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Why am | talking in this session?

and with a section called “Renormalization Hopf algebras”!?

In 2014-2015 | was on sabbatical.
| spent some of that time talking to Steph.

| wanted to understand why the renormalization Hopf algebra
world seemed to have a different flavour than the rest of the
combinatorial Hopf algebra world.

One paper came out of this arXiv:1511.06337.
It had errors (all due to me).
Now it is corrected and has appeared: E-JC 24(3) (2017) #P3.10.
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The Connes-Kreimer Hopf algebra

Take a polynomial algebra of rooted trees and use the following

coproduct:
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Renormalization Hopf algebras of Feynman diagrams

Feynman diagrams are graphs which tell a story of particle
interactions.
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Take a polynomial algebra of them and use the following

coproduct:
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Important things from this perspective

o

Add-a-root /graph insertion, Hochschild 1-cocycles.

[*]

SubHopf algebras with one generator in each degree.

(%]

Combinatorial specifications/Dyson-Schwinger equations.

[*]

Feynman rules/character maps.

L]

Iterated coproduct, and pulling out particular terms.
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Shape Hopf algebra

Use two layers.
oy _ (onnedc&

Take the polynomial algebra generated byléhapes, including skew.
Identify disconnected shapes with the monomial of components.

Make the coproduct match Schur functions:

e A(wp) = 2 (/0 ©0/)
MENEN

And nothing else.
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...and symmetric functions

The shape Hopf algebra is the Hopf algebra of intervals in Young's
lattice.
It is not cocommutative.

The symmetric function Hopf algebra is a quotient.
It is a cocommutative quotient.

That's all we need to know.
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A complicated proof of an easy fact

Conclusion
If v is a shape let o™ be the 180° rotation.

Their Schur functions are the same, written o ~ a*
Proof.
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Cocommutativity was the key.
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McNamara, van Willigenburg WOW shapes

Schematically: w
w=>0"

wtotw 0

(These are only two of their four cases.)
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Composition

Compose with a WOW shape by two different kinds of overlap.
Schematically:

Conclusion
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Schematically:

Conclusion

Skew Schur function identities from Hopf algebras
Key ribbons and almost rectangles

ww‘a =

S

Note that the top and bottom key ribbons may differ.
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Result

Theorem

Let 3 be a partition shape that is a rectangle with the lower right
corner box removed. Let v bea W — O - W o W T O1T W
shape with no loose end ribbons. Then

Bory~ 3*on.

What are loose end ribbons?

Prove the result by cocommutativity pulling out the
key ribbon @ stuff and stuff @ key ribbon terms (with many details).
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Conclusion

o This is much more specialized than what McNamara and van
Willigenburg can prove about WOW-built skew Schur function
identities.

o It can prove some cases that they can't.

o Generalizations?

© What about all those/other renormalization Hopf algebra
things?
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