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B+ for trees

In the Hopf algebra of rooted trees B+(F ) constructs a tree by adding a
new root with children the roots of each tree from the forest F .

For example

B+ in rooted trees is a Hochschild 1-cocycle,

∆B+ = (id⊗B+)∆ +B+ ⊗ I.

This 1-cocycle property is key
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B+ for graphs

In the Hopf algebra of divergent 1PI Feynman graphs from a given theory,
write Bγ

+ for insertion into the primitive graph γ.
For example

We want this to be a 1-cocycle too. Two things can go wrong.

1-2



Simple cases are just trees

In the simplest cases a 1PI Feynman graph can be uniquely represented
by a rooted tree with labels on each vertex corresponding just to the
associated subdivergence.

For example

In such cases Bγ
+ is automatically a 1-cocycle.
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Overlapping divergences

In general there are many possible ways to insert one graph into another
so the tree must also contain the information of which insertion place to
use.

Also
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The hairy coefficient

We can fix this by making the coefficient hairy. For γ primitive

Bγ
+(X) =

∑

Γ∈H
Γ connected

bij(γ,X,Γ)

|X|∨

1

maxf(Γ)

1

(γ|X)
Γ

maxf(Γ): number of insertion trees for Γ,

|X|∨: number of graphs from permuting the external edges of X,

bij(γ,X,Γ): number of bijections of the external edges of X with an insertion
place of γ giving Γ.

(γ|X): number of insertion places for X in γ.

The coefficient assures that we do not double count graphs which can
be made in more than one way.
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But even more can go wrong

This makes it impossible for every Bγ
+ to be a 1-cocycle.
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Saved by Ward

Recall van Suijlekom’s Hopf ideal I. Then
∑

|γ|=k,resγ=r B
γ
+ is a 1-cocycle

in H/I.
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Unfolding some recursive equations

Lets get our intuition going in the Hopf algebra of rooted trees

X = I+ xB+(X
2)

What does this count?
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X = I+ xB+(X
3)

What does this count?
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X = I− xB+

(

1

X

)

What does this count?
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Combinatorial Dyson-Schwinger equations

Back to the Hopf algebra of 1PI divergent Feynman graphs in a given
theory. The combinatorial Dyson-Schwinger equation is

X(x) = I±
∑

k≥1

xkBk
+(XQk).

where Q(x) = X(x)−s.

For systems

Xr(x) = I±
∑

k≥1

xkBk,r
+ (XrQk).

where Q =
(

(Xv)2∏
n

i=1
(Xei )mi

)1/(val(v)−2)

in H/I as van Suijlekom discussed.
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For example

(Broadhurst and Kreimer; a bit of massless Yukawa theory).
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Analytic Dyson-Schwinger equations

Analytic Dyson-Schwinger equations are the result of applying the Feyn-
man rules to combinatorial Dyson-Schwinger equations. We renormalize
by subtracting at fixed values of the external momenta.

1.

2.

3.

4.

5.
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Continuing the example

In the Broadhurst-Kreimer Yukawa example

G(x, L) = 1−
x

q2

∫

d4k
k · q

k2G(x, log k2)(k + q)2
− · · ·

∣

∣

∣

∣

q2=µ2

where L = log(q2/µ2).

This has the same recursive structure as the combinatorial equation.
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The Mellin transform of the primitive

Fγ(ρ1, . . . , ρn)
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Disentangling the analytic part

We had

G(x, L) = 1−
x

q2

∫

d4k
k · q

k2G(x, log k2)(k + q)2
− · · ·

∣

∣

∣

∣

q2=µ2

.

Rewrite using the usual tricks

• plug in the Ansatz G(x, L) =
∑

γk(x)L
k

• use ∂k
ρx

−ρ|ρ=0 = (−1)k logk(x)

• switch the order of
∫

and ∂
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γ · L = x(1− γ · ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣

∣

∣

∣

ρ=0

where γ · U =
∑

γkU
k.
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The example all together

X(x) = I− xB+

(

1

X(x)

)

,

F (ρ) =
1

q2

∫

d4k
k · q

(k2)1+ρ(k + q)2

∣

∣

∣

∣

q=1

.

