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Combinatorics providing insights in QFT

Things you can do Combinatorics to use
Mathematizing
Renormal-
ization
Evaluating
individual
Feynman
graphs
Moving
from scalar
field theories
to gauge
theories
Understanding
Dyson-
Schwinger
equations
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Some refs

References
Mathematizing arXiv:hep-th/0211136
Renormal- arXiv:hep-th/0506190
ization arXiv:1202.3552
Evaluating arXiv:0804.1660
individual arXiv:0801.2856
Feynman arXiv:0910.5429
graphs arXiv:1208.1890
Moving from arXiv:1010.5804
scalar field arXiv:1208.6477
theories to arXiv:1207.5460
gauge theories
Understanding arXiv:hep-th/0605096

Dyson- arXiv:0810.2249
Schwinger arXiv:0805.0826
equations arXiv:1210.5457

Many of these have appeared in journals now. And there are many more.
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Simple nestings and chainings

Today there’s only time to talk about one of these, so I will talk about
Dyson-Schwinger equations.

An example in Yukawa theory (Broadhurst-Kreimer arXiv:hep-th/0012146)

G(x, L) = 1−
x

q2

∫

d4k
k · q

k2G(x, log k2/µ2)(k + q)2
− · · ·

∣

∣

q2=µ2

where L = log(q2/µ2).

How to capture the combinatorics of the recursion?

X(x) = I− xB+

(

1

X(x)

)
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Combinatorial Dyson-Schwinger equations

We can capture other recursions in a similar language – this is equivalent
to the diagrammatic viewpoint on Dyson-Schwinger equations.
Eg QED:
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Putting the analysis back in

In the Yukawa example we had

G(x, L) = 1−
x

q2

∫

d4k
k · q

k2G(x, log k2/µ2)(k + q)2
− · · ·

∣

∣

q2=µ2

• plug in G(x, L) = 1−
∑

γk(x)L
k

• use ∂k
ρx

−ρ|ρ=0 = (−1)k logk(x)

• switch the order of
∫

and ∂

to obtain

G(x, L) = 1− xG(x, ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣

∣

ρ=0

Where F (ρ) is the integral for the primitive regularized by a parameter
ρ which marks the insertion place.
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Today’s analytic Dyson-Schwinger equations

Beginning with a combinatorial Dyson-Schwinger equation

X = I±
∑

k≥1

xkBγk

+ (XQk)

where Q = X−s, define the analytic Dyson-Schwinger equation of to be

G(x, L) = 1±
∑

k≥1

xkG(x, ∂−ρ)
1−sk(e−Lρ − 1)Fk(ρ)|ρ=0

where Fk(ρ) is the Feynman integral for γk regularized by a parameter
ρ which marks the insertion place.

More insertion places and systems get more complicated.
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Rearranging Dyson-Schwinger equations

The Yukawa example is particularly nice and can in fact be solved.

This example works so well because the Dyson-Schwinger equation had

• One primitive graph

• which had a particularly nice integral (scaled just a geometric se-
ries)

• inserted into one place

The program of arXiv:0810.2249, Memoir. Am. Math. Soc. 211, no.
995, with an important improvement in arXiv:1302.0080, was to gen-
eralize this nice situation into a general reduction process for Dyson-
Schwinger equations.

Some steps make combinatorial sense, others do not.
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Finding the γk recurrence

Write
G(x, L) = 1±

∑

k≥1

γk(x)L
k

We can find a recurrence for γk in terms of lower γj – it is the renormal-
ization group equation translated into this language:

(

∂

∂L
+ β(x)

∂

∂x
± γ1(x)

)

G(x, L) = 0

Extracting the coefficient of Lk−1 gives a recurrence for γk

γk =
1

k
γ1(x)(−sign(s) + |s|x∂x)γk−1(x)

for k ≥ 2
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Trading ρ for x

Notice that γk(x) begins with an xk term. So the lowest possible power
of x in

xkG(x, ∂−ρ)
1−skρℓ|ρ=0

is

Consequently there is a unique sequence rk such that

∑

k

xkG(x, ∂−ρ)
1−sk(e−Lρ − 1)Fk(ρ)

∣

∣

∣

∣

ρ=0

=
∑

k

xkG(x, ∂−ρ)
1−sk(e−Lρ − 1)

rk
ρ(1− ρ)

∣

∣

∣

∣

ρ=0
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The differential equation

Taking the coefficient of L and L2 in

G(x, L) = 1±
∑

k

xkG(x, ∂−ρ)
1−sk(e−Lρ − 1)

rk
ρ(1− ρ)

∣

∣

∣

∣

ρ=0

and then using the γk recurrence we get

γ1(x) = −P (x) + γ1(x)(sign(s)− |s|x∂x)γ1(x)

where
P (x) =

∑

k≥1

rkx
k

3-4



The differential equation in QED

Joint work with Guillaume van Baalen, Dirk Kreimer, and David Umin-
sky, arXiv:0805.0826.

In QED in the Baker, Johnson, Willey gauge, we only need to worry
about the photon, so we are in the single equation case.

s = 1 because
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Picture
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There are two behaviours. The separatrix is the separating solution.
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Results

If P (x) is C2 and P (x) > 0 for x ∈ (0, x0) then either

• γ1 crosses the x axis with a vertical tangent and returns to −1, or

• P and γ1 have a common zero, or

• γ1 is positive and exists for all x

In the last case if also P (x) > 0 for all x > 0 and P (x) is increasing then
either

• γ1 is the separatrix and diverges in finite L (a Landau pole) iff

∫ ∞

x0

2dz

z(
√

1 + 4P (z)− 1)
< ∞

• γ1 is larger than the separatrix and diverges in finite L regardless
of P .
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Other results

We also thought about other values of s including in arXiv:0906.1754
negative values of s which have quite a different flavour (spirals!) and
form a model of massless QCD.

Looking at s = 2 we can give an explicit combinatorial solution as a sum
over rooted connected chord diagrams

Marc Bellon and his collaborators have looked at theWess-Zumino model,
eg arXiv:1205.0022, and specific approximations to P .
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