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A recursion for γk
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The renormalization group equation

For a vertex v



∂

∂L
+ β(x)

∂

∂x
−

∑

e adjacent to v

γe(x)



x(val(v)−2)/2Gv(x, L) = 0

For an edge e
(

∂

∂L
+ β(x)

∂

∂x
− 2γe(x)

)

Ge(x, L) = 0

where

β(x) = ∂LxφR(Q)|L=0 =
∑

j∈R

|sj |γj
1(x)x

γe(x) = −1

2
∂LG

e(x, L)|L=0 =
1

2
γe
1
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Expanding the vertex
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


∂

∂L
+
∑

j∈R

|sj |γj
1(x)x

∂

∂x
+ sign(sr)γ

r
1(x)



Gr(x, L) = 0.

4-4



The γk recursion

Extracting the coefficient of Lk−1 and rearranging gives

Specializing to the single equation case gives

γk =
1

k
γ1(x)(sign(s)− |s|x∂x)γk−1(x).
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S ⋆ Y – some definitions

Some definitions

• Let S be the antipode of the Hopf algebra.

• Let Y be the grading operator.

• Let
σ1 = ∂Lφr(S ⋆ Y )|L=0

and

σn =
1

n!
mn−1(σ1 ⊗ · · · ⊗ σ1

︸ ︷︷ ︸

n times

)∆n−1
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S ⋆ Y – some lemmas

• S ⋆ Y is 0 on products

•

∆([xk]Xr) =

k∑

j=0

[xj ]XrQk−j ⊗ [xk−j ]Xr

∆([xk]XrQℓ) =

k∑

j=0

[xj ]XrQk+ℓ−j ⊗ [xk−j ]XrQℓ

•

(Plin ⊗ id)∆Xr = Xr ⊗Xr −
∑

j∈R

sjX
j ⊗ x∂xX

r

(Plin ⊗ id)∆X = X ⊗X − sX ⊗ x∂xX

for the single equation case

4-7



The scattering type formula

The scattering type formula captures the renormalization group in a
Connes-Kreimer framework. In our notation it says

σn(X
r) = sign(s)γr

n(x)
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The γk recursion

Using

σn(X) = sign(s)γn

σ1 = ∂Lφr(S ⋆ Y )|L=0

σn =
1

n!
mn−1(σ1 ⊗ · · · ⊗ σ1

︸ ︷︷ ︸

n times

)∆n−1

(Plin ⊗ id)∆X = X ⊗X − sX ⊗ x∂xX

Calculate
γk =
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And similarly for systems.
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Notes

1.

2.

4-11



Trading ρ for x

Let D = sign(s)γ ·∂−ρ and Fk(ρ) =
∑tk

i=0 Fk,i(ρ) so the Dyson-Schwinger
equation reads

γ · L =
∑

k≥1

xk(1−D)1−sk(e−Lρ − 1)Fk(ρ)

∣
∣
∣
∣
ρ=0

What is the lowest possible degree of x in

xk(1−D)1−skρℓ|ρ=0
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Reduction to geometric series

So, there exists unique rk, rk,i ∈ R, k ≥ 1, 1 ≤ i < k such that

∑

k

xk(1−D)1−sk(e−Lρ − 1)Fk(ρ)

∣
∣
∣
∣
ρ=0

=
∑

k

xk(1−D)1−sk(e−Lρ − 1)




rk

ρ(1− ρ)
+
∑

1≤i<k

rk,iL
i

ρ





∣
∣
∣
∣
ρ=0

Note
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Mysterious series

The ri,j are mysterious. With s = 2 and a single primitive at 1 loop we
get.

r1 =f−1

r2 =f2
−1 − f−1f0

r2,1 =0

r3 =2f3
−1 + f2

−1(−4f0 + f1) + f−1f
2
0

r3,1 =− f3
−1 + f2

−1f0

r3,2 =0

r4 =2f4
−1 + f3

−1(−12f0 + 6f1 − f2) + f2
−1(9f

2
0 − 3f0f1)− f−1f

3
0

r4,1 =− f4
−1 + f3

−1(6f0 − 2f1)− 3f2
−1f

2
0

r4,2 =
7

6
f4
−1 −

7

6
f3
−1f0

r4,3 =0

...
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Even particular coefficients and examples are mysterious.