Combine to get

G(x, L) = 1−
x

q2

∫

d4k
k · q

k2G(x, log k2)(k + q)2
− · · ·

∣

∣

∣

∣

q2=µ2

where L = log(q2/µ2). Rearrange to

γ · L = x(1− γ · ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣

∣

∣

∣

ρ=0

where γ · U =
∑

γkU
k.
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Dyson-Schwinger equations – our setup

The combinatorial Dyson-Schwinger equation is

X(x) = I− sign(s)
∑

k≥1

tk
∑

i=0

xkBk,i
+ (XQk).

where Q(x) = X(x)−s. Associate with each Bk,i
+ a Mellin transform

F k,i(ρ1, . . . , ρn).

Then the analytic Dyson-Schwinger equation is

G(x, L) = 1−sign(s)
∑

k≥1

tk
∑

i=0

xkG(x, ∂−ρ1
)−sign(s) · · ·G(x, ∂−ρnk

)−sign(s)

(e−L(ρ1+···+ρnk
) − 1)F k,i(ρ1, . . . , ρnk

)

∣

∣

∣

∣

ρ1=···=ρnk
=0

where nk = sign(s)(sk − 1).
Systems of equation are similar but messier.
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Reduction to one insertion place

Use new primitives to account for the error when only inserting in one
insertion place. For example

X = 1− xB
1

2

+

(

1

X2

)
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q1 =
1

2
q2 = 0 q3 =

1

8
−

1

8

q4 =
1

8
−

1

8
−

1

4
+

1

8
+

1

8
· · ·
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Check primitivity
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Return to rooted trees

In general the insertions we need aren’t possible.
Let G be a 1PI Feynman graph; let F (G) be the forest of insertion

trees which give G.
F is an injective Hopf algebra morphism.

Extend this situation by
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Reduction to symmetric insertion

Use R+ for red insertion
Switch from B+ to R+ by at each loop order defining a new primitive

which is the difference between what we have already built with R+ and
what we had originally.

We had

X(x) = I− sign(s)
∑

k≥1

tk
∑

i=0

xkBk,i
+ (XQk).
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qn = −sign(s)[xn]X + sign(s)
n−1
∑

k=1

Rqk
+ ([xn−k]XQk)

X = 1− sign(sr)
∑

k≥1

xkRqk
+ (XQk).

Each qn is primitive, inductively.
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Consequence

Symmetric insertion means a single insertion place which means univari-
ate Mellin transforms.

So the Dyson-Schwinger equation simplifies from

G(x, L) = 1−sign(s)
∑

k≥1

tk
∑

i=0

xkG(x, ∂−ρ1
)−sign(s) · · ·G(x, ∂−ρnk

)−sign(s)

(e−L(ρ1+···+ρnk
) − 1)F k,i(ρ1, . . . , ρnk

)

∣

∣

∣

∣

ρ1=···=ρnk
=0

where nk = sign(s)(sk − 1), to

G(x, L) = 1− sign(s)
∑

k≥1

tk
∑

i=0

xkG(x, ∂−ρ)
1−sk(e−L(ρ) − 1)F k,i(ρ)

∣

∣

∣

∣

ρ=0

3-7



Bonus slide – symmetric insertion

For the purposes of symmetric insertion define use the Mellin transform

Fp(ρ) = (q2)ρ
∫

Intp(q
2)





1

|p|

|p|
∑

i=1

(k2i )
−ρ





|p|
∏

i=1

d4ki,

where Intp(q
2) is the integrand determined by p.

We’ll renormalize by subtraction at q2 = µ2; let

Int−p (q
2) = Intp(q

2)− Intp(µ
2).

So for symmetric insertion we have

φR(R
p
+(X))(q2/µ2) =

∫

Int−p (q
2)





1

|p|

|p|
∑

i=1

φR(X)(−k2i /µ
2)





|p|
∏

i=1

d4ki.
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