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B for trees

In the Hopf algebra of rooted trees By (F') constructs a tree by adding a
new root with children the roots of each tree from the forest F'.
For example

O+ (1A 1) = ﬂ\

B4 in rooted trees is a Hochschild 1-cocycle,

WQA +®

This 1-cocycle property is key

1-1



B, for graphs

In the Hopf algebra of divergent 1PI Feynman graphs from a given theory,
write B for insertion into the primitive graph ~.

For example
i (51 - e

N
~—— 7 7 / N —

b, (0-) = @+ - -2-6

We want this to be a 1-cocycle too. Two things can go wrong.
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Simple cases are just trees

In the simplest cases a 1PI Feynman graph can be uniquely represented
by a rooted tree with labels on each vertex corresponding just to the

associated subdivergence.

For exaV
\( /\/\,\ e
7 7 ” /\/\@f\/“

v

In such cases Bl is automatically a 1-cocycle.
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Overlapping divergences

In general there are many possible ways to insert one graph into another
so the tree must also contain the information of which insertion place to

use

Also

ovqf\mfr]/\% suw{w%w%

v\a\»@\% Q;i_ <\<E :?_'@\
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The hairy coefficient

We can fix this by making the coefficient hairy. For v primitive

I

5 bij(y,X,I) 1 1

Bl (X) = | X|v  maxf(T) (v]X)

e+
I' connected

maxf(I'): number of insertion trees for I',
| X|v: number of graphs from permuting the external edges of X,

bij(v, X,I'): number of bijections of the external edges of X with an insertion
place of v giving I'.

(7| X): number of insertion places for X in ~.

The coefficient assures that we do not double count graphs which can
be made in more than one way.
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But even more can go wrong

f‘@w Can BL make \% ‘mw\”"\db
/\,\<f:' ‘(ado W\LC}«\A, 5~ \oa if\stf""'\a/

This makes it impossible for every Bl to be a 1-cocycle.
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Saved by Ward

Recall van Suijlekom’s Hopfideal I. Then Z| =k resy=r B7 is a l-cocycle
in H/I.
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Unfolding some recursive equations
Lets get our intuition going in the Hopf algebra of rooted trees

X =1+ 2B, (X?)

—_

What does this count?

X (l+xe+ ’21)+x(/\+q§3+
+x< }-F‘*q +’Z)\>+

Xreay =\ coM(u\&/ QAL Ux(\aré 4 nes (AI'JM{T

Vi q,)\
N\B’ ad hen (mf%@kr \foo\,,{; AAM&)
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X =1+2B,(X?)
What does this count?
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1
X=1—2xB —
What does this count?

Ko e o] 2 (A o (A 25 A

QOW\‘\S ?\W\Q__ ‘\‘(‘QSZ% o WUK

A I
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Combinatorial Dyson-Schwinger equations

Back to the Hopf algebra of 1PI divergent Feynman graphs in a given
theory. The combinatorial Dyson-Schwinger equation is

L e T
_Hi;kak C@/\ \Oof &f&sv
V\)‘Qfﬁ H\W ’b

where ws , | Ao

For systems

XQu) =14 " BET(X7Q").

k>1

(X7)2 1/(val(v)—2)
where ) = (1_[” Xy ) in Hf1 @S van Suijlekom discussed.

Walkss \(\/
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For example

(Broadhurst and Kreimer; a bit of massless Yukawa theory).
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Analytic Dyson-Schwinger equations

Analytic Dyson-Schwinger equations are the result of applying the Feyn-
man rules to combinatorial Dyson-Schwinger equations. We renormalize
by subtracting at fixed values of the external momenta.

e cecvee dodee o MO D ks of e
| \(\QLUfS-I\I‘Q-— %’\‘f\)c.}\yt_ ogf r@\orhoif%e

2. N c@ur\}\\'«a\ VAr @ lgo conso N c.ou\tama CQAS‘\'M%,
2 Theel o A DG ok Ql\c)e;cg_

4. NOM) NS 0\‘&,0 It \}Wim\o(ﬂ/a @Ww *\LNEXM

5. Ta A oe swle ot Uk = loeg(’%ﬂq)

2-6



Continuing the example A

In the Broadhurst-Kreimer Yukawa example 5“"\0/ 0\7
£

(x’L) -

where L = log(q?/u?). px

Dy

This has the same recursive structure as the combinatorial equation.
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The Mellin transform of the primitive
P‘or a eflfv\'\l\‘— 6”\(\’\ ¥
Geb a  &rmal ‘.nJ_nO AN Qp)owcssi@/\/

