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Pdlya’s analysis of rooted trees

Pélya converted the recursive equation

T(z) = zexp ( > TE™) /m)

m>1

to a bivariate function

E(z,y) = ze¥ exp < > T /m>.

m>2

The recursive equation is then T(z) = E(z, T(x)).

Weierstrass preparation on E gives a square root
singularity at p. Then the Cauchy integral theorem
gives

t(n) ~ Cp~"n=3/2

Unlabelled rooted trees

Let ¢(n) be the number of unlabelled rooted trees
with n vertices. Let T(xz) = > <;t(n)z™ be the
corresponding generating function.

Decompose a rooted tree into its root and the forest
of its subtrees; an arbitrary multiset of rooted trees.

T(z) =  + 2MSet(T)(x).

That is

T(z) = zexp ( > T(™) /m).

m2>1

The radius of convergence, p, of T(z) is
(the reciprocal of) Otter's tree constant. p
0.3383218568992076952 . . ..

The universal law

Asymptotics of the form C'p~"n~3/2 are ubiquitous

for classes of rooted trees with recursive definitions,
hence the term universal law.

e plane trees: T(z) = z + 2Seq(T)(z)

e plane binary trees: T(z) = z + 2Seq,(T) ()

(0,1,2,3)-trees: T(x) = x 4 xMSetq 5 51 (T)(x)

trees with cyclically ordered subtrees at each vertex:
T = 2 + DCycle(T)(z)

identity trees: T(z) = z + 2Set(T)(x)

labelled trees: T(z) = ze™(®)

and anything defined by a huge swath of other recursive
equations built out of (most) iterations of the basic
building blocks above and others.



Recursive systems

The solutions of polynomial recursive systems also
satisfy the universal law under reasonable conditions
(independently: Drmota, Lalley, and Woods)

Suppose

y1=P1(z, 91, -, Ym)

Ym = @m(%yl, .- wym)

with the ®; polynomials with real coefficients.

Note that geometric series can be converted to
polynomials at the expense of a new variable: replace
1/(1 —T) with a new variable F' and add the equation

F=14+F-T.

This is enough for systems coming from quantum field
theory.

Theorem for systems

Theorem 1. Suppose § = ®(y) is a polynomial
system that is nonlinear, proper, nonnegative, and
irreducible.

Then all component solutions y; have the same
radius of convergence p < oo and have a square root
singularity at p.

If furthermore the system is aperiodic then all y;
satisfy the universal law.

5 conditions on systems

1. The system is nonlinear if at least one of the ®; is
nonlinear in y1, ..., Ym.

2. The system is nonnegative if each ®; has

nonnegative coefficients.

3. For ¥ = (y1,--.,Ym) € Rz]]™ define the

x-valuation by val(y) min;(val(y;)) where
val(3o 7, anz™) = k with aj, # 0, and val(0) = oo.
Define d(y,7') = 27¥@-7)_ Then the system is
proper if

d(®([@), ")) < Kd(y,7') for some K < 1.

4. The system is irreducible if its dependency graph is

strongly connected.

5. A power series T(z) is aperiodic if it cannot be

written T(z) = 2°U(z?). The system is aperiodic
if each component solution is aperiodic.

QED with 1 primitive per loop order

system drawn with diagrams goes here
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A canonical subsystem; convergent, but captures
renormalization.



Make the system nonnegative

Ti=1+T) (% - NQ)T;Q(l - N?»))k

E>1
Ty
No =z
27 (1 Ny)(1— Ny)
T,
Ny=g—t
LR SR AT

Convert the geometric series

T\ =1+T\F

F = aT?F2F; + 2T2F2F5F
No = aT\FyFy

Fy, =1+ FN,

N3 =T\ F2

Fy =1+ F3N;

® is nonlinear, irreducible, and aperiodic. ®2 is proper.
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QED variants

Any polynomial number of primitives per loop order

2k+1
Tl

=1+ kzzlp(k)xku — (o = 1) (1 = (T5 = 1)F

with 75 and T3 as before.  The linear case is
Cvitanovi¢'s gauge invariant sectors. The radii gently
decrease: only down to 0.046 by the polynomial k28.

Use gauge invariance first (Johnson, Baker, Willey)
to reduce to

k
X x
T = -
Z(1—T> 1-T—z

k>1

This gives large Schroder numbers A006318. The
radius is 3 — 2v/2 = 0.17157287525380990247 . ..
which is considerably larger than 2/27 = 0.074 showing
how powerful gauge invariance is.

QED universal law and radius

So the QED system satisfies the universal law; the
number ¢1(n) of objects (particular sums of graphs)
with n loops (per summand) satisfies

ti(n) ~ Cp~"n=3/2

What is the radius? Manipulate the system to get
—24+ Ty + (60 —5) T2 +8T7 +(—122—4) T +82TY = 0
As a polynomial in T3 this has discriminant

409622 (3222 — 8z + 1)(—2 + 27x)?

So the radius of the system is

2
27

This number belongs to QED; what is its physical
meaning?

Other theories

We can play the same game for other theories, ¢3,
% mixed ¢ ¢, . ...

The universal law continues to hold for reasonable,
convergent series of primitives. The radii don't end up
being particularly nice.
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Bonus slides:

Theorem 2. Let © € O such that

e O js nonlinear

e [2"|O(A(z)) depends only on [z']A(x) fori < n.
Let A(x) be a power series

e with nonnegative coefficients

e with zero constant term

e which diverges at its radius of convergence

e if MSety;, DCycle,,, or Cycle,, appear in © then
A(x) has integer coefficients.

Then there is a unique T(x) satisfying
T(z) = A(z) + O(T)(x).

The coefficients of T satisfy the universal law on their
support.

Operators giving the universal law

Let O be the set of operators on power series built
out of

1. E(z,-) such that

(a) E(z,y) has nonnegative coefficients and zero
constant term,

(b) E(a,b) < 0o =3e>0,E(a+e¢,b+¢) < o0,

(c) 3R > 0, [z"y]|E(z,y) < R,

2. MSetys and Seq,, for all M C Z>0.

3. DCycle,; and Cycley, for >
finite.

men 1/m = o0 or M

using scalar multiplication from R2Y  addition,
multiplication, and composition, and where if MSet,/,
DCycle,;, or Cycle,, appear then scalars and
coefficients of E must be integers.
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