F (ρ) =
−1

ρ(1− ρ)(2− ρ)(3− ρ)
,

gives

r1 =− 1

6

r2 =− 5

63
r2,1 =0

r3 =− 14

65
r3,1 =

−5

64
r3,2 =0

r4 =
563

67
r4,1 =

−173

66
r4,2 =

−35

66

r5 =
13030

69
...

...

r6 =− 194178

611
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L and L2

The Dyson-Schwinger equation has become

γ · L =
∑

k

xk(1−D)1−sk(e−Lρ − 1)




rk

ρ(1− ρ)
+
∑

1≤i<k

rk,iL
i

ρ





∣
∣
∣
∣
ρ=0

Take the coefficients of L and L2
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2γ2 = −γ1 −
∑

k≥1

(rk + 2rk,1)x
k
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The γ1 recursion

Recall

γk =
1

k
γ1(x)(sign(s)− |s|x∂x)γk−1(x).

Let
P (x) = −

∑

k≥1

(rk + 2rk,1)x
k

Get
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Philosophy
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The goal is
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How to interpret P (x)
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Systems

The shape of the final equations in the system case is

γr
1 =

∑

k≥1

pr(k)xk − sign(sr)γ
r
1(x)

2 +
∑

j∈R

|sj |γj
1(x)x∂xγ

r
1(x)
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Summary of the big picture
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The Broadhurst Kreimer example

G(x, L) = 1− x

q2

∫

d4k
k · q

k2G(x, log k2)(k + q)2
− · · ·

∣
∣
∣
∣
q2=µ2

where L = log(q2/µ2).
The differential equation is

γ1(x) = x− γ1(x)(1− 2x∂x)γ1(x)

Solving (presented in the beautiful form given by Broadhurst)

√
x

2π
= exp

((
(γ1 + 2)2√

2x

)2
)

erfc

(
(γ1 + 2)2√

2x

)
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A variant

Take s = 2 and

F (ρ) =
−1

ρ(1− ρ)(2− ρ)(3− ρ)
,

ρF (ρ) = −1

6
+ ρ2F (ρ)− 11

6
ρ3F (ρ) +

1

6
ρ4F (ρ)

This gives that

γ1 =− x(1− γ · ∂−ρ)
−1ρF (ρ)|ρ=0

=
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Concluding the variant

So
γ1 =

x

6
− 2γ2 − 11γ3 − 4γ4.

But we still have

γk =
1

k
γ1(x)(1− 2x∂x)γk−1(x),

So we get a fourth order differential equation for γ1 which contains
no infinite series and for which we completely understand the signs of
the coefficients.
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Bonus slides – Growth estimates

View
γ1(x) = P (x)− γ1(x)(sign(s)− |s|x∂x)γ1(x)

as a recursive equation. At the level of coefficients
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Rewrite for a(n)

Assume γ1,1 6= 0 and f(x) =
∑ p(n)

n! xn has radius of convergence ρ > 0.
Let a(n) =

γ1,n

n! . The recursion becomes

an =

=
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How bad is the growth of γ1?

Idea:

a(n) is approximately
p(n)

n!
+ |s|a1an−1

giving a radius of min
{

ρ, 1
sa1

}

for
∑

anx
n. For nonnegative series im-

plement the idea by bounding on each side.
Easy direction:

an ≥ p(n)

n!
+ |s|n− 2

n
a1an−1

Messy direction: for any ǫ > 0 there is an N > 0 such that for n > N

an ≤ p(n)

n!
+ |s|a1an−1 + ǫ

n−1∑

j=1

ajan−j
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