Jlers s rop—abn b | + .
ﬂ\p\la\nc__ I*O-b.kc\r\'bc

gp,L eX lesned Mo _'(__

Codl F\( [f - )
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Disentangling the analytic part

We had
x k-q
G(z,L)=1- = [ d*k — .. .
R e e =
Rewrite using the usual tricks
e plug in the Ansatz G(x, L) = Y ufx)T* = | — Z ' [__k
k

o use D5z, = (—1)" log" (x) k7
e switch the order of [ and 0
A .
Z K/\L = 5'1—- §a4L LL o n 3 T o
( C(1-2 NP ) () o

N7 |

V)

_,_%Sa‘*k L ()~
@ IZLCL%)'L ) " ;LL; i
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p=0

v-L=z(l-7- 00)10)

where v - U = " v, UF.
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The example all together

X(a;):H—:EBJFM (XL:))’

_ L 4 k-q
F0) = 7 [ iy

qg=1
Combine to get

x k-q
g T A ..
Gz, L) -z / T G 1o k) (k + 0)?

q?=p?

where L = log(q?/u?). Rearrange to

where v- U = " ~,UF.

2-12



Dyson-Schwinger equations — our setup

The combinatorial Dyson-Schwinger equation is
173
X(x) =1 —sign(s) Z Z :ckBi’z(XQk).
k>1 i=0
where Q(z) = X (x)™°. Associate with each B_’i’i a Mellin transform
FM(p1, .., pn)-

Then the analytic Dyson-Schwinger equation is

Gl ) = 1-sin(s) Y 32460, ) Gl 0y, )40

k>11=0
(e~ LlprtFrn) _ 1) FRi(py, . .. pn,)
p1="+=pn, =0

where ny = sign(s)(sk — 1).
Systems of equation are similar but messier.
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Reduction to one insertion place

Use new primitives to account for the error when only inserting in one
insertion place. For example %

1 | 6+(«ﬂ):{
Yoo (1)



© ! Y
953 6 -
go(;QIcaU p’o (or Qlf

>< j1_~;< "O‘G«@J ’5()) < ) @:X
=3O w=0 %:%-‘8‘-‘%‘@‘
q4:%—&——%—®——i—@—+%_@_+%_@_
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Check primitivity
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Return to rooted trees

In general the insertions we need aren’t possible.

Let G be a 1PI Feynman graph; let F'(G) be the forest of insertion
trees which give G.

F' is an injective Hopf algebra morphism.

Extend this situation by (,olou(ma Qaaqo N enode 3i42/*”‘b ol
cQ/ -u\ggr}\‘@/\
o red Tngrhen (63!*\%“(. if\w\\@‘>

¢ \b\“(/\L if\%kr\r\'w (\)su. \nwkof\\)

S G~ o\\ Qsl\gm‘\(, 6‘“\)()\& W10y O



Reduction to symmetric insertion

Use R, for red insertion
Switch from By to R, by at each loop order defining a new primitive
which is the difference between what we have already built with R, and

what we had originally.
We had

X(x) =T — sign(s Z kBk4 (X QM.
Xf _/(I’KC‘-... 9. C,
4 :
XM::K ‘5@0(67 R,{_(XQ) — ..

‘Lf[le >< B B&l (‘ 69(\(5) Kﬁ; (XQQ» ma eyt ?r;rv{l}\v@



qn = —sign(s)[z"] X + sign(s) i ([P]XQ]“)
k=1

X =1 —sign(s;) Zka:{’“ (XQ").

E>1

Each g, is primitive, inductively.
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Consequence

Symmetric insertion means a single insertion place which means univari-

ate Mellin transforms.
So the Dyson-Schwinger equation simplifies from

G(z,L) = 1—sign(s szkG x,0_,,) —sign(s) | G(%a_pnk)—sign(s)

k>1 1=0

(e Elorttom) _ 1)VFRi(py . pp)

plz---:pnk =0

where ng = sign(s)(sk — 1), to

G(x,L) =1 — sign(s) Z 2*G(x,0_,) 7 (e P - 1)Fk’¥(p)

k>1 = p=0
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Bonus slide — symmetric insertion

For the purposes of symmetric insertion define use the Mellin transform
|p] |p|

Fylp) = (@) | Taty( ,p‘Zzﬁ [T

where Int,(q?) is the integrand determined by p
We'll renormalize by subtraction at ¢ = u?; let

Int,; (¢°) = Int,(¢*) — Int,(u?).
So for symmetric insertion we have

|p| 1p|

on(RL (X)) /i) = [ Tnt; ||Z¢R (—42/u2) | [T "%,



