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A Dyson-Schwinger equation

In the context of renormalization Hopf algebras
consider

X(z) =1- «"p(k)BE (X (2)Q(2)")

E>1

where Q(z) = X(z)" with 7 < 0 an integer. This
carries the combinatorial information.

Consider the integral kernels for each By, namely
the Mellin transforms

Fk(plv e '7ps)'

This adds the analytic information.

Write the combination (X +— G, Bf — F*) as
G(z,L) = > vi(x)LF with y(z) = ijk'Yk,sz-

Working with systems of equations only increases
technical messiness.

Some recursive equations

Start in the middle

(&) = sn () (1 + 20,1 ()

k
n—1
Y =p0) + > (=rF = Dy vin—j
j=1

How do we get these? How do we analyze them?
What does it mean for quantum field theory?

Example

From Broadhurst and Kreimer [1].

X(z) =1— 2B, (X}x)> .

So Q(z) = 1/X(x)? Combinatorially counts rooted
trees.

1 k-q
F(p)=— [ d¢ — ...
(p) qz/ (k2)1+r(k + )2 P2
Combine to get
T k-q
Ly=1-= [ d*
Gle. L) q* /d kk?G(fmlong)(k +4)?

— e

where L = log(q?/u?).  The (analytic) Dyson-
Schwinger equation for a bit of massless Yukawa theory.
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The linearized coproduct

Define
AIin == (-Plin & -Plin>A

or in general

An_l = (]Dlin Q& -Plin) Anil
~—_— —

lin
n

where B, projects onto the linear part of the Hopf
algebra, that is, kills disjoint unions of graphs.

By the Hochschild closedness of B we get
AlinX = PinX ® Pin X + BinQ 02 x8$X

where P, Q = r P X

Extracting v (z) with Ay,

But o1 only sees the linear part of the Hopf algebra
so we can use Ay, in place of A. Giving

() = T1a(E) (14 reds) e (@),

the first of the recursive equations we began with.

In the Yukawa example

(o) = () (1 = 200,31 (a).

Extracting 4 (z) with SxY

Writing the (analytic) Dyson-Schwinger equation

Gla, 1) = 3 wla) L,

we know from Connes and Kreimer [2] that if

as

o1 =01(S*Y)|r=0

and 1
op=—m""1o1® - ®0y)A"!
~————

n!
n

then

V(@) = op(X(2))
where ¢ is the renormalized Feynman rules, m is
multiplication, .S is the antipode, and Y is the grading
operator.

The power of primitives

We need not restrict ourselves to connected
primitives. We can choose a basis for the primitives
which involves only one insertion place.
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Mellin transforms become univariate: F*(p).



More power of primitives

We can also expand p(1 — p)E*(p) as a series
making new primitives out of the higher order terms:

pi=p = BLBLD) - SBLOBLD)

so that
S Tnp"
— p Fpn p — _nr
DEM) =) i

Mellin transforms become geometric series:

Tk

k _
F(m_pﬂ—pY

Using the geometric series

VL= pk)et (1 4+ 0-) 1= ) FR(p)

p=0

n=Y plk)a*(1+~-0_,) " 1 pF¥(p)

p=0

Now use pF*(p) = ri(1+ p+p?+---). Take two
L derivatives of the DSE and set L = 0 to get

272 = ZP
=71+ > 2" p(k)r

Suck 7 into the definition of p(k) giving

"= Zp(kj)l‘k — 272

Py 0-) T (L p P )

I3
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Finding the messy ~; recursion

Rewrite the (analytic) Dyson-Schwinger equation

yL=> p(k)

(1t0-,) T (1= B2 PR (p)

p=0
where v - U = " v, U".
Take an L derivative and set L = 0 to get
= p(k)a* (L4 -0-,) " pF*(p)
p=0

This determines ~y; recursively, but messily.

Finding the nice v, recursion

We had

=Y p(k)a" -2y

and the other recursion

(e) = () 1+ a0 e (),

Together

=Y p(k)a* — (1 +rad)m,

or at the level of coefficients

n—1
Y =p(n) + Y (=rf = Dy e
j=1

the second of the recursive equations we began with.

11



Growth of v,

How bad is the growth of ~;7?

Assume ;1 # 0and f(z) =, %x” has nonzero
radius of convergence p.

Let a(n) = % The recursion becomes
p(n) | n\ "
ap == + Z(—ri - 1)aian_i<i>
i=1
p(n) rn — n\ '
=S5 Z()

Idea:

p(n)

a(n) is approximately — " —raian_
n!

giving a radius of min {p, _7}0«1} for > anx™.

Implement the idea by bounding on each side.
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Upper bound on a,,

Recall

so for any € > 0 there is an N > 0 such that forn > N

n—1
< p(n)
an < R ra10n—1 + € Z Aj0n—j

Jj=1

Let c1 = anq, C(ZE) = chmnv

n—1
n
Cn = 1% —TrciCp—1t€ Z CjCn—j
j=1
if this is greater than a,, and ¢,, = a,, otherwise. Then
C(z) = f(z) — ra12C(z) + €C(2)* + P.(z)

where P, is a polynomial to deal with initial terms.
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Lower bound on a,,

Recall

SO 5
a zlﬂ—rn_ a10n—1
n!
Let by = a1, B(z) = > byz™ and
-2
b= P =2,

Then B”(z) = f"(x)—rbi2B"(x) which can be solved
for B”(z) to give radius min {p, L } for B(x).

—raj
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The radius of C(x)

C(z) = f(z) — ra1zC(z) + €C(z)* + P.(z)
The radius comes from the discriminant
(1 +ra1z)® — 4e(f(2) + Pe())

Clear poles

e (1)

Technical computation gives that P.(z)/f(z) is
bounded as ¢ — 0 so conclude that the radius of

C(z) is
min {p, 1 }
—rax
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Why?

Understanding the growth of ~; is understanding
the growth of the whole theory.

Expect a Lipatov bound vy ,, < ¢"nl.

Does the first singularity of 7711—,"1:" come from

renormalon chains or from instantons?

We've shown that a Lipatov bound for the
primitives leads to a Lipatov bound on the whole
theory.

The radius is either the radius from the primitives

*rin = the first coefficient of the beta function.

or

The moral is that the primitives control matters.
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