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Combinatorics providing insights in QFT

Things you can do

Combinatorics to use
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Some refs

References

Mathematizing
Renormal-
1zation

arXiv:hep-th /0211136
arXiv:hep-th /0506190

arXiv:1202.3552

Evaluating
individual
Feynman
graphs

arXiv:0804.1660
arXiv:0801.2856
arXiv:0910.5429

arXiv:1208.1890

Moving from
scalar field
theories to
gauge theories

arXiv:1010.5804

arXiv:1208.6477
arXiv:1207.5460

Understanding
Dyson-
Schwinger
equations

Many of these have appeared in journals now. And there are many more.

arXiv:hep-th /0605096

arXiv:0810.2249

arXiv:0805.0826 <—

arXiv:1210.5457
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Simple nestings and chainings

Today there’s only time to talk about one of these, so I will talk about
Dyson-Schwinger equations.

An example in Yukawa theory (Broadhurst-Kreimer arXiv:hep-th/0012146)

How to capture the combinatorics of the recursion?
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Combinatorial Dyson-Schwinger equations

We can capture other recursions in a similar language — this is equivalent
to the diagrammatic viewpoint on Dyson-Schwinger equations.
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Putting the analysis back in

In the Yukawa example we had

x k-q
Ly=1- % [ d% — .
G0 =1= 5 | o g gr

e plugin G(x,L) =1 — > v (z)L"
o use DSz, = (—1)" log" (x)
e switch the order of [ and 0

to obtain

G(z,L) =1 —aG(x,0_,) " (e = 1)F(p)| _,

Where F'(p) is the integral for the primitive regularized by a parameter
p which marks the insertion place.
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Today’s analytic Dyson-Schwinger equations

Beginning with a combinatorial Dyson-Schwinger equation

X =I+) 2*B*(XQ")

k>1

where Q = X ™%, define the analytic Dyson-Schwinger equation of to be

G(x,L)=1%+ Zka(az, O_,) 7 (e — 1) Fr(p)| p=0

k>1

where F(p) is the Feynman integral for v, regularized by a parameter
p which marks the insertion place.

More insertion places and systems get more complicated.
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Rearranging Dyson-Schwinger equations

The Yukawa example is particularly nice and can in fact be solved.

This example works so well because the Dyson-Schwinger equation had
e One primitive graph

e which had a particularly nice integral (scaled just a geometric se-
ries)

e inserted into one place

The program of arXiv:0810.2249, Memoir. Am. Math. Soc. 211, no.
995, with an important improvement in arXiv:1302.0080, was to gen-
eralize this nice situation into a general reduction process for Dyson-
Schwinger equations.

Some steps make combinatorial sense, others do not.
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Finding the ~; recurrence

Write
G(z,L) =1+ ) y(z)L*

k>1

We can find a recurrence for 7, in terms of lower «; — it is the renormal-
ization group equation translated into this language:

(57 + 8le) g £ (@) 6o 1) =0

Extracting the coefficient of L*~! gives a recurrence for ~;

e = (@) (sign(s) + [slads) e (2)

for kK > 2
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Trading p for x

Notice that 74 (z) begins with an 2 term. So the lowest possible power

of z in
ka(x7 a—p)l_Skpelp:O

1S

Consequently there is a unique sequence r; such that

St G(w,0-) " (e — 1) Fe(p)

p=0
Tk
p(1—p)

= Zka(x, O_,) k(e P — 1)
k

p=0
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The differential equation

Taking the coefficient of L and L? in

Gz, L) =1+ Zasz(x,ﬁ_p)l_Sk(e_Lp —1)
k
and then using the v, recurrence we get
71(e) = ~P) + () sign(s) = [sfe)n @) |
P(z) = Zrkxk

k>1

where




The differential equation in QED

Joint work with Guillaume van Baalen, Dirk Kreimer, and David Umin-
sky, arXiv:0805.0826.

In QED in the Baker, Johnson, Willey gauge, we only need to worry
about the photon, so we are in the single equation case.

s = 1 because
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Picture

s=1, P=x
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There are two behaviours. The separatriz is the separating solution.



Results

If P(z)is C? and P(z) > 0 for z € (0,z9) then either
e v, crosses the x axis with a vertical tangent and returns to —1, or
e P and v, have a common zero, or
e 7, is positive and exists for all x

In the last case if also P(x) > 0 for all x > 0 and P(x) is increasing then
either

e 7 is the separatrix and diverges in finite L (a Landau pole) iff

/OO 2dz “
o z(\/l 4 4P(z) — 1)

e ~; is larger than the separatrix and diverges in finite L regardless
of P.
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Other results

We also thought about other values of s including in arXiv:0906.1754
negative values of s which have quite a different flavour (spirals!) and
form a model of massless QCD.

Looking at s = 2 we can give an explicit combinatorial solution as a sum
over rooted connected chord diagrams

Marc Bellon and his collaborators have looked at the Wess-Zumino model,
eg arXiv:1205.0022, and specific approximations to P.
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