF pn(ρ) =
∑ rnρn

ρ(1 − ρ)

Mellin transforms become geometric series:

F k(ρ) =
rk

ρ(1 − ρ)
.
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Finding the messy γ1 recursion

Rewrite the (analytic) Dyson-Schwinger equation

γ·L =
∑

p(k)xk(1+γ·∂−ρ)
−rk+1(1−e−Lρ)F k(ρ)

∣
∣
∣
∣
ρ=0

where γ · U =
∑

γkU
k.

Take an L derivative and set L = 0 to get

γ1 =
∑

p(k)xk(1 + γ · ∂−ρ)
−rk+1ρF k(ρ)

∣
∣
∣
∣
ρ=0

This determines γ1 recursively, but messily.
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Using the geometric series

We had

γ · L =
∑

p(k)xk(1 + γ · ∂−ρ)
−rk+1(1 − e−Lρ)F k(ρ)

∣
∣
∣
∣
ρ=0

γ1 =
∑

p(k)xk(1 + γ · ∂−ρ)
−rk+1ρF k(ρ)

∣
∣
∣
∣
ρ=0

Now use ρF k(ρ) = rk(1 + ρ + ρ2 + · · · ). Take two
L derivatives of the DSE and set L = 0 to get

2γ2 = −
∑

k

p(k)xk(1 + γ · ∂−ρ)
−rk+1rk(1 + ρ + ρ2 + · · · )

∣
∣
∣
∣
ρ

= −γ1 +
∑

xkp(k)rk

Suck rk into the definition of p(k) giving

γ1 =
∑

p(k)xk − 2γ2
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Finding the nice γ1 recursion

We had

γ1 =
∑

p(k)xk − 2γ2

and the other recursion

γk(x) =
1

k
γ1(x)(1 + rx∂x)γk−1(x).

Together

γ1 =
∑

p(k)xk − γ1(1 + rx∂x)γ1,

or at the level of coefficients

γ1,n = p(n) +

n−1∑

j=1

(−rj − 1)γ1,jγ1,n−j.

the second of the recursive equations we began with.
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Growth of γ1

How bad is the growth of γ1?

Assume γ1,1 6= 0 and f(x) =
∑ p(n)

n! xn has nonzero
radius of convergence ρ.

Let a(n) =
γ1,n

n! . The recursion becomes

an =
p(n)

n!
+

n−1∑

i=1

(−ri − 1)aian−i

(
n

i

)−1

=
p(n)

n!
+

(

−
rn

2
− 1

) n−1∑

i=1

aian−i

(
n

i

)−1

Idea:

a(n) is approximately
p(n)

n!
− ra1an−1

giving a radius of min
{

ρ, 1
−ra1

}

for
∑

anxn.

Implement the idea by bounding on each side.
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Lower bound on an

Recall

an =
p(n)

n!
+

(

−
rn

2
− 1

) n−1∑

i=1

aian−i

(
n

i

)−1

so

an ≥
p(n)

n!
− r

n − 2

n
a1an−1

Let b1 = a1, B(x) =
∑

bnxn and

bn =
p(n)

n!
− r

n − 2

n
b1bn−1

Then B
′′(x) = f ′′(x)−rb1xB

′′(x) which can be solved

for B
′′(x) to give radius min

{

ρ, 1
−ra1

}

for B(x).
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Upper bound on an

Recall

an =
p(n)

n!
+

(

−
rn

2
− 1

) n−1∑

i=1

aian−i

(
n

i

)−1

so for any ǫ > 0 there is an N > 0 such that for n > N

an ≤
p(n)

n!
− ra1an−1 + ǫ

n−1∑

j=1

ajan−j

Let c1 = a1, C(x) =
∑

cnxn,

cn =
p(n)

n!
− rc1cn−1 + ǫ

n−1∑

j=1

cjcn−j

if this is greater than an and cn = an otherwise. Then

C(x) = f(x) − ra1xC(x) + ǫC(x)2 + Pǫ(x)

where Pǫ is a polynomial to deal with initial terms.

14

The radius of C(x)

We have

C(x) = f(x) − ra1xC(x) + ǫC(x)2 + Pǫ(x)

The radius comes from the discriminant

(1 + ra1x)2 − 4ǫ(f(x) + Pǫ(x))

Clear poles

(1 + ra1x)2

f(x)
− 4ǫ

(

1 +
Pǫ(x)

f(x)

)

Technical computation gives that Pǫ(x)/f(x) is
bounded as ǫ → 0 so conclude that the radius of
C(x) is

min

{

ρ,
1

−ra1

}

.
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Why?

Understanding the growth of γ1 is understanding
the growth of the whole theory.

Expect a Lipatov bound γ1,n ≤ cnn!.

Does the first singularity of
∑ γ1,n

n! xn come from
renormalon chains or from instantons?

We’ve shown that a Lipatov bound for the
primitives leads to a Lipatov bound on the whole
theory.

The radius is either the radius from the primitives
or 1

−rγ1,1
, the first coefficient of the beta function.

The moral is that the primitives control matters.
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